solidity/libsolutil/BooleanLP.h
2022-03-20 22:34:22 +01:00

133 lines
4.5 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
// SPDX-License-Identifier: GPL-3.0
#pragma once
#include <libsmtutil/SolverInterface.h>
#include <libsolutil/LP.h>
#include <libsolutil/CDCL.h>
#include <boost/rational.hpp>
#include <vector>
#include <variant>
#include <stack>
namespace solidity::util
{
struct State
{
bool infeasible = false;
std::map<std::string, size_t> variables;
std::vector<bool> isBooleanVariable;
// Potential constraints, referenced through clauses
std::map<size_t, Constraint> conditionalConstraints;
std::vector<Clause> clauses;
// Unconditional bounds on variables
std::map<size_t, SolvingState::Bounds> bounds;
// Unconditional constraints
std::vector<Constraint> fixedConstraints;
};
/**
* Component that satisfies the SMT SolverInterface and uses an LP solver plus the CDCL
* algorithm internally.
* It uses a rational relaxation of the integer program and thus will not be able to answer
* "satisfiable", but its answers are still correct.
*
* Contrary to the usual SMT type system, it adds an implicit constraint for all variables
* and sub-expressions to be non-negative.
* TODO this does not apply to e.g. `x + y - something`
*
* Integers are unbounded.
*/
class BooleanLPSolver: public smtutil::SolverInterface
{
public:
void reset() override;
void push() override;
void pop() override;
void declareVariable(std::string const& _name, smtutil::SortPointer const& _sort) override;
void addAssertion(smtutil::Expression const& _expr) override;
std::pair<smtutil::CheckResult, std::vector<std::string>>
check(std::vector<smtutil::Expression> const& _expressionsToEvaluate) override;
std::pair<smtutil::CheckResult, std::map<std::string, boost::rational<bigint>>> check();
std::string toString() const;
private:
using rational = boost::rational<bigint>;
smtutil::Expression declareInternalVariable(bool _boolean);
void declareVariable(std::string const& _name, bool _boolean);
/// Parses an expression of sort bool and returns a literal.
std::optional<Literal> parseLiteral(smtutil::Expression const& _expr);
Literal negate(Literal const& _lit);
Literal parseLiteralOrReturnEqualBoolean(smtutil::Expression const& _expr);
/// Parses the expression and expects a linear sum of variables.
/// Returns a vector with the first element being the constant and the
/// other elements the factors for the respective variables.
/// If the expression cannot be properly parsed or is not linear,
/// returns an empty vector.
std::optional<LinearExpression> parseLinearSum(smtutil::Expression const& _expression);
std::optional<LinearExpression> parseProduct(smtutil::Expression const& _expression) const;
std::optional<LinearExpression> parseFactor(smtutil::Expression const& _expression) const;
bool tryAddDirectBounds(Constraint const& _constraint);
void addUpperBound(size_t _index, rational _value);
void addLowerBound(size_t _index, rational _value);
size_t addConditionalConstraint(Constraint _constraint);
void addBooleanEquality(Literal const& _left, smtutil::Expression const& _right);
//std::string toString(std::vector<SolvingState::Bounds> const& _bounds) const;
std::string toString(Clause const& _clause) const;
std::string toString(Constraint const& _constraint) const;
Constraint const& conditionalConstraint(size_t _index) const;
std::string variableName(size_t _index) const;
bool isBooleanVariable(std::string const& _name) const;
bool isBooleanVariable(size_t _index) const;
bool isConditionalConstraint(size_t _index) const { return state().conditionalConstraints.count(_index); }
State& state() { return m_state.back(); }
State const& state() const { return m_state.back(); }
/// Stack of state, to allow for push()/pop().
std::vector<State> m_state{{State{}}};
// TODO this is only here so that it can keep its cache.
// It might be better to just have the cache here.
// Although its stote is only the cache in the end...
LPSolver m_lpSolver{false};
};
}