mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
15c5527c29
LevelDB overlay and map backends.
293 lines
10 KiB
C++
293 lines
10 KiB
C++
/*
|
|
This file is part of cpp-ethereum.
|
|
|
|
cpp-ethereum is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Foobar is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Foobar. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/** @file main.cpp
|
|
* @author Gav Wood <i@gavwood.com>
|
|
* @date 2014
|
|
* Main test functions.
|
|
*/
|
|
|
|
#include <random>
|
|
#include <chrono>
|
|
#include <Common.h>
|
|
#include <secp256k1.h>
|
|
#include "Dagger.h"
|
|
#include "RLP.h"
|
|
#include "Trie.h"
|
|
#include "State.h"
|
|
using namespace std;
|
|
using namespace std::chrono;
|
|
using namespace eth;
|
|
|
|
// TODO: utilise the shared testdata.
|
|
|
|
int main()
|
|
{
|
|
/*
|
|
// Test dagger
|
|
{
|
|
Dagger d((h256)0);
|
|
auto s = steady_clock::now();
|
|
cout << hex << d.eval(0);
|
|
cout << " " << dec << duration_cast<milliseconds>(steady_clock::now() - s).count() << " ms" << endl;
|
|
cout << hex << d.eval(1);
|
|
cout << " " << dec << duration_cast<milliseconds>(steady_clock::now() - s).count() << " ms" << endl;
|
|
}
|
|
{
|
|
Dagger d((h256)1);
|
|
auto s = steady_clock::now();
|
|
cout << hex << d.eval(0);
|
|
cout << " " << dec << duration_cast<milliseconds>(steady_clock::now() - s).count() << " ms" << endl;
|
|
cout << hex << d.eval(1);
|
|
cout << " " << dec << duration_cast<milliseconds>(steady_clock::now() - s).count() << " ms" << endl;
|
|
}
|
|
*/
|
|
/*
|
|
// Test transaction.
|
|
bytes tx = fromUserHex("88005401010101010101010101010101010101010101011f0de0b6b3a76400001ce8d4a5100080181c373130a009ba1f10285d4e659568bfcfec85067855c5a3c150100815dad4ef98fd37cf0593828c89db94bd6c64e210a32ef8956eaa81ea9307194996a3b879441f5d");
|
|
cout << "TX: " << RLP(tx) << endl;
|
|
|
|
Transaction t(tx);
|
|
cout << "SENDER: " << hex << t.sender() << endl;
|
|
|
|
bytes sig64 = toBigEndian(t.vrs.r) + toBigEndian(t.vrs.s);
|
|
cout << "SIG: " << sig64.size() << " " << asHex(sig64) << " " << t.vrs.v << endl;
|
|
|
|
auto msg = t.rlp(false);
|
|
cout << "TX w/o SIG: " << RLP(msg) << endl;
|
|
cout << "RLP(TX w/o SIG): " << asHex(t.rlpString(false)) << endl;
|
|
std::string hmsg = sha3(t.rlpString(false), false);
|
|
cout << "SHA256(RLP(TX w/o SIG)): 0x" << asHex(hmsg) << endl;
|
|
|
|
bytes privkey = sha3Bytes("123");
|
|
|
|
secp256k1_start();
|
|
|
|
{
|
|
bytes pubkey(65);
|
|
int pubkeylen = 65;
|
|
|
|
int ret = secp256k1_ecdsa_seckey_verify(privkey.data());
|
|
cout << "SEC: " << dec << ret << " " << asHex(privkey) << endl;
|
|
|
|
ret = secp256k1_ecdsa_pubkey_create(pubkey.data(), &pubkeylen, privkey.data(), 1);
|
|
pubkey.resize(pubkeylen);
|
|
int good = secp256k1_ecdsa_pubkey_verify(pubkey.data(), pubkey.size());
|
|
cout << "PUB: " << dec << ret << " " << pubkeylen << " " << asHex(pubkey) << (good ? " GOOD" : " BAD") << endl;
|
|
}
|
|
|
|
// Test roundtrip...
|
|
{
|
|
bytes sig(64);
|
|
u256 nonce = 0;
|
|
int v = 0;
|
|
int ret = secp256k1_ecdsa_sign_compact((byte const*)hmsg.data(), hmsg.size(), sig.data(), privkey.data(), (byte const*)&nonce, &v);
|
|
cout << "MYSIG: " << dec << ret << " " << sig.size() << " " << asHex(sig) << " " << v << endl;
|
|
|
|
bytes pubkey(65);
|
|
int pubkeylen = 65;
|
|
ret = secp256k1_ecdsa_recover_compact((byte const*)hmsg.data(), hmsg.size(), (byte const*)sig.data(), pubkey.data(), &pubkeylen, 0, v);
|
|
pubkey.resize(pubkeylen);
|
|
cout << "MYREC: " << dec << ret << " " << pubkeylen << " " << asHex(pubkey) << endl;
|
|
}
|
|
|
|
{
|
|
bytes pubkey(65);
|
|
int pubkeylen = 65;
|
|
int ret = secp256k1_ecdsa_recover_compact((byte const*)hmsg.data(), hmsg.size(), (byte const*)sig64.data(), pubkey.data(), &pubkeylen, 0, (int)t.vrs.v - 27);
|
|
pubkey.resize(pubkeylen);
|
|
cout << "RECPUB: " << dec << ret << " " << pubkeylen << " " << asHex(pubkey) << endl;
|
|
cout << "SENDER: " << hex << low160(eth::sha3(bytesConstRef(&pubkey).cropped(1))) << endl;
|
|
}
|
|
*/
|
|
|
|
{
|
|
BasicMap m;
|
|
GenericTrieDB<BasicMap> t(&m);
|
|
t.init(); // initialise as empty tree.
|
|
cout << m;
|
|
cout << t.root() << endl;
|
|
cout << hash256(StringMap()) << endl;
|
|
|
|
t.insert(string("test"), string("test"));
|
|
cout << m;
|
|
cout << t.root() << endl;
|
|
cout << hash256({{"test", "test"}}) << endl;
|
|
|
|
t.insert(string("te"), string("test"));
|
|
cout << m;
|
|
cout << t.root() << endl;
|
|
cout << hash256({{"test", "test"}, {"te", "test"}}) << endl;
|
|
}
|
|
{
|
|
BasicMap m;
|
|
GenericTrieDB<BasicMap> t(&m);
|
|
t.init(); // initialise as empty tree.
|
|
t.insert(string("a"), string("A"));
|
|
t.insert(string("b"), string("B"));
|
|
cout << m;
|
|
cout << t.root() << endl;
|
|
cout << hash256({{"b", "B"}, {"a", "A"}}) << endl;
|
|
cout << RLP(rlp256({{"b", "B"}, {"a", "A"}})) << endl;
|
|
}
|
|
return 0;
|
|
cout << escaped(asString(rlp256({{"b", "B"}, {"a", "A"}})), false) << " == " << RLP(rlp256({{"b", "B"}, {"a", "A"}})) << endl;
|
|
cout << escaped(asString(rlp256({{"test", "test"}})), false) << " == " << RLP(rlp256({{"test", "test"}})) << endl;
|
|
cout << asHex(rlp256({{"test", "test"}, {"te", "test"}})) << endl;
|
|
{
|
|
Trie t;
|
|
t.insert("dog", "puppy");
|
|
cout << hex << t.hash256() << endl;
|
|
cout << RLP(t.rlp()) << endl;
|
|
}
|
|
{
|
|
Trie t;
|
|
t.insert("bed", "d");
|
|
t.insert("be", "e");
|
|
cout << hex << t.hash256() << endl;
|
|
cout << RLP(t.rlp()) << endl;
|
|
}
|
|
{
|
|
cout << hex << hash256({{"dog", "puppy"}, {"doe", "reindeer"}}) << endl;
|
|
Trie t;
|
|
t.insert("dog", "puppy");
|
|
t.insert("doe", "reindeer");
|
|
cout << hex << t.hash256() << endl;
|
|
cout << RLP(t.rlp()) << endl;
|
|
cout << asHex(t.rlp()) << endl;
|
|
}
|
|
{
|
|
Trie t;
|
|
|
|
t.insert("dog", "puppy");
|
|
assert(t.hash256() == hash256({{"dog", "puppy"}}));
|
|
assert(t.at("dog") == "puppy");
|
|
t.insert("doe", "reindeer");
|
|
assert(t.hash256() == hash256({{"dog", "puppy"}, {"doe", "reindeer"}}));
|
|
assert(t.at("doe") == "reindeer");
|
|
assert(t.at("dog") == "puppy");
|
|
t.insert("dogglesworth", "cat");
|
|
assert(t.hash256() == hash256({{"doe", "reindeer"}, {"dog", "puppy"}, {"dogglesworth", "cat"}}));
|
|
assert(t.at("doe") == "reindeer");
|
|
assert(t.at("dog") == "puppy");
|
|
assert(t.at("dogglesworth") == "cat");
|
|
t.remove("dogglesworth");
|
|
t.remove("doe");
|
|
assert(t.at("doe").empty());
|
|
assert(t.at("dogglesworth").empty());
|
|
assert(t.at("dog") == "puppy");
|
|
assert(t.hash256() == hash256({{"dog", "puppy"}}));
|
|
t.insert("horse", "stallion");
|
|
t.insert("do", "verb");
|
|
t.insert("doge", "coin");
|
|
assert(t.hash256() == hash256({{"dog", "puppy"}, {"horse", "stallion"}, {"do", "verb"}, {"doge", "coin"}}));
|
|
assert(t.at("doge") == "coin");
|
|
assert(t.at("do") == "verb");
|
|
assert(t.at("horse") == "stallion");
|
|
assert(t.at("dog") == "puppy");
|
|
t.remove("horse");
|
|
t.remove("do");
|
|
t.remove("doge");
|
|
assert(t.hash256() == hash256({{"dog", "puppy"}}));
|
|
assert(t.at("dog") == "puppy");
|
|
t.remove("dog");
|
|
|
|
for (int a = 0; a < 20; ++a)
|
|
{
|
|
StringMap m;
|
|
for (int i = 0; i < 20; ++i)
|
|
{
|
|
auto k = randomWord();
|
|
auto v = toString(i);
|
|
m.insert(make_pair(k, v));
|
|
t.insert(k, v);
|
|
assert(hash256(m) == t.hash256());
|
|
}
|
|
while (!m.empty())
|
|
{
|
|
auto k = m.begin()->first;
|
|
t.remove(k);
|
|
m.erase(k);
|
|
assert(hash256(m) == t.hash256());
|
|
}
|
|
}
|
|
}
|
|
|
|
// int of value 15
|
|
assert(RLP("\x0f") == 15);
|
|
assert(asString(rlp(15)) == "\x0f");
|
|
|
|
// 3-character string
|
|
assert(RLP("\x43""dog") == "dog");
|
|
assert(asString(rlp("dog")) == "\x43""dog");
|
|
|
|
// 2-item list
|
|
RLP twoItemList((byte const*)"\x82\x0f\x43""dog", 6);
|
|
assert(twoItemList.itemCount() == 2);
|
|
assert(twoItemList[0] == 15);
|
|
assert(twoItemList[1] == "dog");
|
|
assert(asString(rlpList(15, "dog")) == "\x82\x0f\x43""dog");
|
|
|
|
// 1-byte (8-bit) int
|
|
assert(RLP("\x18\x45") == 69);
|
|
assert(asString(rlp(69)) == "\x18\x45");
|
|
|
|
// 2-byte (16-bit) int
|
|
assert(RLP("\x19\x01\x01") == 257);
|
|
assert(asString(rlp(257)) == "\x19\x01\x01");
|
|
|
|
// 32-byte (256-bit) int
|
|
assert(RLP("\x37\x10\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f") == bigint("0x100102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f"));
|
|
assert(asString(rlp(bigint("0x100102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f"))) == "\x37\x10\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f");
|
|
|
|
// 33-byte (264-bit) int
|
|
assert(RLP("\x38\x21\x20\x10\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f") == bigint("0x20100102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F"));
|
|
assert(asString(rlp(bigint("0x20100102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F"))) == "\x38\x21\x20\x10\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f");
|
|
|
|
// 56-character string.
|
|
assert(RLP("\x78\x38""Lorem ipsum dolor sit amet, consectetur adipisicing elit") == "Lorem ipsum dolor sit amet, consectetur adipisicing elit");
|
|
assert(asString(rlp("Lorem ipsum dolor sit amet, consectetur adipisicing elit")) == "\x78\x38""Lorem ipsum dolor sit amet, consectetur adipisicing elit");
|
|
|
|
/*
|
|
* Hex-prefix Notation. First nibble has flags: oddness = 2^0 & termination = 2^1
|
|
* [0,0,1,2,3,4,5] 0x10012345
|
|
* [0,1,2,3,4,5] 0x00012345
|
|
* [1,2,3,4,5] 0x112345
|
|
* [0,0,1,2,3,4] 0x00001234
|
|
* [0,1,2,3,4] 0x101234
|
|
* [1,2,3,4] 0x001234
|
|
* [0,0,1,2,3,4,5,T] 0x30012345
|
|
* [0,0,1,2,3,4,T] 0x20001234
|
|
* [0,1,2,3,4,5,T] 0x20012345
|
|
* [1,2,3,4,5,T] 0x312345
|
|
* [1,2,3,4,T] 0x201234
|
|
*/
|
|
assert(asHex(hexPrefixEncode({0, 0, 1, 2, 3, 4, 5}, false)) == "10012345");
|
|
assert(asHex(hexPrefixEncode({0, 1, 2, 3, 4, 5}, false)) == "00012345");
|
|
assert(asHex(hexPrefixEncode({1, 2, 3, 4, 5}, false)) == "112345");
|
|
assert(asHex(hexPrefixEncode({0, 0, 1, 2, 3, 4}, false)) == "00001234");
|
|
assert(asHex(hexPrefixEncode({0, 1, 2, 3, 4}, false)) == "101234");
|
|
assert(asHex(hexPrefixEncode({1, 2, 3, 4}, false)) == "001234");
|
|
assert(asHex(hexPrefixEncode({0, 0, 1, 2, 3, 4, 5}, true)) == "30012345");
|
|
assert(asHex(hexPrefixEncode({0, 0, 1, 2, 3, 4}, true)) == "20001234");
|
|
assert(asHex(hexPrefixEncode({0, 1, 2, 3, 4, 5}, true)) == "20012345");
|
|
assert(asHex(hexPrefixEncode({1, 2, 3, 4, 5}, true)) == "312345");
|
|
assert(asHex(hexPrefixEncode({1, 2, 3, 4}, true)) == "201234");
|
|
|
|
return 0;
|
|
}
|
|
|