solidity/libyul/backends/evm/StackHelpers.h
2021-09-23 15:27:29 +02:00

430 lines
18 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
// SPDX-License-Identifier: GPL-3.0
#pragma once
#include <libyul/backends/evm/ControlFlowGraph.h>
#include <libyul/Exceptions.h>
#include <libsolutil/Visitor.h>
#include <range/v3/algorithm/all_of.hpp>
#include <range/v3/algorithm/any_of.hpp>
#include <range/v3/view/enumerate.hpp>
#include <range/v3/view/iota.hpp>
#include <range/v3/view/reverse.hpp>
#include <range/v3/view/take.hpp>
namespace solidity::yul
{
inline std::string stackSlotToString(StackSlot const& _slot)
{
return std::visit(util::GenericVisitor{
[](FunctionCallReturnLabelSlot const& _ret) -> std::string { return "RET[" + _ret.call.get().functionName.name.str() + "]"; },
[](FunctionReturnLabelSlot const&) -> std::string { return "RET"; },
[](VariableSlot const& _var) { return _var.variable.get().name.str(); },
[](LiteralSlot const& _lit) { return toCompactHexWithPrefix(_lit.value); },
[](TemporarySlot const& _tmp) -> std::string { return "TMP[" + _tmp.call.get().functionName.name.str() + ", " + std::to_string(_tmp.index) + "]"; },
[](JunkSlot const&) -> std::string { return "JUNK"; }
}, _slot);
}
inline std::string stackToString(Stack const& _stack)
{
std::string result("[ ");
for (auto const& slot: _stack)
result += stackSlotToString(slot) + ' ';
result += ']';
return result;
}
// Abstraction of stack shuffling operations. Can be defined as actual concept once we switch to C++20.
// Used as an interface for the stack shuffler below.
// The shuffle operation class is expected to internally keep track of a current stack layout (the "source layout")
// that the shuffler is supposed to shuffle to a fixed target stack layout.
// The shuffler works iteratively. At each iteration it instantiates an instance of the shuffle operations and
// queries it for various information about the current source stack layout and the target layout, as described
// in the interface below.
// Based on that information the shuffler decides which is the next optimal operation to perform on the stack
// and calls the corresponding entry point in the shuffling operations (swap, pushOrDupTarget or pop).
/*
template<typename ShuffleOperations>
concept ShuffleOperationConcept = requires(ShuffleOperations ops, size_t sourceOffset, size_t targetOffset, size_t depth) {
// Returns true, iff the current slot at sourceOffset in source layout is a suitable slot at targetOffset.
{ ops.isCompatible(sourceOffset, targetOffset) } -> std::convertible_to<bool>;
// Returns true, iff the slots at the two given source offsets are identical.
{ ops.sourceIsSame(sourceOffset, sourceOffset) } -> std::convertible_to<bool>;
// Returns a positive integer n, if the slot at the given source offset needs n more copies.
// Returns a negative integer -n, if the slot at the given source offsets occurs n times too many.
// Returns zero if the amount of occurrences, in the current source layout, of the slot at the given source offset
// matches the desired amount of occurrences in the target.
{ ops.sourceMultiplicity(sourceOffset) } -> std::convertible_to<int>;
// Returns a positive integer n, if the slot at the given target offset needs n more copies.
// Returns a negative integer -n, if the slot at the given target offsets occurs n times too many.
// Returns zero if the amount of occurrences, in the current source layout, of the slot at the given target offset
// matches the desired amount of occurrences in the target.
{ ops.targetMultiplicity(targetOffset) } -> std::convertible_to<int>;
// Returns true, iff any slot is compatible with the given target offset.
{ ops.targetIsArbitrary(targetOffset) } -> std::convertible_to<bool>;
// Returns the number of slots in the source layout.
{ ops.sourceSize() } -> std::convertible_to<size_t>;
// Returns the number of slots in the target layout.
{ ops.targetSize() } -> std::convertible_to<size_t>;
// Swaps the top most slot in the source with the slot `depth` slots below the top.
// In terms of EVM opcodes this is supposed to be a `SWAP<depth>`.
// In terms of vectors this is supposed to be `std::swap(source.at(source.size() - depth - 1, source.top))`.
{ ops.swap(depth) };
// Pops the top most slot in the source, i.e. the slot at offset ops.sourceSize() - 1.
// In terms of EVM opcodes this is `POP`.
// In terms of vectors this is `source.pop();`.
{ ops.pop() };
// Dups or pushes the slot that is supposed to end up at the given target offset.
{ ops.pushOrDupTarget(targetOffset) };
};
*/
/// Helper class that can perform shuffling of a source stack layout to a target stack layout via
/// abstracted shuffle operations.
template</*ShuffleOperationConcept*/ typename ShuffleOperations>
class Shuffler
{
public:
/// Executes the stack shuffling operations. Instantiates an instance of ShuffleOperations
/// in each iteration. Each iteration performs exactly one operation that modifies the stack.
/// After `shuffle`, source and target have the same size and all slots in the source layout are
/// compatible with the slots at the same target offset.
template<typename... Args>
static void shuffle(Args&&... args)
{
bool needsMoreShuffling = true;
// The shuffling algorithm should always terminate in polynomial time, but we provide a limit
// in case it does not terminate due to a bug.
size_t iterationCount = 0;
while (iterationCount < 1000 && (needsMoreShuffling = shuffleStep(std::forward<Args>(args)...)))
++iterationCount;
yulAssert(!needsMoreShuffling, "Could not create stack layout after 1000 iterations.");
}
private:
// If dupping an ideal slot causes a slot that will still be required to become unreachable, then dup
// the latter slot first.
// @returns true, if it performed a dup.
static bool dupDeepSlotIfRequired(ShuffleOperations& _ops)
{
// Check if the stack is large enough for anything to potentially become unreachable.
if (_ops.sourceSize() < 15)
return false;
// Check whether any deep slot might still be needed later (i.e. we still need to reach it with a DUP or SWAP).
for (size_t sourceOffset: ranges::views::iota(0u, _ops.sourceSize() - 15))
{
// This slot needs to be moved.
if (!_ops.isCompatible(sourceOffset, sourceOffset))
{
// If the current top fixes the slot, swap it down now.
if (_ops.isCompatible(_ops.sourceSize() - 1, sourceOffset))
{
_ops.swap(_ops.sourceSize() - sourceOffset - 1);
return true;
}
// Bring up a slot to fix this now, if possible.
if (bringUpTargetSlot(_ops, sourceOffset))
return true;
// Otherwise swap up the slot that will fix the offending slot.
for (auto offset: ranges::views::iota(sourceOffset + 1, _ops.sourceSize()))
if (_ops.isCompatible(offset, sourceOffset))
{
_ops.swap(_ops.sourceSize() - offset - 1);
return true;
}
// Otherwise give up - we will need stack compression or stack limit evasion.
}
// We need another copy of this slot.
else if (_ops.sourceMultiplicity(sourceOffset) > 0)
{
// If this slot occurs again later, we skip this occurrence.
if (ranges::any_of(
ranges::views::iota(sourceOffset + 1, _ops.sourceSize()),
[&](size_t _offset) { return _ops.sourceIsSame(sourceOffset, _offset); }
))
continue;
// Bring up the target slot that would otherwise become unreachable.
for (size_t targetOffset: ranges::views::iota(0u, _ops.targetSize()))
if (!_ops.targetIsArbitrary(targetOffset) && _ops.isCompatible(sourceOffset, targetOffset))
{
_ops.pushOrDupTarget(targetOffset);
return true;
}
}
}
return false;
}
/// Finds a slot to dup or push with the aim of eventually fixing @a _targetOffset in the target.
/// In the simplest case, the slot at @a _targetOffset has a multiplicity > 0, i.e. it can directly be dupped or pushed
/// and the next iteration will fix @a _targetOffset.
/// But, in general, there may already be enough copies of the slot that is supposed to end up at @a _targetOffset
/// on stack, s.t. it cannot be dupped again. In that case there has to be a copy of the desired slot on stack already
/// elsewhere that is not yet in place (`nextOffset` below). The fact that ``nextOffset`` is not in place means that
/// we can (recursively) try bringing up the slot that is supposed to end up at ``nextOffset`` in the *target*.
/// When the target slot at ``nextOffset`` is fixed, the current source slot at ``nextOffset`` will be
/// at the stack top, which is the slot required at @a _targetOffset.
static bool bringUpTargetSlot(ShuffleOperations& _ops, size_t _targetOffset)
{
std::list<size_t> toVisit{_targetOffset};
std::set<size_t> visited;
while (!toVisit.empty())
{
auto offset = *toVisit.begin();
toVisit.erase(toVisit.begin());
visited.emplace(offset);
if (_ops.targetMultiplicity(offset) > 0)
{
_ops.pushOrDupTarget(offset);
return true;
}
// There must be another slot we can dup/push that will lead to the target slot at ``offset`` to be fixed.
for (auto nextOffset: ranges::views::iota(0u, std::min(_ops.sourceSize(), _ops.targetSize())))
if (
!_ops.isCompatible(nextOffset, nextOffset) &&
_ops.isCompatible(nextOffset, offset)
)
if (!visited.count(nextOffset))
toVisit.emplace_back(nextOffset);
}
return false;
}
/// Performs a single stack operation, transforming the source layout closer to the target layout.
template<typename... Args>
static bool shuffleStep(Args&&... args)
{
ShuffleOperations ops{std::forward<Args>(args)...};
// All source slots are final.
if (ranges::all_of(
ranges::views::iota(0u, ops.sourceSize()),
[&](size_t _index) { return ops.isCompatible(_index, _index); }
))
{
// Bring up all remaining target slots, if any, or terminate otherwise.
if (ops.sourceSize() < ops.targetSize())
{
if (!dupDeepSlotIfRequired(ops))
yulAssert(bringUpTargetSlot(ops, ops.sourceSize()), "");
return true;
}
return false;
}
size_t sourceTop = ops.sourceSize() - 1;
// If we no longer need the current stack top, we pop it, unless we need an arbitrary slot at this position
// in the target.
if (
ops.sourceMultiplicity(sourceTop) < 0 &&
!ops.targetIsArbitrary(sourceTop)
)
{
ops.pop();
return true;
}
yulAssert(ops.targetSize() > 0, "");
// If the top is not supposed to be exactly what is on top right now, try to find a lower position to swap it to.
if (!ops.isCompatible(sourceTop, sourceTop) || ops.targetIsArbitrary(sourceTop))
for (size_t offset: ranges::views::iota(0u, std::min(ops.sourceSize(), ops.targetSize())))
// It makes sense to swap to a lower position, if
if (
!ops.isCompatible(offset, offset) && // The lower slot is not already in position.
!ops.sourceIsSame(offset, sourceTop) && // We would not just swap identical slots.
ops.isCompatible(sourceTop, offset) // The lower position wants to have this slot.
)
{
// We cannot swap that deep.
if (ops.sourceSize() - offset - 1 > 16)
{
// If there is a reachable slot to be removed, park the current top there.
for (size_t swapDepth: ranges::views::iota(1u, 17u) | ranges::views::reverse)
if (ops.sourceMultiplicity(ops.sourceSize() - 1 - swapDepth) < 0)
{
ops.swap(swapDepth);
return true;
}
// Otherwise we rely on stack compression or stack-to-memory.
}
ops.swap(ops.sourceSize() - offset - 1);
return true;
}
// ops.sourceSize() > ops.targetSize() cannot be true anymore, since if the source top is no longer required,
// we already popped it, and if it is required, we already swapped it down to a suitable target position.
yulAssert(ops.sourceSize() <= ops.targetSize(), "");
// If a lower slot should be removed, try to bring up the slot that should end up there and bring it up.
// Note that after the cases above, there will always be a target slot to duplicate in this case.
for (size_t offset: ranges::views::iota(0u, ops.sourceSize()))
if (
!ops.isCompatible(offset, offset) && // The lower slot is not already in position.
ops.sourceMultiplicity(offset) < 0 && // We have too many copies of this slot.
offset <= ops.targetSize() && // There is a target slot at this position.
!ops.targetIsArbitrary(offset) // And that target slot is not arbitrary.
)
{
if (!dupDeepSlotIfRequired(ops))
yulAssert(bringUpTargetSlot(ops, offset), "");
return true;
}
// At this point we want to keep all slots.
for (size_t i = 0; i < ops.sourceSize(); ++i)
yulAssert(ops.sourceMultiplicity(i) >= 0, "");
yulAssert(ops.sourceSize() <= ops.targetSize(), "");
// If the top is not in position, try to find a slot that wants to be at the top and swap it up.
if (!ops.isCompatible(sourceTop, sourceTop))
for (size_t sourceOffset: ranges::views::iota(0u, ops.sourceSize()))
if (
!ops.isCompatible(sourceOffset, sourceOffset) &&
ops.isCompatible(sourceOffset, sourceTop)
)
{
ops.swap(ops.sourceSize() - sourceOffset - 1);
return true;
}
// If we still need more slots, produce a suitable one.
if (ops.sourceSize() < ops.targetSize())
{
if (!dupDeepSlotIfRequired(ops))
yulAssert(bringUpTargetSlot(ops, ops.sourceSize()), "");
return true;
}
// The stack has the correct size, each slot has the correct number of copies and the top is in position.
yulAssert(ops.sourceSize() == ops.targetSize(), "");
size_t size = ops.sourceSize();
for (size_t i = 0; i < ops.sourceSize(); ++i)
yulAssert(ops.sourceMultiplicity(i) == 0 && (ops.targetIsArbitrary(i) || ops.targetMultiplicity(i) == 0), "");
yulAssert(ops.isCompatible(sourceTop, sourceTop), "");
// If we find a lower slot that is out of position, but also compatible with the top, swap that up.
for (size_t offset: ranges::views::iota(0u, size))
if (!ops.isCompatible(offset, offset) && ops.isCompatible(sourceTop, offset))
{
ops.swap(size - offset - 1);
return true;
}
// Swap up any slot that is still out of position.
for (size_t offset: ranges::views::iota(0u, size))
if (!ops.isCompatible(offset, offset) && !ops.sourceIsSame(offset, sourceTop))
{
ops.swap(size - offset - 1);
return true;
}
yulAssert(false, "");
}
};
/// Transforms @a _currentStack to @a _targetStack, invoking the provided shuffling operations.
/// Modifies @a _currentStack itself after each invocation of the shuffling operations.
/// @a _swap is a function with signature void(unsigned) that is called when the top most slot is swapped with
/// the slot `depth` slots below the top. In terms of EVM opcodes this is supposed to be a `SWAP<depth>`.
/// @a _pushOrDup is a function with signature void(StackSlot const&) that is called to push or dup the slot given as
/// its argument to the stack top.
/// @a _pop is a function with signature void() that is called when the top most slot is popped.
template<typename Swap, typename PushOrDup, typename Pop>
void createStackLayout(Stack& _currentStack, Stack const& _targetStack, Swap _swap, PushOrDup _pushOrDup, Pop _pop)
{
struct ShuffleOperations
{
Stack& currentStack;
Stack const& targetStack;
Swap swapCallback;
PushOrDup pushOrDupCallback;
Pop popCallback;
std::map<StackSlot, int> multiplicity;
ShuffleOperations(
Stack& _currentStack,
Stack const& _targetStack,
Swap _swap,
PushOrDup _pushOrDup,
Pop _pop
):
currentStack(_currentStack),
targetStack(_targetStack),
swapCallback(_swap),
pushOrDupCallback(_pushOrDup),
popCallback(_pop)
{
for (auto const& slot: currentStack)
--multiplicity[slot];
for (auto&& [offset, slot]: targetStack | ranges::views::enumerate)
if (std::holds_alternative<JunkSlot>(slot) && offset < currentStack.size())
++multiplicity[currentStack.at(offset)];
else
++multiplicity[slot];
}
bool isCompatible(size_t _source, size_t _target)
{
return
_source < currentStack.size() &&
_target < targetStack.size() &&
(
std::holds_alternative<JunkSlot>(targetStack.at(_target)) ||
currentStack.at(_source) == targetStack.at(_target)
);
}
bool sourceIsSame(size_t _lhs, size_t _rhs) { return currentStack.at(_lhs) == currentStack.at(_rhs); }
int sourceMultiplicity(size_t _offset) { return multiplicity.at(currentStack.at(_offset)); }
int targetMultiplicity(size_t _offset) { return multiplicity.at(targetStack.at(_offset)); }
bool targetIsArbitrary(size_t offset)
{
return offset < targetStack.size() && std::holds_alternative<JunkSlot>(targetStack.at(offset));
}
void swap(size_t _i)
{
swapCallback(static_cast<unsigned>(_i));
std::swap(currentStack.at(currentStack.size() - _i - 1), currentStack.back());
}
size_t sourceSize() { return currentStack.size(); }
size_t targetSize() { return targetStack.size(); }
void pop()
{
popCallback();
currentStack.pop_back();
}
void pushOrDupTarget(size_t _offset)
{
auto const& targetSlot = targetStack.at(_offset);
pushOrDupCallback(targetSlot);
currentStack.push_back(targetSlot);
}
};
Shuffler<ShuffleOperations>::shuffle(_currentStack, _targetStack, _swap, _pushOrDup, _pop);
yulAssert(_currentStack.size() == _targetStack.size(), "");
for (auto&& [current, target]: ranges::zip_view(_currentStack, _targetStack))
if (std::holds_alternative<JunkSlot>(target))
current = JunkSlot{};
else
yulAssert(current == target, "");
}
}