mirror of
				https://github.com/ethereum/solidity
				synced 2023-10-03 13:03:40 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			2361 lines
		
	
	
		
			83 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2361 lines
		
	
	
		
			83 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
	This file is part of solidity.
 | 
						|
 | 
						|
	solidity is free software: you can redistribute it and/or modify
 | 
						|
	it under the terms of the GNU General Public License as published by
 | 
						|
	the Free Software Foundation, either version 3 of the License, or
 | 
						|
	(at your option) any later version.
 | 
						|
 | 
						|
	solidity is distributed in the hope that it will be useful,
 | 
						|
	but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
	GNU General Public License for more details.
 | 
						|
 | 
						|
	You should have received a copy of the GNU General Public License
 | 
						|
	along with solidity.  If not, see <http://www.gnu.org/licenses/>.
 | 
						|
*/
 | 
						|
/**
 | 
						|
 * @author Christian <c@ethdev.com>
 | 
						|
 * @date 2014
 | 
						|
 * Solidity AST to EVM bytecode compiler for expressions.
 | 
						|
 */
 | 
						|
 | 
						|
#include <libsolidity/codegen/ExpressionCompiler.h>
 | 
						|
 | 
						|
#include <libsolidity/ast/AST.h>
 | 
						|
#include <libsolidity/ast/TypeProvider.h>
 | 
						|
#include <libsolidity/codegen/CompilerContext.h>
 | 
						|
#include <libsolidity/codegen/CompilerUtils.h>
 | 
						|
#include <libsolidity/codegen/LValue.h>
 | 
						|
 | 
						|
#include <libevmasm/GasMeter.h>
 | 
						|
#include <libdevcore/Common.h>
 | 
						|
#include <libdevcore/Keccak256.h>
 | 
						|
#include <libdevcore/Whiskers.h>
 | 
						|
 | 
						|
#include <boost/algorithm/string/replace.hpp>
 | 
						|
#include <boost/range/adaptor/reversed.hpp>
 | 
						|
#include <numeric>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace langutil;
 | 
						|
using namespace dev;
 | 
						|
using namespace dev::eth;
 | 
						|
using namespace dev::solidity;
 | 
						|
 | 
						|
 | 
						|
void ExpressionCompiler::compile(Expression const& _expression)
 | 
						|
{
 | 
						|
	_expression.accept(*this);
 | 
						|
}
 | 
						|
 | 
						|
void ExpressionCompiler::appendStateVariableInitialization(VariableDeclaration const& _varDecl)
 | 
						|
{
 | 
						|
	if (!_varDecl.value())
 | 
						|
		return;
 | 
						|
	TypePointer type = _varDecl.value()->annotation().type;
 | 
						|
	solAssert(!!type, "Type information not available.");
 | 
						|
	CompilerContext::LocationSetter locationSetter(m_context, _varDecl);
 | 
						|
	_varDecl.value()->accept(*this);
 | 
						|
 | 
						|
	if (_varDecl.annotation().type->dataStoredIn(DataLocation::Storage))
 | 
						|
	{
 | 
						|
		// reference type, only convert value to mobile type and do final conversion in storeValue.
 | 
						|
		auto mt = type->mobileType();
 | 
						|
		solAssert(mt, "");
 | 
						|
		utils().convertType(*type, *mt);
 | 
						|
		type = mt;
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		utils().convertType(*type, *_varDecl.annotation().type);
 | 
						|
		type = _varDecl.annotation().type;
 | 
						|
	}
 | 
						|
	StorageItem(m_context, _varDecl).storeValue(*type, _varDecl.location(), true);
 | 
						|
}
 | 
						|
 | 
						|
void ExpressionCompiler::appendConstStateVariableAccessor(VariableDeclaration const& _varDecl)
 | 
						|
{
 | 
						|
	solAssert(_varDecl.isConstant(), "");
 | 
						|
	acceptAndConvert(*_varDecl.value(), *_varDecl.annotation().type);
 | 
						|
 | 
						|
	// append return
 | 
						|
	m_context << dupInstruction(_varDecl.annotation().type->sizeOnStack() + 1);
 | 
						|
	m_context.appendJump(eth::AssemblyItem::JumpType::OutOfFunction);
 | 
						|
}
 | 
						|
 | 
						|
void ExpressionCompiler::appendStateVariableAccessor(VariableDeclaration const& _varDecl)
 | 
						|
{
 | 
						|
	solAssert(!_varDecl.isConstant(), "");
 | 
						|
	CompilerContext::LocationSetter locationSetter(m_context, _varDecl);
 | 
						|
	FunctionType accessorType(_varDecl);
 | 
						|
 | 
						|
	TypePointers paramTypes = accessorType.parameterTypes();
 | 
						|
	m_context.adjustStackOffset(1 + CompilerUtils::sizeOnStack(paramTypes));
 | 
						|
 | 
						|
	// retrieve the position of the variable
 | 
						|
	auto const& location = m_context.storageLocationOfVariable(_varDecl);
 | 
						|
	m_context << location.first << u256(location.second);
 | 
						|
 | 
						|
	TypePointer returnType = _varDecl.annotation().type;
 | 
						|
 | 
						|
	for (size_t i = 0; i < paramTypes.size(); ++i)
 | 
						|
	{
 | 
						|
		if (auto mappingType = dynamic_cast<MappingType const*>(returnType))
 | 
						|
		{
 | 
						|
			solAssert(CompilerUtils::freeMemoryPointer >= 0x40, "");
 | 
						|
 | 
						|
			// pop offset
 | 
						|
			m_context << Instruction::POP;
 | 
						|
			if (paramTypes[i]->isDynamicallySized())
 | 
						|
			{
 | 
						|
				solAssert(
 | 
						|
					dynamic_cast<ArrayType const&>(*paramTypes[i]).isByteArray(),
 | 
						|
					"Expected string or byte array for mapping key type"
 | 
						|
				);
 | 
						|
 | 
						|
				// stack: <keys..> <slot position>
 | 
						|
 | 
						|
				// copy key[i] to top.
 | 
						|
				utils().copyToStackTop(paramTypes.size() - i + 1, 1);
 | 
						|
 | 
						|
				m_context.appendInlineAssembly(R"({
 | 
						|
					let key_len := mload(key_ptr)
 | 
						|
					// Temp. use the memory after the array data for the slot
 | 
						|
					// position
 | 
						|
					let post_data_ptr := add(key_ptr, add(key_len, 0x20))
 | 
						|
					let orig_data := mload(post_data_ptr)
 | 
						|
					mstore(post_data_ptr, slot_pos)
 | 
						|
					let hash := keccak256(add(key_ptr, 0x20), add(key_len, 0x20))
 | 
						|
					mstore(post_data_ptr, orig_data)
 | 
						|
					slot_pos := hash
 | 
						|
				})", {"slot_pos", "key_ptr"});
 | 
						|
 | 
						|
				m_context << Instruction::POP;
 | 
						|
			}
 | 
						|
			else
 | 
						|
			{
 | 
						|
				solAssert(paramTypes[i]->isValueType(), "Expected value type for mapping key");
 | 
						|
 | 
						|
				// move storage offset to memory.
 | 
						|
				utils().storeInMemory(32);
 | 
						|
 | 
						|
				// move key to memory.
 | 
						|
				utils().copyToStackTop(paramTypes.size() - i, 1);
 | 
						|
				utils().storeInMemory(0);
 | 
						|
				m_context << u256(64) << u256(0);
 | 
						|
				m_context << Instruction::KECCAK256;
 | 
						|
			}
 | 
						|
 | 
						|
			// push offset
 | 
						|
			m_context << u256(0);
 | 
						|
			returnType = mappingType->valueType();
 | 
						|
		}
 | 
						|
		else if (auto arrayType = dynamic_cast<ArrayType const*>(returnType))
 | 
						|
		{
 | 
						|
			// pop offset
 | 
						|
			m_context << Instruction::POP;
 | 
						|
			utils().copyToStackTop(paramTypes.size() - i + 1, 1);
 | 
						|
			ArrayUtils(m_context).accessIndex(*arrayType);
 | 
						|
			returnType = arrayType->baseType();
 | 
						|
		}
 | 
						|
		else
 | 
						|
			solAssert(false, "Index access is allowed only for \"mapping\" and \"array\" types.");
 | 
						|
	}
 | 
						|
	// remove index arguments.
 | 
						|
	if (paramTypes.size() == 1)
 | 
						|
		m_context << Instruction::SWAP2 << Instruction::POP << Instruction::SWAP1;
 | 
						|
	else if (paramTypes.size() >= 2)
 | 
						|
	{
 | 
						|
		m_context << swapInstruction(paramTypes.size());
 | 
						|
		m_context << Instruction::POP;
 | 
						|
		m_context << swapInstruction(paramTypes.size());
 | 
						|
		utils().popStackSlots(paramTypes.size() - 1);
 | 
						|
	}
 | 
						|
	unsigned retSizeOnStack = 0;
 | 
						|
	auto returnTypes = accessorType.returnParameterTypes();
 | 
						|
	solAssert(returnTypes.size() >= 1, "");
 | 
						|
	if (StructType const* structType = dynamic_cast<StructType const*>(returnType))
 | 
						|
	{
 | 
						|
		// remove offset
 | 
						|
		m_context << Instruction::POP;
 | 
						|
		auto const& names = accessorType.returnParameterNames();
 | 
						|
		// struct
 | 
						|
		for (size_t i = 0; i < names.size(); ++i)
 | 
						|
		{
 | 
						|
			if (returnTypes[i]->category() == Type::Category::Mapping)
 | 
						|
				continue;
 | 
						|
			if (auto arrayType = dynamic_cast<ArrayType const*>(returnTypes[i]))
 | 
						|
				if (!arrayType->isByteArray())
 | 
						|
					continue;
 | 
						|
			pair<u256, unsigned> const& offsets = structType->storageOffsetsOfMember(names[i]);
 | 
						|
			m_context << Instruction::DUP1 << u256(offsets.first) << Instruction::ADD << u256(offsets.second);
 | 
						|
			TypePointer memberType = structType->memberType(names[i]);
 | 
						|
			StorageItem(m_context, *memberType).retrieveValue(SourceLocation(), true);
 | 
						|
			utils().convertType(*memberType, *returnTypes[i]);
 | 
						|
			utils().moveToStackTop(returnTypes[i]->sizeOnStack());
 | 
						|
			retSizeOnStack += returnTypes[i]->sizeOnStack();
 | 
						|
		}
 | 
						|
		// remove slot
 | 
						|
		m_context << Instruction::POP;
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		// simple value or array
 | 
						|
		solAssert(returnTypes.size() == 1, "");
 | 
						|
		StorageItem(m_context, *returnType).retrieveValue(SourceLocation(), true);
 | 
						|
		utils().convertType(*returnType, *returnTypes.front());
 | 
						|
		retSizeOnStack = returnTypes.front()->sizeOnStack();
 | 
						|
	}
 | 
						|
	solAssert(retSizeOnStack == utils().sizeOnStack(returnTypes), "");
 | 
						|
	if (retSizeOnStack > 15)
 | 
						|
		BOOST_THROW_EXCEPTION(
 | 
						|
			CompilerError() <<
 | 
						|
			errinfo_sourceLocation(_varDecl.location()) <<
 | 
						|
			errinfo_comment("Stack too deep.")
 | 
						|
		);
 | 
						|
	m_context << dupInstruction(retSizeOnStack + 1);
 | 
						|
	m_context.appendJump(eth::AssemblyItem::JumpType::OutOfFunction);
 | 
						|
}
 | 
						|
 | 
						|
bool ExpressionCompiler::visit(Conditional const& _condition)
 | 
						|
{
 | 
						|
	CompilerContext::LocationSetter locationSetter(m_context, _condition);
 | 
						|
	_condition.condition().accept(*this);
 | 
						|
	eth::AssemblyItem trueTag = m_context.appendConditionalJump();
 | 
						|
	acceptAndConvert(_condition.falseExpression(), *_condition.annotation().type);
 | 
						|
	eth::AssemblyItem endTag = m_context.appendJumpToNew();
 | 
						|
	m_context << trueTag;
 | 
						|
	int offset = _condition.annotation().type->sizeOnStack();
 | 
						|
	m_context.adjustStackOffset(-offset);
 | 
						|
	acceptAndConvert(_condition.trueExpression(), *_condition.annotation().type);
 | 
						|
	m_context << endTag;
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ExpressionCompiler::visit(Assignment const& _assignment)
 | 
						|
{
 | 
						|
	CompilerContext::LocationSetter locationSetter(m_context, _assignment);
 | 
						|
	Token op = _assignment.assignmentOperator();
 | 
						|
	Token binOp = op == Token::Assign ? op : TokenTraits::AssignmentToBinaryOp(op);
 | 
						|
	Type const& leftType = *_assignment.leftHandSide().annotation().type;
 | 
						|
	if (leftType.category() == Type::Category::Tuple)
 | 
						|
	{
 | 
						|
		solAssert(*_assignment.annotation().type == TupleType(), "");
 | 
						|
		solAssert(op == Token::Assign, "");
 | 
						|
	}
 | 
						|
	else
 | 
						|
		solAssert(*_assignment.annotation().type == leftType, "");
 | 
						|
	bool cleanupNeeded = false;
 | 
						|
	if (op != Token::Assign)
 | 
						|
		cleanupNeeded = cleanupNeededForOp(leftType.category(), binOp);
 | 
						|
	_assignment.rightHandSide().accept(*this);
 | 
						|
	// Perform some conversion already. This will convert storage types to memory and literals
 | 
						|
	// to their actual type, but will not convert e.g. memory to storage.
 | 
						|
	TypePointer rightIntermediateType;
 | 
						|
	if (op != Token::Assign && TokenTraits::isShiftOp(binOp))
 | 
						|
		rightIntermediateType = _assignment.rightHandSide().annotation().type->mobileType();
 | 
						|
	else
 | 
						|
		rightIntermediateType = _assignment.rightHandSide().annotation().type->closestTemporaryType(
 | 
						|
			_assignment.leftHandSide().annotation().type
 | 
						|
		);
 | 
						|
	solAssert(rightIntermediateType, "");
 | 
						|
	utils().convertType(*_assignment.rightHandSide().annotation().type, *rightIntermediateType, cleanupNeeded);
 | 
						|
 | 
						|
	_assignment.leftHandSide().accept(*this);
 | 
						|
	solAssert(!!m_currentLValue, "LValue not retrieved.");
 | 
						|
 | 
						|
	if (op == Token::Assign)
 | 
						|
		m_currentLValue->storeValue(*rightIntermediateType, _assignment.location());
 | 
						|
	else  // compound assignment
 | 
						|
	{
 | 
						|
		solAssert(leftType.isValueType(), "Compound operators only available for value types.");
 | 
						|
		unsigned lvalueSize = m_currentLValue->sizeOnStack();
 | 
						|
		unsigned itemSize = _assignment.annotation().type->sizeOnStack();
 | 
						|
		if (lvalueSize > 0)
 | 
						|
		{
 | 
						|
			utils().copyToStackTop(lvalueSize + itemSize, itemSize);
 | 
						|
			utils().copyToStackTop(itemSize + lvalueSize, lvalueSize);
 | 
						|
			// value lvalue_ref value lvalue_ref
 | 
						|
		}
 | 
						|
		m_currentLValue->retrieveValue(_assignment.location(), true);
 | 
						|
		utils().convertType(leftType, leftType, cleanupNeeded);
 | 
						|
 | 
						|
		if (TokenTraits::isShiftOp(binOp))
 | 
						|
			appendShiftOperatorCode(binOp, leftType, *rightIntermediateType);
 | 
						|
		else
 | 
						|
		{
 | 
						|
			solAssert(leftType == *rightIntermediateType, "");
 | 
						|
			appendOrdinaryBinaryOperatorCode(binOp, leftType);
 | 
						|
		}
 | 
						|
		if (lvalueSize > 0)
 | 
						|
		{
 | 
						|
			if (itemSize + lvalueSize > 16)
 | 
						|
				BOOST_THROW_EXCEPTION(
 | 
						|
					CompilerError() <<
 | 
						|
					errinfo_sourceLocation(_assignment.location()) <<
 | 
						|
					errinfo_comment("Stack too deep, try removing local variables.")
 | 
						|
				);
 | 
						|
			// value [lvalue_ref] updated_value
 | 
						|
			for (unsigned i = 0; i < itemSize; ++i)
 | 
						|
				m_context << swapInstruction(itemSize + lvalueSize) << Instruction::POP;
 | 
						|
		}
 | 
						|
		m_currentLValue->storeValue(*_assignment.annotation().type, _assignment.location());
 | 
						|
	}
 | 
						|
	m_currentLValue.reset();
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ExpressionCompiler::visit(TupleExpression const& _tuple)
 | 
						|
{
 | 
						|
	if (_tuple.isInlineArray())
 | 
						|
	{
 | 
						|
		ArrayType const& arrayType = dynamic_cast<ArrayType const&>(*_tuple.annotation().type);
 | 
						|
 | 
						|
		solAssert(!arrayType.isDynamicallySized(), "Cannot create dynamically sized inline array.");
 | 
						|
		utils().allocateMemory(max(u256(32u), arrayType.memoryDataSize()));
 | 
						|
		m_context << Instruction::DUP1;
 | 
						|
 | 
						|
		for (auto const& component: _tuple.components())
 | 
						|
		{
 | 
						|
			acceptAndConvert(*component, *arrayType.baseType(), true);
 | 
						|
			utils().storeInMemoryDynamic(*arrayType.baseType(), true);
 | 
						|
		}
 | 
						|
 | 
						|
		m_context << Instruction::POP;
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		vector<unique_ptr<LValue>> lvalues;
 | 
						|
		for (auto const& component: _tuple.components())
 | 
						|
			if (component)
 | 
						|
			{
 | 
						|
				component->accept(*this);
 | 
						|
				if (_tuple.annotation().lValueRequested)
 | 
						|
				{
 | 
						|
					solAssert(!!m_currentLValue, "");
 | 
						|
					lvalues.push_back(move(m_currentLValue));
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else if (_tuple.annotation().lValueRequested)
 | 
						|
				lvalues.push_back(unique_ptr<LValue>());
 | 
						|
		if (_tuple.annotation().lValueRequested)
 | 
						|
		{
 | 
						|
			if (_tuple.components().size() == 1)
 | 
						|
				m_currentLValue = move(lvalues[0]);
 | 
						|
			else
 | 
						|
				m_currentLValue.reset(new TupleObject(m_context, move(lvalues)));
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ExpressionCompiler::visit(UnaryOperation const& _unaryOperation)
 | 
						|
{
 | 
						|
	CompilerContext::LocationSetter locationSetter(m_context, _unaryOperation);
 | 
						|
	if (_unaryOperation.annotation().type->category() == Type::Category::RationalNumber)
 | 
						|
	{
 | 
						|
		m_context << _unaryOperation.annotation().type->literalValue(nullptr);
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	_unaryOperation.subExpression().accept(*this);
 | 
						|
 | 
						|
	switch (_unaryOperation.getOperator())
 | 
						|
	{
 | 
						|
	case Token::Not: // !
 | 
						|
		m_context << Instruction::ISZERO;
 | 
						|
		break;
 | 
						|
	case Token::BitNot: // ~
 | 
						|
		m_context << Instruction::NOT;
 | 
						|
		break;
 | 
						|
	case Token::Delete: // delete
 | 
						|
		solAssert(!!m_currentLValue, "LValue not retrieved.");
 | 
						|
		m_currentLValue->setToZero(_unaryOperation.location());
 | 
						|
		m_currentLValue.reset();
 | 
						|
		break;
 | 
						|
	case Token::Inc: // ++ (pre- or postfix)
 | 
						|
	case Token::Dec: // -- (pre- or postfix)
 | 
						|
		solAssert(!!m_currentLValue, "LValue not retrieved.");
 | 
						|
		solUnimplementedAssert(
 | 
						|
			_unaryOperation.annotation().type->category() != Type::Category::FixedPoint,
 | 
						|
			"Not yet implemented - FixedPointType."
 | 
						|
		);
 | 
						|
		m_currentLValue->retrieveValue(_unaryOperation.location());
 | 
						|
		if (!_unaryOperation.isPrefixOperation())
 | 
						|
		{
 | 
						|
			// store value for later
 | 
						|
			solUnimplementedAssert(_unaryOperation.annotation().type->sizeOnStack() == 1, "Stack size != 1 not implemented.");
 | 
						|
			m_context << Instruction::DUP1;
 | 
						|
			if (m_currentLValue->sizeOnStack() > 0)
 | 
						|
				for (unsigned i = 1 + m_currentLValue->sizeOnStack(); i > 0; --i)
 | 
						|
					m_context << swapInstruction(i);
 | 
						|
		}
 | 
						|
		m_context << u256(1);
 | 
						|
		if (_unaryOperation.getOperator() == Token::Inc)
 | 
						|
			m_context << Instruction::ADD;
 | 
						|
		else
 | 
						|
			m_context << Instruction::SWAP1 << Instruction::SUB;
 | 
						|
		// Stack for prefix: [ref...] (*ref)+-1
 | 
						|
		// Stack for postfix: *ref [ref...] (*ref)+-1
 | 
						|
		for (unsigned i = m_currentLValue->sizeOnStack(); i > 0; --i)
 | 
						|
			m_context << swapInstruction(i);
 | 
						|
		m_currentLValue->storeValue(
 | 
						|
			*_unaryOperation.annotation().type, _unaryOperation.location(),
 | 
						|
			!_unaryOperation.isPrefixOperation());
 | 
						|
		m_currentLValue.reset();
 | 
						|
		break;
 | 
						|
	case Token::Add: // +
 | 
						|
		// unary add, so basically no-op
 | 
						|
		break;
 | 
						|
	case Token::Sub: // -
 | 
						|
		m_context << u256(0) << Instruction::SUB;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		solAssert(false, "Invalid unary operator: " + string(TokenTraits::toString(_unaryOperation.getOperator())));
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ExpressionCompiler::visit(BinaryOperation const& _binaryOperation)
 | 
						|
{
 | 
						|
	CompilerContext::LocationSetter locationSetter(m_context, _binaryOperation);
 | 
						|
	Expression const& leftExpression = _binaryOperation.leftExpression();
 | 
						|
	Expression const& rightExpression = _binaryOperation.rightExpression();
 | 
						|
	solAssert(!!_binaryOperation.annotation().commonType, "");
 | 
						|
	TypePointer const& commonType = _binaryOperation.annotation().commonType;
 | 
						|
	Token const c_op = _binaryOperation.getOperator();
 | 
						|
 | 
						|
	if (c_op == Token::And || c_op == Token::Or) // special case: short-circuiting
 | 
						|
		appendAndOrOperatorCode(_binaryOperation);
 | 
						|
	else if (commonType->category() == Type::Category::RationalNumber)
 | 
						|
		m_context << commonType->literalValue(nullptr);
 | 
						|
	else
 | 
						|
	{
 | 
						|
		bool cleanupNeeded = cleanupNeededForOp(commonType->category(), c_op);
 | 
						|
 | 
						|
		TypePointer leftTargetType = commonType;
 | 
						|
		TypePointer rightTargetType = TokenTraits::isShiftOp(c_op) ? rightExpression.annotation().type->mobileType() : commonType;
 | 
						|
		solAssert(rightTargetType, "");
 | 
						|
 | 
						|
		// for commutative operators, push the literal as late as possible to allow improved optimization
 | 
						|
		auto isLiteral = [](Expression const& _e)
 | 
						|
		{
 | 
						|
			return dynamic_cast<Literal const*>(&_e) || _e.annotation().type->category() == Type::Category::RationalNumber;
 | 
						|
		};
 | 
						|
		bool swap = m_optimiseOrderLiterals && TokenTraits::isCommutativeOp(c_op) && isLiteral(rightExpression) && !isLiteral(leftExpression);
 | 
						|
		if (swap)
 | 
						|
		{
 | 
						|
			acceptAndConvert(leftExpression, *leftTargetType, cleanupNeeded);
 | 
						|
			acceptAndConvert(rightExpression, *rightTargetType, cleanupNeeded);
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			acceptAndConvert(rightExpression, *rightTargetType, cleanupNeeded);
 | 
						|
			acceptAndConvert(leftExpression, *leftTargetType, cleanupNeeded);
 | 
						|
		}
 | 
						|
		if (TokenTraits::isShiftOp(c_op))
 | 
						|
			// shift only cares about the signedness of both sides
 | 
						|
			appendShiftOperatorCode(c_op, *leftTargetType, *rightTargetType);
 | 
						|
		else if (TokenTraits::isCompareOp(c_op))
 | 
						|
			appendCompareOperatorCode(c_op, *commonType);
 | 
						|
		else
 | 
						|
			appendOrdinaryBinaryOperatorCode(c_op, *commonType);
 | 
						|
	}
 | 
						|
 | 
						|
	// do not visit the child nodes, we already did that explicitly
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ExpressionCompiler::visit(FunctionCall const& _functionCall)
 | 
						|
{
 | 
						|
	CompilerContext::LocationSetter locationSetter(m_context, _functionCall);
 | 
						|
	if (_functionCall.annotation().kind == FunctionCallKind::TypeConversion)
 | 
						|
	{
 | 
						|
		solAssert(_functionCall.arguments().size() == 1, "");
 | 
						|
		solAssert(_functionCall.names().empty(), "");
 | 
						|
		acceptAndConvert(*_functionCall.arguments().front(), *_functionCall.annotation().type);
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	FunctionTypePointer functionType;
 | 
						|
	if (_functionCall.annotation().kind == FunctionCallKind::StructConstructorCall)
 | 
						|
	{
 | 
						|
		auto const& type = dynamic_cast<TypeType const&>(*_functionCall.expression().annotation().type);
 | 
						|
		auto const& structType = dynamic_cast<StructType const&>(*type.actualType());
 | 
						|
		functionType = structType.constructorType();
 | 
						|
	}
 | 
						|
	else
 | 
						|
		functionType = dynamic_cast<FunctionType const*>(_functionCall.expression().annotation().type);
 | 
						|
 | 
						|
	TypePointers parameterTypes = functionType->parameterTypes();
 | 
						|
	vector<ASTPointer<Expression const>> const& callArguments = _functionCall.arguments();
 | 
						|
	vector<ASTPointer<ASTString>> const& callArgumentNames = _functionCall.names();
 | 
						|
	if (!functionType->takesArbitraryParameters())
 | 
						|
		solAssert(callArguments.size() == parameterTypes.size(), "");
 | 
						|
 | 
						|
	vector<ASTPointer<Expression const>> arguments;
 | 
						|
	if (callArgumentNames.empty())
 | 
						|
		// normal arguments
 | 
						|
		arguments = callArguments;
 | 
						|
	else
 | 
						|
		// named arguments
 | 
						|
		for (auto const& parameterName: functionType->parameterNames())
 | 
						|
		{
 | 
						|
			bool found = false;
 | 
						|
			for (size_t j = 0; j < callArgumentNames.size() && !found; j++)
 | 
						|
				if ((found = (parameterName == *callArgumentNames[j])))
 | 
						|
					// we found the actual parameter position
 | 
						|
					arguments.push_back(callArguments[j]);
 | 
						|
			solAssert(found, "");
 | 
						|
		}
 | 
						|
 | 
						|
	if (_functionCall.annotation().kind == FunctionCallKind::StructConstructorCall)
 | 
						|
	{
 | 
						|
		TypeType const& type = dynamic_cast<TypeType const&>(*_functionCall.expression().annotation().type);
 | 
						|
		auto const& structType = dynamic_cast<StructType const&>(*type.actualType());
 | 
						|
 | 
						|
		utils().allocateMemory(max(u256(32u), structType.memoryDataSize()));
 | 
						|
		m_context << Instruction::DUP1;
 | 
						|
 | 
						|
		for (unsigned i = 0; i < arguments.size(); ++i)
 | 
						|
		{
 | 
						|
			acceptAndConvert(*arguments[i], *functionType->parameterTypes()[i]);
 | 
						|
			utils().storeInMemoryDynamic(*functionType->parameterTypes()[i]);
 | 
						|
		}
 | 
						|
		m_context << Instruction::POP;
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		FunctionType const& function = *functionType;
 | 
						|
		if (function.bound())
 | 
						|
			// Only delegatecall and internal functions can be bound, this might be lifted later.
 | 
						|
			solAssert(function.kind() == FunctionType::Kind::DelegateCall || function.kind() == FunctionType::Kind::Internal, "");
 | 
						|
		switch (function.kind())
 | 
						|
		{
 | 
						|
		case FunctionType::Kind::Internal:
 | 
						|
		{
 | 
						|
			// Calling convention: Caller pushes return address and arguments
 | 
						|
			// Callee removes them and pushes return values
 | 
						|
 | 
						|
			eth::AssemblyItem returnLabel = m_context.pushNewTag();
 | 
						|
			for (unsigned i = 0; i < arguments.size(); ++i)
 | 
						|
				acceptAndConvert(*arguments[i], *function.parameterTypes()[i]);
 | 
						|
 | 
						|
			{
 | 
						|
				bool shortcutTaken = false;
 | 
						|
				if (auto identifier = dynamic_cast<Identifier const*>(&_functionCall.expression()))
 | 
						|
				{
 | 
						|
					solAssert(!function.bound(), "");
 | 
						|
					if (auto functionDef = dynamic_cast<FunctionDefinition const*>(identifier->annotation().referencedDeclaration))
 | 
						|
					{
 | 
						|
						// Do not directly visit the identifier, because this way, we can avoid
 | 
						|
						// the runtime entry label to be created at the creation time context.
 | 
						|
						CompilerContext::LocationSetter locationSetter2(m_context, *identifier);
 | 
						|
						utils().pushCombinedFunctionEntryLabel(m_context.resolveVirtualFunction(*functionDef), false);
 | 
						|
						shortcutTaken = true;
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				if (!shortcutTaken)
 | 
						|
					_functionCall.expression().accept(*this);
 | 
						|
			}
 | 
						|
 | 
						|
			unsigned parameterSize = CompilerUtils::sizeOnStack(function.parameterTypes());
 | 
						|
			if (function.bound())
 | 
						|
			{
 | 
						|
				// stack: arg2, ..., argn, label, arg1
 | 
						|
				unsigned depth = parameterSize + 1;
 | 
						|
				utils().moveIntoStack(depth, function.selfType()->sizeOnStack());
 | 
						|
				parameterSize += function.selfType()->sizeOnStack();
 | 
						|
			}
 | 
						|
 | 
						|
			if (m_context.runtimeContext())
 | 
						|
				// We have a runtime context, so we need the creation part.
 | 
						|
				utils().rightShiftNumberOnStack(32);
 | 
						|
			else
 | 
						|
				// Extract the runtime part.
 | 
						|
				m_context << ((u256(1) << 32) - 1) << Instruction::AND;
 | 
						|
 | 
						|
			m_context.appendJump(eth::AssemblyItem::JumpType::IntoFunction);
 | 
						|
			m_context << returnLabel;
 | 
						|
 | 
						|
			unsigned returnParametersSize = CompilerUtils::sizeOnStack(function.returnParameterTypes());
 | 
						|
			// callee adds return parameters, but removes arguments and return label
 | 
						|
			m_context.adjustStackOffset(returnParametersSize - parameterSize - 1);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		case FunctionType::Kind::BareCall:
 | 
						|
		case FunctionType::Kind::BareDelegateCall:
 | 
						|
		case FunctionType::Kind::BareStaticCall:
 | 
						|
			solAssert(!_functionCall.annotation().tryCall, "");
 | 
						|
			[[fallthrough]];
 | 
						|
		case FunctionType::Kind::External:
 | 
						|
		case FunctionType::Kind::DelegateCall:
 | 
						|
			_functionCall.expression().accept(*this);
 | 
						|
			appendExternalFunctionCall(function, arguments, _functionCall.annotation().tryCall);
 | 
						|
			break;
 | 
						|
		case FunctionType::Kind::BareCallCode:
 | 
						|
			solAssert(false, "Callcode has been removed.");
 | 
						|
		case FunctionType::Kind::Creation:
 | 
						|
		{
 | 
						|
			_functionCall.expression().accept(*this);
 | 
						|
			solAssert(!function.gasSet(), "Gas limit set for contract creation.");
 | 
						|
			solAssert(function.returnParameterTypes().size() == 1, "");
 | 
						|
			TypePointers argumentTypes;
 | 
						|
			for (auto const& arg: arguments)
 | 
						|
			{
 | 
						|
				arg->accept(*this);
 | 
						|
				argumentTypes.push_back(arg->annotation().type);
 | 
						|
			}
 | 
						|
			ContractDefinition const* contract =
 | 
						|
				&dynamic_cast<ContractType const&>(*function.returnParameterTypes().front()).contractDefinition();
 | 
						|
			utils().fetchFreeMemoryPointer();
 | 
						|
			utils().copyContractCodeToMemory(*contract, true);
 | 
						|
			utils().abiEncode(argumentTypes, function.parameterTypes());
 | 
						|
			// now on stack: memory_end_ptr
 | 
						|
			// need: size, offset, endowment
 | 
						|
			utils().toSizeAfterFreeMemoryPointer();
 | 
						|
			if (function.valueSet())
 | 
						|
				m_context << dupInstruction(3);
 | 
						|
			else
 | 
						|
				m_context << u256(0);
 | 
						|
			m_context << Instruction::CREATE;
 | 
						|
			if (function.valueSet())
 | 
						|
				m_context << swapInstruction(1) << Instruction::POP;
 | 
						|
			// Check if zero (reverted)
 | 
						|
			m_context << Instruction::DUP1 << Instruction::ISZERO;
 | 
						|
			if (_functionCall.annotation().tryCall)
 | 
						|
			{
 | 
						|
				// If this is a try call, return "<address> 1" in the success case and
 | 
						|
				// "0" in the error case.
 | 
						|
				AssemblyItem errorCase = m_context.appendConditionalJump();
 | 
						|
				m_context << u256(1);
 | 
						|
				m_context << errorCase;
 | 
						|
			}
 | 
						|
			else
 | 
						|
				// TODO: Can we bubble up here? There might be different reasons for failure, I think.
 | 
						|
				m_context.appendConditionalRevert(true);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		case FunctionType::Kind::SetGas:
 | 
						|
		{
 | 
						|
			// stack layout: contract_address function_id [gas] [value]
 | 
						|
			_functionCall.expression().accept(*this);
 | 
						|
 | 
						|
			acceptAndConvert(*arguments.front(), *TypeProvider::uint256(), true);
 | 
						|
			// Note that function is not the original function, but the ".gas" function.
 | 
						|
			// Its values of gasSet and valueSet is equal to the original function's though.
 | 
						|
			unsigned stackDepth = (function.gasSet() ? 1 : 0) + (function.valueSet() ? 1 : 0);
 | 
						|
			if (stackDepth > 0)
 | 
						|
				m_context << swapInstruction(stackDepth);
 | 
						|
			if (function.gasSet())
 | 
						|
				m_context << Instruction::POP;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		case FunctionType::Kind::SetValue:
 | 
						|
			// stack layout: contract_address function_id [gas] [value]
 | 
						|
			_functionCall.expression().accept(*this);
 | 
						|
			// Note that function is not the original function, but the ".value" function.
 | 
						|
			// Its values of gasSet and valueSet is equal to the original function's though.
 | 
						|
			if (function.valueSet())
 | 
						|
				m_context << Instruction::POP;
 | 
						|
			arguments.front()->accept(*this);
 | 
						|
			break;
 | 
						|
		case FunctionType::Kind::Send:
 | 
						|
		case FunctionType::Kind::Transfer:
 | 
						|
			_functionCall.expression().accept(*this);
 | 
						|
			// Provide the gas stipend manually at first because we may send zero ether.
 | 
						|
			// Will be zeroed if we send more than zero ether.
 | 
						|
			m_context << u256(eth::GasCosts::callStipend);
 | 
						|
			acceptAndConvert(*arguments.front(), *function.parameterTypes().front(), true);
 | 
						|
			// gas <- gas * !value
 | 
						|
			m_context << Instruction::SWAP1 << Instruction::DUP2;
 | 
						|
			m_context << Instruction::ISZERO << Instruction::MUL << Instruction::SWAP1;
 | 
						|
			appendExternalFunctionCall(
 | 
						|
				FunctionType(
 | 
						|
					TypePointers{},
 | 
						|
					TypePointers{},
 | 
						|
					strings(),
 | 
						|
					strings(),
 | 
						|
					FunctionType::Kind::BareCall,
 | 
						|
					false,
 | 
						|
					StateMutability::NonPayable,
 | 
						|
					nullptr,
 | 
						|
					true,
 | 
						|
					true
 | 
						|
				),
 | 
						|
				{},
 | 
						|
				false
 | 
						|
			);
 | 
						|
			if (function.kind() == FunctionType::Kind::Transfer)
 | 
						|
			{
 | 
						|
				// Check if zero (out of stack or not enough balance).
 | 
						|
				// TODO: bubble up here, but might also be different error.
 | 
						|
				m_context << Instruction::ISZERO;
 | 
						|
				m_context.appendConditionalRevert(true);
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		case FunctionType::Kind::Selfdestruct:
 | 
						|
			acceptAndConvert(*arguments.front(), *function.parameterTypes().front(), true);
 | 
						|
			m_context << Instruction::SELFDESTRUCT;
 | 
						|
			break;
 | 
						|
		case FunctionType::Kind::Revert:
 | 
						|
		{
 | 
						|
			if (!arguments.empty())
 | 
						|
			{
 | 
						|
				// function-sel(Error(string)) + encoding
 | 
						|
				solAssert(arguments.size() == 1, "");
 | 
						|
				solAssert(function.parameterTypes().size() == 1, "");
 | 
						|
				arguments.front()->accept(*this);
 | 
						|
				utils().revertWithStringData(*arguments.front()->annotation().type);
 | 
						|
			}
 | 
						|
			else
 | 
						|
				m_context.appendRevert();
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		case FunctionType::Kind::KECCAK256:
 | 
						|
		{
 | 
						|
			solAssert(arguments.size() == 1, "");
 | 
						|
			solAssert(!function.padArguments(), "");
 | 
						|
			TypePointer const& argType = arguments.front()->annotation().type;
 | 
						|
			solAssert(argType, "");
 | 
						|
			arguments.front()->accept(*this);
 | 
						|
			// Optimization: If type is bytes or string, then do not encode,
 | 
						|
			// but directly compute keccak256 on memory.
 | 
						|
			if (*argType == *TypeProvider::bytesMemory() || *argType == *TypeProvider::stringMemory())
 | 
						|
			{
 | 
						|
				ArrayUtils(m_context).retrieveLength(*TypeProvider::bytesMemory());
 | 
						|
				m_context << Instruction::SWAP1 << u256(0x20) << Instruction::ADD;
 | 
						|
			}
 | 
						|
			else
 | 
						|
			{
 | 
						|
				utils().fetchFreeMemoryPointer();
 | 
						|
				utils().packedEncode({argType}, TypePointers());
 | 
						|
				utils().toSizeAfterFreeMemoryPointer();
 | 
						|
			}
 | 
						|
			m_context << Instruction::KECCAK256;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		case FunctionType::Kind::Log0:
 | 
						|
		case FunctionType::Kind::Log1:
 | 
						|
		case FunctionType::Kind::Log2:
 | 
						|
		case FunctionType::Kind::Log3:
 | 
						|
		case FunctionType::Kind::Log4:
 | 
						|
		{
 | 
						|
			unsigned logNumber = int(function.kind()) - int(FunctionType::Kind::Log0);
 | 
						|
			for (unsigned arg = logNumber; arg > 0; --arg)
 | 
						|
				acceptAndConvert(*arguments[arg], *function.parameterTypes()[arg], true);
 | 
						|
			arguments.front()->accept(*this);
 | 
						|
			utils().fetchFreeMemoryPointer();
 | 
						|
			solAssert(function.parameterTypes().front()->isValueType(), "");
 | 
						|
			utils().packedEncode(
 | 
						|
				{arguments.front()->annotation().type},
 | 
						|
				{function.parameterTypes().front()}
 | 
						|
			);
 | 
						|
			utils().toSizeAfterFreeMemoryPointer();
 | 
						|
			m_context << logInstruction(logNumber);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		case FunctionType::Kind::Event:
 | 
						|
		{
 | 
						|
			_functionCall.expression().accept(*this);
 | 
						|
			auto const& event = dynamic_cast<EventDefinition const&>(function.declaration());
 | 
						|
			unsigned numIndexed = 0;
 | 
						|
			TypePointers paramTypes = function.parameterTypes();
 | 
						|
			// All indexed arguments go to the stack
 | 
						|
			for (unsigned arg = arguments.size(); arg > 0; --arg)
 | 
						|
				if (event.parameters()[arg - 1]->isIndexed())
 | 
						|
				{
 | 
						|
					++numIndexed;
 | 
						|
					arguments[arg - 1]->accept(*this);
 | 
						|
					if (auto const& referenceType = dynamic_cast<ReferenceType const*>(paramTypes[arg - 1]))
 | 
						|
					{
 | 
						|
						utils().fetchFreeMemoryPointer();
 | 
						|
						utils().packedEncode(
 | 
						|
							{arguments[arg - 1]->annotation().type},
 | 
						|
							{referenceType}
 | 
						|
						);
 | 
						|
						utils().toSizeAfterFreeMemoryPointer();
 | 
						|
						m_context << Instruction::KECCAK256;
 | 
						|
					}
 | 
						|
					else
 | 
						|
					{
 | 
						|
						solAssert(paramTypes[arg - 1]->isValueType(), "");
 | 
						|
						utils().convertType(
 | 
						|
							*arguments[arg - 1]->annotation().type,
 | 
						|
							*paramTypes[arg - 1],
 | 
						|
							true
 | 
						|
						);
 | 
						|
					}
 | 
						|
				}
 | 
						|
			if (!event.isAnonymous())
 | 
						|
			{
 | 
						|
				m_context << u256(h256::Arith(dev::keccak256(function.externalSignature())));
 | 
						|
				++numIndexed;
 | 
						|
			}
 | 
						|
			solAssert(numIndexed <= 4, "Too many indexed arguments.");
 | 
						|
			// Copy all non-indexed arguments to memory (data)
 | 
						|
			// Memory position is only a hack and should be removed once we have free memory pointer.
 | 
						|
			TypePointers nonIndexedArgTypes;
 | 
						|
			TypePointers nonIndexedParamTypes;
 | 
						|
			for (unsigned arg = 0; arg < arguments.size(); ++arg)
 | 
						|
				if (!event.parameters()[arg]->isIndexed())
 | 
						|
				{
 | 
						|
					arguments[arg]->accept(*this);
 | 
						|
					nonIndexedArgTypes.push_back(arguments[arg]->annotation().type);
 | 
						|
					nonIndexedParamTypes.push_back(paramTypes[arg]);
 | 
						|
				}
 | 
						|
			utils().fetchFreeMemoryPointer();
 | 
						|
			utils().abiEncode(nonIndexedArgTypes, nonIndexedParamTypes);
 | 
						|
			// need: topic1 ... topicn memsize memstart
 | 
						|
			utils().toSizeAfterFreeMemoryPointer();
 | 
						|
			m_context << logInstruction(numIndexed);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		case FunctionType::Kind::BlockHash:
 | 
						|
		{
 | 
						|
			acceptAndConvert(*arguments[0], *function.parameterTypes()[0], true);
 | 
						|
			m_context << Instruction::BLOCKHASH;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		case FunctionType::Kind::AddMod:
 | 
						|
		case FunctionType::Kind::MulMod:
 | 
						|
		{
 | 
						|
			acceptAndConvert(*arguments[2], *TypeProvider::uint256());
 | 
						|
			m_context << Instruction::DUP1 << Instruction::ISZERO;
 | 
						|
			m_context.appendConditionalInvalid();
 | 
						|
			for (unsigned i = 1; i < 3; i ++)
 | 
						|
				acceptAndConvert(*arguments[2 - i], *TypeProvider::uint256());
 | 
						|
			if (function.kind() == FunctionType::Kind::AddMod)
 | 
						|
				m_context << Instruction::ADDMOD;
 | 
						|
			else
 | 
						|
				m_context << Instruction::MULMOD;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		case FunctionType::Kind::ECRecover:
 | 
						|
		case FunctionType::Kind::SHA256:
 | 
						|
		case FunctionType::Kind::RIPEMD160:
 | 
						|
		{
 | 
						|
			_functionCall.expression().accept(*this);
 | 
						|
			static map<FunctionType::Kind, u256> const contractAddresses{
 | 
						|
				{FunctionType::Kind::ECRecover, 1},
 | 
						|
				{FunctionType::Kind::SHA256, 2},
 | 
						|
				{FunctionType::Kind::RIPEMD160, 3}
 | 
						|
			};
 | 
						|
			m_context << contractAddresses.at(function.kind());
 | 
						|
			for (unsigned i = function.sizeOnStack(); i > 0; --i)
 | 
						|
				m_context << swapInstruction(i);
 | 
						|
			solAssert(!_functionCall.annotation().tryCall, "");
 | 
						|
			appendExternalFunctionCall(function, arguments, false);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		case FunctionType::Kind::ByteArrayPush:
 | 
						|
		case FunctionType::Kind::ArrayPush:
 | 
						|
		{
 | 
						|
			_functionCall.expression().accept(*this);
 | 
						|
 | 
						|
			if (function.parameterTypes().size() == 0)
 | 
						|
			{
 | 
						|
				auto paramType = function.returnParameterTypes().at(0);
 | 
						|
				solAssert(paramType, "");
 | 
						|
 | 
						|
				ArrayType const* arrayType =
 | 
						|
					function.kind() == FunctionType::Kind::ArrayPush ?
 | 
						|
					TypeProvider::array(DataLocation::Storage, paramType) :
 | 
						|
					TypeProvider::bytesStorage();
 | 
						|
 | 
						|
				// stack: ArrayReference
 | 
						|
				m_context << u256(1) << Instruction::DUP2;
 | 
						|
				ArrayUtils(m_context).incrementDynamicArraySize(*arrayType);
 | 
						|
				// stack: ArrayReference 1 newLength
 | 
						|
				m_context << Instruction::SUB;
 | 
						|
				// stack: ArrayReference (newLength-1)
 | 
						|
				ArrayUtils(m_context).accessIndex(*arrayType, false);
 | 
						|
 | 
						|
				if (arrayType->isByteArray())
 | 
						|
					setLValue<StorageByteArrayElement>(_functionCall);
 | 
						|
				else
 | 
						|
					setLValueToStorageItem(_functionCall);
 | 
						|
			}
 | 
						|
			else
 | 
						|
			{
 | 
						|
				solAssert(function.parameterTypes().size() == 1, "");
 | 
						|
				solAssert(!!function.parameterTypes()[0], "");
 | 
						|
				TypePointer paramType = function.parameterTypes()[0];
 | 
						|
				ArrayType const* arrayType =
 | 
						|
					function.kind() == FunctionType::Kind::ArrayPush ?
 | 
						|
					TypeProvider::array(DataLocation::Storage, paramType) :
 | 
						|
					TypeProvider::bytesStorage();
 | 
						|
 | 
						|
				// stack: ArrayReference
 | 
						|
				arguments[0]->accept(*this);
 | 
						|
				TypePointer const& argType = arguments[0]->annotation().type;
 | 
						|
				// stack: ArrayReference argValue
 | 
						|
				utils().moveToStackTop(argType->sizeOnStack(), 1);
 | 
						|
				// stack: argValue ArrayReference
 | 
						|
				m_context << Instruction::DUP1;
 | 
						|
				ArrayUtils(m_context).incrementDynamicArraySize(*arrayType);
 | 
						|
				// stack: argValue ArrayReference newLength
 | 
						|
				m_context << u256(1) << Instruction::SWAP1 << Instruction::SUB;
 | 
						|
				// stack: argValue ArrayReference (newLength-1)
 | 
						|
				ArrayUtils(m_context).accessIndex(*arrayType, false);
 | 
						|
				// stack: argValue storageSlot slotOffset
 | 
						|
				utils().moveToStackTop(2, argType->sizeOnStack());
 | 
						|
				// stack: storageSlot slotOffset argValue
 | 
						|
				TypePointer type = arguments[0]->annotation().type->closestTemporaryType(arrayType->baseType());
 | 
						|
				solAssert(type, "");
 | 
						|
				utils().convertType(*argType, *type);
 | 
						|
				utils().moveToStackTop(1 + type->sizeOnStack());
 | 
						|
				utils().moveToStackTop(1 + type->sizeOnStack());
 | 
						|
				// stack: argValue storageSlot slotOffset
 | 
						|
				if (function.kind() == FunctionType::Kind::ArrayPush)
 | 
						|
					StorageItem(m_context, *paramType).storeValue(*type, _functionCall.location(), true);
 | 
						|
				else
 | 
						|
					StorageByteArrayElement(m_context).storeValue(*type, _functionCall.location(), true);
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		case FunctionType::Kind::ArrayPop:
 | 
						|
		{
 | 
						|
			_functionCall.expression().accept(*this);
 | 
						|
			solAssert(function.parameterTypes().empty(), "");
 | 
						|
 | 
						|
			ArrayType const& arrayType = dynamic_cast<ArrayType const&>(
 | 
						|
				*dynamic_cast<MemberAccess const&>(_functionCall.expression()).expression().annotation().type
 | 
						|
			);
 | 
						|
			solAssert(arrayType.dataStoredIn(DataLocation::Storage), "");
 | 
						|
 | 
						|
			ArrayUtils(m_context).popStorageArrayElement(arrayType);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		case FunctionType::Kind::ObjectCreation:
 | 
						|
		{
 | 
						|
			ArrayType const& arrayType = dynamic_cast<ArrayType const&>(*_functionCall.annotation().type);
 | 
						|
			_functionCall.expression().accept(*this);
 | 
						|
			solAssert(arguments.size() == 1, "");
 | 
						|
 | 
						|
			// Fetch requested length.
 | 
						|
			acceptAndConvert(*arguments[0], *TypeProvider::uint256());
 | 
						|
 | 
						|
			// Stack: requested_length
 | 
						|
			utils().fetchFreeMemoryPointer();
 | 
						|
 | 
						|
			// Stack: requested_length memptr
 | 
						|
			m_context << Instruction::SWAP1;
 | 
						|
			// Stack: memptr requested_length
 | 
						|
			// store length
 | 
						|
			m_context << Instruction::DUP1 << Instruction::DUP3 << Instruction::MSTORE;
 | 
						|
			// Stack: memptr requested_length
 | 
						|
			// update free memory pointer
 | 
						|
			m_context << Instruction::DUP1;
 | 
						|
			// Stack: memptr requested_length requested_length
 | 
						|
			if (arrayType.isByteArray())
 | 
						|
				// Round up to multiple of 32
 | 
						|
				m_context << u256(31) << Instruction::ADD << u256(31) << Instruction::NOT << Instruction::AND;
 | 
						|
			else
 | 
						|
				m_context << arrayType.baseType()->memoryHeadSize() << Instruction::MUL;
 | 
						|
			// stacK: memptr requested_length data_size
 | 
						|
			m_context << u256(32) << Instruction::ADD;
 | 
						|
			m_context << Instruction::DUP3 << Instruction::ADD;
 | 
						|
			utils().storeFreeMemoryPointer();
 | 
						|
			// Stack: memptr requested_length
 | 
						|
 | 
						|
			// Check if length is zero
 | 
						|
			m_context << Instruction::DUP1 << Instruction::ISZERO;
 | 
						|
			auto skipInit = m_context.appendConditionalJump();
 | 
						|
			// Always initialize because the free memory pointer might point at
 | 
						|
			// a dirty memory area.
 | 
						|
			m_context << Instruction::DUP2 << u256(32) << Instruction::ADD;
 | 
						|
			utils().zeroInitialiseMemoryArray(arrayType);
 | 
						|
			m_context << skipInit;
 | 
						|
			m_context << Instruction::POP;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		case FunctionType::Kind::Assert:
 | 
						|
		case FunctionType::Kind::Require:
 | 
						|
		{
 | 
						|
			acceptAndConvert(*arguments.front(), *function.parameterTypes().front(), false);
 | 
						|
			if (arguments.size() > 1)
 | 
						|
			{
 | 
						|
				// Users probably expect the second argument to be evaluated
 | 
						|
				// even if the condition is false, as would be the case for an actual
 | 
						|
				// function call.
 | 
						|
				solAssert(arguments.size() == 2, "");
 | 
						|
				solAssert(function.kind() == FunctionType::Kind::Require, "");
 | 
						|
				arguments.at(1)->accept(*this);
 | 
						|
				utils().moveIntoStack(1, arguments.at(1)->annotation().type->sizeOnStack());
 | 
						|
			}
 | 
						|
			// Stack: <error string (unconverted)> <condition>
 | 
						|
			// jump if condition was met
 | 
						|
			m_context << Instruction::ISZERO << Instruction::ISZERO;
 | 
						|
			auto success = m_context.appendConditionalJump();
 | 
						|
			if (function.kind() == FunctionType::Kind::Assert)
 | 
						|
				// condition was not met, flag an error
 | 
						|
				m_context.appendInvalid();
 | 
						|
			else if (arguments.size() > 1)
 | 
						|
			{
 | 
						|
				utils().revertWithStringData(*arguments.at(1)->annotation().type);
 | 
						|
				// Here, the argument is consumed, but in the other branch, it is still there.
 | 
						|
				m_context.adjustStackOffset(arguments.at(1)->annotation().type->sizeOnStack());
 | 
						|
			}
 | 
						|
			else
 | 
						|
				m_context.appendRevert();
 | 
						|
			// the success branch
 | 
						|
			m_context << success;
 | 
						|
			if (arguments.size() > 1)
 | 
						|
				utils().popStackElement(*arguments.at(1)->annotation().type);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		case FunctionType::Kind::ABIEncode:
 | 
						|
		case FunctionType::Kind::ABIEncodePacked:
 | 
						|
		case FunctionType::Kind::ABIEncodeWithSelector:
 | 
						|
		case FunctionType::Kind::ABIEncodeWithSignature:
 | 
						|
		{
 | 
						|
			bool const isPacked = function.kind() == FunctionType::Kind::ABIEncodePacked;
 | 
						|
			bool const hasSelectorOrSignature =
 | 
						|
				function.kind() == FunctionType::Kind::ABIEncodeWithSelector ||
 | 
						|
				function.kind() == FunctionType::Kind::ABIEncodeWithSignature;
 | 
						|
 | 
						|
			TypePointers argumentTypes;
 | 
						|
			TypePointers targetTypes;
 | 
						|
			for (unsigned i = 0; i < arguments.size(); ++i)
 | 
						|
			{
 | 
						|
				arguments[i]->accept(*this);
 | 
						|
				// Do not keep the selector as part of the ABI encoded args
 | 
						|
				if (!hasSelectorOrSignature || i > 0)
 | 
						|
					argumentTypes.push_back(arguments[i]->annotation().type);
 | 
						|
			}
 | 
						|
			utils().fetchFreeMemoryPointer();
 | 
						|
			// stack now: [<selector>] <arg1> .. <argN> <free_mem>
 | 
						|
 | 
						|
			// adjust by 32(+4) bytes to accommodate the length(+selector)
 | 
						|
			m_context << u256(32 + (hasSelectorOrSignature ? 4 : 0)) << Instruction::ADD;
 | 
						|
			// stack now: [<selector>] <arg1> .. <argN> <data_encoding_area_start>
 | 
						|
 | 
						|
			if (isPacked)
 | 
						|
			{
 | 
						|
				solAssert(!function.padArguments(), "");
 | 
						|
				utils().packedEncode(argumentTypes, TypePointers());
 | 
						|
			}
 | 
						|
			else
 | 
						|
			{
 | 
						|
				solAssert(function.padArguments(), "");
 | 
						|
				utils().abiEncode(argumentTypes, TypePointers());
 | 
						|
			}
 | 
						|
			utils().fetchFreeMemoryPointer();
 | 
						|
			// stack: [<selector>] <data_encoding_area_end> <bytes_memory_ptr>
 | 
						|
 | 
						|
			// size is end minus start minus length slot
 | 
						|
			m_context.appendInlineAssembly(R"({
 | 
						|
				mstore(mem_ptr, sub(sub(mem_end, mem_ptr), 0x20))
 | 
						|
			})", {"mem_end", "mem_ptr"});
 | 
						|
			m_context << Instruction::SWAP1;
 | 
						|
			utils().storeFreeMemoryPointer();
 | 
						|
			// stack: [<selector>] <memory ptr>
 | 
						|
 | 
						|
			if (hasSelectorOrSignature)
 | 
						|
			{
 | 
						|
				// stack: <selector> <memory pointer>
 | 
						|
				solAssert(arguments.size() >= 1, "");
 | 
						|
				TypePointer const& selectorType = arguments[0]->annotation().type;
 | 
						|
				utils().moveIntoStack(selectorType->sizeOnStack());
 | 
						|
				TypePointer dataOnStack = selectorType;
 | 
						|
				// stack: <memory pointer> <selector>
 | 
						|
				if (function.kind() == FunctionType::Kind::ABIEncodeWithSignature)
 | 
						|
				{
 | 
						|
					// hash the signature
 | 
						|
					if (auto const* stringType = dynamic_cast<StringLiteralType const*>(selectorType))
 | 
						|
					{
 | 
						|
						FixedHash<4> hash(dev::keccak256(stringType->value()));
 | 
						|
						m_context << (u256(FixedHash<4>::Arith(hash)) << (256 - 32));
 | 
						|
						dataOnStack = TypeProvider::fixedBytes(4);
 | 
						|
					}
 | 
						|
					else
 | 
						|
					{
 | 
						|
						utils().fetchFreeMemoryPointer();
 | 
						|
						// stack: <memory pointer> <selector> <free mem ptr>
 | 
						|
						utils().packedEncode(TypePointers{selectorType}, TypePointers());
 | 
						|
						utils().toSizeAfterFreeMemoryPointer();
 | 
						|
						m_context << Instruction::KECCAK256;
 | 
						|
						// stack: <memory pointer> <hash>
 | 
						|
 | 
						|
						dataOnStack = TypeProvider::fixedBytes(32);
 | 
						|
					}
 | 
						|
				}
 | 
						|
				else
 | 
						|
				{
 | 
						|
					solAssert(function.kind() == FunctionType::Kind::ABIEncodeWithSelector, "");
 | 
						|
				}
 | 
						|
 | 
						|
				utils().convertType(*dataOnStack, FixedBytesType(4), true);
 | 
						|
 | 
						|
				// stack: <memory pointer> <selector>
 | 
						|
 | 
						|
				// load current memory, mask and combine the selector
 | 
						|
				string mask = formatNumber((u256(-1) >> 32));
 | 
						|
				m_context.appendInlineAssembly(R"({
 | 
						|
					let data_start := add(mem_ptr, 0x20)
 | 
						|
					let data := mload(data_start)
 | 
						|
					let mask := )" + mask + R"(
 | 
						|
					mstore(data_start, or(and(data, mask), selector))
 | 
						|
				})", {"mem_ptr", "selector"});
 | 
						|
				m_context << Instruction::POP;
 | 
						|
			}
 | 
						|
 | 
						|
			// stack now: <memory pointer>
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		case FunctionType::Kind::ABIDecode:
 | 
						|
		{
 | 
						|
			arguments.front()->accept(*this);
 | 
						|
			TypePointer firstArgType = arguments.front()->annotation().type;
 | 
						|
			TypePointers targetTypes;
 | 
						|
			if (TupleType const* targetTupleType = dynamic_cast<TupleType const*>(_functionCall.annotation().type))
 | 
						|
				targetTypes = targetTupleType->components();
 | 
						|
			else
 | 
						|
				targetTypes = TypePointers{_functionCall.annotation().type};
 | 
						|
			if (
 | 
						|
				auto referenceType = dynamic_cast<ReferenceType const*>(firstArgType);
 | 
						|
				referenceType && referenceType->dataStoredIn(DataLocation::CallData)
 | 
						|
			)
 | 
						|
			{
 | 
						|
				solAssert(referenceType->isImplicitlyConvertibleTo(*TypeProvider::bytesCalldata()), "");
 | 
						|
				utils().convertType(*referenceType, *TypeProvider::bytesCalldata());
 | 
						|
				utils().abiDecode(targetTypes, false);
 | 
						|
			}
 | 
						|
			else
 | 
						|
			{
 | 
						|
				utils().convertType(*firstArgType, *TypeProvider::bytesMemory());
 | 
						|
				m_context << Instruction::DUP1 << u256(32) << Instruction::ADD;
 | 
						|
				m_context << Instruction::SWAP1 << Instruction::MLOAD;
 | 
						|
				// stack now: <mem_pos> <length>
 | 
						|
 | 
						|
				utils().abiDecode(targetTypes, true);
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		case FunctionType::Kind::GasLeft:
 | 
						|
			m_context << Instruction::GAS;
 | 
						|
			break;
 | 
						|
		case FunctionType::Kind::MetaType:
 | 
						|
			// No code to generate.
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ExpressionCompiler::visit(NewExpression const&)
 | 
						|
{
 | 
						|
	// code is created for the function call (CREATION) only
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ExpressionCompiler::visit(MemberAccess const& _memberAccess)
 | 
						|
{
 | 
						|
	CompilerContext::LocationSetter locationSetter(m_context, _memberAccess);
 | 
						|
	// Check whether the member is a bound function.
 | 
						|
	ASTString const& member = _memberAccess.memberName();
 | 
						|
	if (auto funType = dynamic_cast<FunctionType const*>(_memberAccess.annotation().type))
 | 
						|
		if (funType->bound())
 | 
						|
		{
 | 
						|
			acceptAndConvert(_memberAccess.expression(), *funType->selfType(), true);
 | 
						|
			if (funType->kind() == FunctionType::Kind::Internal)
 | 
						|
			{
 | 
						|
				FunctionDefinition const& funDef = dynamic_cast<decltype(funDef)>(funType->declaration());
 | 
						|
				utils().pushCombinedFunctionEntryLabel(funDef);
 | 
						|
				utils().moveIntoStack(funType->selfType()->sizeOnStack(), 1);
 | 
						|
			}
 | 
						|
			else
 | 
						|
			{
 | 
						|
				solAssert(funType->kind() == FunctionType::Kind::DelegateCall, "");
 | 
						|
				auto contract = dynamic_cast<ContractDefinition const*>(funType->declaration().scope());
 | 
						|
				solAssert(contract && contract->isLibrary(), "");
 | 
						|
				m_context.appendLibraryAddress(contract->fullyQualifiedName());
 | 
						|
				m_context << funType->externalIdentifier();
 | 
						|
				utils().moveIntoStack(funType->selfType()->sizeOnStack(), 2);
 | 
						|
			}
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
 | 
						|
	// Special processing for TypeType because we do not want to visit the library itself
 | 
						|
	// for internal functions, or enum/struct definitions.
 | 
						|
	if (TypeType const* type = dynamic_cast<TypeType const*>(_memberAccess.expression().annotation().type))
 | 
						|
	{
 | 
						|
		if (dynamic_cast<ContractType const*>(type->actualType()))
 | 
						|
		{
 | 
						|
			solAssert(_memberAccess.annotation().type, "_memberAccess has no type");
 | 
						|
			if (auto variable = dynamic_cast<VariableDeclaration const*>(_memberAccess.annotation().referencedDeclaration))
 | 
						|
				appendVariable(*variable, static_cast<Expression const&>(_memberAccess));
 | 
						|
			else if (auto funType = dynamic_cast<FunctionType const*>(_memberAccess.annotation().type))
 | 
						|
			{
 | 
						|
				switch (funType->kind())
 | 
						|
				{
 | 
						|
				case FunctionType::Kind::Internal:
 | 
						|
					// We do not visit the expression here on purpose, because in the case of an
 | 
						|
					// internal library function call, this would push the library address forcing
 | 
						|
					// us to link against it although we actually do not need it.
 | 
						|
					if (auto const* function = dynamic_cast<FunctionDefinition const*>(_memberAccess.annotation().referencedDeclaration))
 | 
						|
						utils().pushCombinedFunctionEntryLabel(*function);
 | 
						|
					else
 | 
						|
						solAssert(false, "Function not found in member access");
 | 
						|
					break;
 | 
						|
				case FunctionType::Kind::Event:
 | 
						|
					if (!dynamic_cast<EventDefinition const*>(_memberAccess.annotation().referencedDeclaration))
 | 
						|
						solAssert(false, "event not found");
 | 
						|
					// no-op, because the parent node will do the job
 | 
						|
					break;
 | 
						|
				case FunctionType::Kind::DelegateCall:
 | 
						|
					_memberAccess.expression().accept(*this);
 | 
						|
					m_context << funType->externalIdentifier();
 | 
						|
					break;
 | 
						|
				case FunctionType::Kind::External:
 | 
						|
				case FunctionType::Kind::Creation:
 | 
						|
				case FunctionType::Kind::Send:
 | 
						|
				case FunctionType::Kind::BareCall:
 | 
						|
				case FunctionType::Kind::BareCallCode:
 | 
						|
				case FunctionType::Kind::BareDelegateCall:
 | 
						|
				case FunctionType::Kind::BareStaticCall:
 | 
						|
				case FunctionType::Kind::Transfer:
 | 
						|
				case FunctionType::Kind::Log0:
 | 
						|
				case FunctionType::Kind::Log1:
 | 
						|
				case FunctionType::Kind::Log2:
 | 
						|
				case FunctionType::Kind::Log3:
 | 
						|
				case FunctionType::Kind::Log4:
 | 
						|
				case FunctionType::Kind::ECRecover:
 | 
						|
				case FunctionType::Kind::SHA256:
 | 
						|
				case FunctionType::Kind::RIPEMD160:
 | 
						|
				default:
 | 
						|
					solAssert(false, "unsupported member function");
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else if (dynamic_cast<TypeType const*>(_memberAccess.annotation().type))
 | 
						|
			{
 | 
						|
				// no-op
 | 
						|
			}
 | 
						|
			else
 | 
						|
				_memberAccess.expression().accept(*this);
 | 
						|
		}
 | 
						|
		else if (auto enumType = dynamic_cast<EnumType const*>(type->actualType()))
 | 
						|
		{
 | 
						|
			_memberAccess.expression().accept(*this);
 | 
						|
			m_context << enumType->memberValue(_memberAccess.memberName());
 | 
						|
		}
 | 
						|
		else
 | 
						|
			_memberAccess.expression().accept(*this);
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
	// Another special case for `this.f.selector` which does not need the address.
 | 
						|
	// There are other uses of `.selector` which do need the address, but we want this
 | 
						|
	// specific use to be a pure expression.
 | 
						|
	if (
 | 
						|
		_memberAccess.expression().annotation().type->category() == Type::Category::Function &&
 | 
						|
		member == "selector"
 | 
						|
	)
 | 
						|
		if (auto const* expr = dynamic_cast<MemberAccess const*>(&_memberAccess.expression()))
 | 
						|
			if (auto const* exprInt = dynamic_cast<Identifier const*>(&expr->expression()))
 | 
						|
				if (exprInt->name() == "this")
 | 
						|
					if (Declaration const* declaration = expr->annotation().referencedDeclaration)
 | 
						|
					{
 | 
						|
						u256 identifier;
 | 
						|
						if (auto const* variable = dynamic_cast<VariableDeclaration const*>(declaration))
 | 
						|
							identifier = FunctionType(*variable).externalIdentifier();
 | 
						|
						else if (auto const* function = dynamic_cast<FunctionDefinition const*>(declaration))
 | 
						|
							identifier = FunctionType(*function).externalIdentifier();
 | 
						|
						else
 | 
						|
							solAssert(false, "Contract member is neither variable nor function.");
 | 
						|
						m_context << identifier;
 | 
						|
						/// need to store it as bytes4
 | 
						|
						utils().leftShiftNumberOnStack(224);
 | 
						|
						return false;
 | 
						|
					}
 | 
						|
	// Another special case for `address(this).balance`. Post-Istanbul, we can use the selfbalance
 | 
						|
	// opcode.
 | 
						|
	if (
 | 
						|
		m_context.evmVersion().hasSelfBalance() &&
 | 
						|
		member == "balance" &&
 | 
						|
		_memberAccess.expression().annotation().type->category() == Type::Category::Address
 | 
						|
	)
 | 
						|
		if (FunctionCall const* funCall = dynamic_cast<FunctionCall const*>(&_memberAccess.expression()))
 | 
						|
			if (auto const* addr = dynamic_cast<ElementaryTypeNameExpression const*>(&funCall->expression()))
 | 
						|
				if (
 | 
						|
					addr->type().typeName().token() == Token::Address &&
 | 
						|
					funCall->arguments().size() == 1
 | 
						|
				)
 | 
						|
					if (auto arg = dynamic_cast<Identifier const*>( funCall->arguments().front().get()))
 | 
						|
						if (
 | 
						|
							arg->name() == "this" &&
 | 
						|
							dynamic_cast<MagicVariableDeclaration const*>(arg->annotation().referencedDeclaration)
 | 
						|
						)
 | 
						|
						{
 | 
						|
							m_context << Instruction::SELFBALANCE;
 | 
						|
							return false;
 | 
						|
						}
 | 
						|
 | 
						|
	_memberAccess.expression().accept(*this);
 | 
						|
	switch (_memberAccess.expression().annotation().type->category())
 | 
						|
	{
 | 
						|
	case Type::Category::Contract:
 | 
						|
	{
 | 
						|
		ContractType const& type = dynamic_cast<ContractType const&>(*_memberAccess.expression().annotation().type);
 | 
						|
		if (type.isSuper())
 | 
						|
		{
 | 
						|
			solAssert(!!_memberAccess.annotation().referencedDeclaration, "Referenced declaration not resolved.");
 | 
						|
			utils().pushCombinedFunctionEntryLabel(m_context.superFunction(
 | 
						|
				dynamic_cast<FunctionDefinition const&>(*_memberAccess.annotation().referencedDeclaration),
 | 
						|
				type.contractDefinition()
 | 
						|
			));
 | 
						|
		}
 | 
						|
		// ordinary contract type
 | 
						|
		else if (Declaration const* declaration = _memberAccess.annotation().referencedDeclaration)
 | 
						|
		{
 | 
						|
			u256 identifier;
 | 
						|
			if (auto const* variable = dynamic_cast<VariableDeclaration const*>(declaration))
 | 
						|
				identifier = FunctionType(*variable).externalIdentifier();
 | 
						|
			else if (auto const* function = dynamic_cast<FunctionDefinition const*>(declaration))
 | 
						|
				identifier = FunctionType(*function).externalIdentifier();
 | 
						|
			else
 | 
						|
				solAssert(false, "Contract member is neither variable nor function.");
 | 
						|
			utils().convertType(type, type.isPayable() ? *TypeProvider::payableAddress() : *TypeProvider::address(), true);
 | 
						|
			m_context << identifier;
 | 
						|
		}
 | 
						|
		else
 | 
						|
			solAssert(false, "Invalid member access in contract");
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	case Type::Category::Integer:
 | 
						|
	{
 | 
						|
		solAssert(false, "Invalid member access to integer");
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	case Type::Category::Address:
 | 
						|
	{
 | 
						|
		if (member == "balance")
 | 
						|
		{
 | 
						|
			utils().convertType(
 | 
						|
				*_memberAccess.expression().annotation().type,
 | 
						|
				*TypeProvider::address(),
 | 
						|
				true
 | 
						|
			);
 | 
						|
			m_context << Instruction::BALANCE;
 | 
						|
		}
 | 
						|
		else if ((set<string>{"send", "transfer"}).count(member))
 | 
						|
		{
 | 
						|
			solAssert(dynamic_cast<AddressType const&>(*_memberAccess.expression().annotation().type).stateMutability() == StateMutability::Payable, "");
 | 
						|
			utils().convertType(
 | 
						|
				*_memberAccess.expression().annotation().type,
 | 
						|
				AddressType(StateMutability::Payable),
 | 
						|
				true
 | 
						|
			);
 | 
						|
		}
 | 
						|
		else if ((set<string>{"call", "callcode", "delegatecall", "staticcall"}).count(member))
 | 
						|
			utils().convertType(
 | 
						|
				*_memberAccess.expression().annotation().type,
 | 
						|
				*TypeProvider::address(),
 | 
						|
				true
 | 
						|
			);
 | 
						|
		else
 | 
						|
			solAssert(false, "Invalid member access to address");
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	case Type::Category::Function:
 | 
						|
		if (member == "selector")
 | 
						|
		{
 | 
						|
			m_context << Instruction::SWAP1 << Instruction::POP;
 | 
						|
			/// need to store it as bytes4
 | 
						|
			utils().leftShiftNumberOnStack(224);
 | 
						|
		}
 | 
						|
		else if (member == "address")
 | 
						|
		{
 | 
						|
			auto const& functionType = dynamic_cast<FunctionType const&>(*_memberAccess.expression().annotation().type);
 | 
						|
			solAssert(functionType.kind() == FunctionType::Kind::External, "");
 | 
						|
			// stack: <address> <function_id>
 | 
						|
			m_context << Instruction::POP;
 | 
						|
		}
 | 
						|
		else
 | 
						|
			solAssert(
 | 
						|
				!!_memberAccess.expression().annotation().type->memberType(member),
 | 
						|
				"Invalid member access to function."
 | 
						|
			);
 | 
						|
		break;
 | 
						|
	case Type::Category::Magic:
 | 
						|
		// we can ignore the kind of magic and only look at the name of the member
 | 
						|
		if (member == "coinbase")
 | 
						|
			m_context << Instruction::COINBASE;
 | 
						|
		else if (member == "timestamp")
 | 
						|
			m_context << Instruction::TIMESTAMP;
 | 
						|
		else if (member == "difficulty")
 | 
						|
			m_context << Instruction::DIFFICULTY;
 | 
						|
		else if (member == "number")
 | 
						|
			m_context << Instruction::NUMBER;
 | 
						|
		else if (member == "gaslimit")
 | 
						|
			m_context << Instruction::GASLIMIT;
 | 
						|
		else if (member == "sender")
 | 
						|
			m_context << Instruction::CALLER;
 | 
						|
		else if (member == "value")
 | 
						|
			m_context << Instruction::CALLVALUE;
 | 
						|
		else if (member == "origin")
 | 
						|
			m_context << Instruction::ORIGIN;
 | 
						|
		else if (member == "gasprice")
 | 
						|
			m_context << Instruction::GASPRICE;
 | 
						|
		else if (member == "data")
 | 
						|
			m_context << u256(0) << Instruction::CALLDATASIZE;
 | 
						|
		else if (member == "sig")
 | 
						|
			m_context << u256(0) << Instruction::CALLDATALOAD
 | 
						|
				<< (u256(0xffffffff) << (256 - 32)) << Instruction::AND;
 | 
						|
		else if (member == "gas")
 | 
						|
			solAssert(false, "Gas has been removed.");
 | 
						|
		else if (member == "blockhash")
 | 
						|
			solAssert(false, "Blockhash has been removed.");
 | 
						|
		else if (member == "creationCode" || member == "runtimeCode")
 | 
						|
		{
 | 
						|
			TypePointer arg = dynamic_cast<MagicType const&>(*_memberAccess.expression().annotation().type).typeArgument();
 | 
						|
			ContractDefinition const& contract = dynamic_cast<ContractType const&>(*arg).contractDefinition();
 | 
						|
			utils().fetchFreeMemoryPointer();
 | 
						|
			m_context << Instruction::DUP1 << u256(32) << Instruction::ADD;
 | 
						|
			utils().copyContractCodeToMemory(contract, member == "creationCode");
 | 
						|
			// Stack: start end
 | 
						|
			m_context.appendInlineAssembly(
 | 
						|
				Whiskers(R"({
 | 
						|
					mstore(start, sub(end, add(start, 0x20)))
 | 
						|
					mstore(<free>, and(add(end, 31), not(31)))
 | 
						|
				})")("free", to_string(CompilerUtils::freeMemoryPointer)).render(),
 | 
						|
				{"start", "end"}
 | 
						|
			);
 | 
						|
			m_context << Instruction::POP;
 | 
						|
		}
 | 
						|
		else if (member == "name")
 | 
						|
		{
 | 
						|
			TypePointer arg = dynamic_cast<MagicType const&>(*_memberAccess.expression().annotation().type).typeArgument();
 | 
						|
			ContractDefinition const& contract = dynamic_cast<ContractType const&>(*arg).contractDefinition();
 | 
						|
			utils().allocateMemory(((contract.name().length() + 31) / 32) * 32 + 32);
 | 
						|
			// store string length
 | 
						|
			m_context << u256(contract.name().length()) << Instruction::DUP2 << Instruction::MSTORE;
 | 
						|
			// adjust pointer
 | 
						|
			m_context << Instruction::DUP1 << u256(32) << Instruction::ADD;
 | 
						|
			utils().storeStringData(contract.name());
 | 
						|
		}
 | 
						|
		else if ((set<string>{"encode", "encodePacked", "encodeWithSelector", "encodeWithSignature", "decode"}).count(member))
 | 
						|
		{
 | 
						|
			// no-op
 | 
						|
		}
 | 
						|
		else
 | 
						|
			solAssert(false, "Unknown magic member.");
 | 
						|
		break;
 | 
						|
	case Type::Category::Struct:
 | 
						|
	{
 | 
						|
		StructType const& type = dynamic_cast<StructType const&>(*_memberAccess.expression().annotation().type);
 | 
						|
		TypePointer const& memberType = _memberAccess.annotation().type;
 | 
						|
		switch (type.location())
 | 
						|
		{
 | 
						|
		case DataLocation::Storage:
 | 
						|
		{
 | 
						|
			pair<u256, unsigned> const& offsets = type.storageOffsetsOfMember(member);
 | 
						|
			m_context << offsets.first << Instruction::ADD << u256(offsets.second);
 | 
						|
			setLValueToStorageItem(_memberAccess);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		case DataLocation::Memory:
 | 
						|
		{
 | 
						|
			m_context << type.memoryOffsetOfMember(member) << Instruction::ADD;
 | 
						|
			setLValue<MemoryItem>(_memberAccess, *memberType);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		case DataLocation::CallData:
 | 
						|
		{
 | 
						|
			if (_memberAccess.annotation().type->isDynamicallyEncoded())
 | 
						|
			{
 | 
						|
				m_context << Instruction::DUP1;
 | 
						|
				m_context << type.calldataOffsetOfMember(member) << Instruction::ADD;
 | 
						|
				CompilerUtils(m_context).accessCalldataTail(*memberType);
 | 
						|
			}
 | 
						|
			else
 | 
						|
			{
 | 
						|
				m_context << type.calldataOffsetOfMember(member) << Instruction::ADD;
 | 
						|
				// For non-value types the calldata offset is returned directly.
 | 
						|
				if (memberType->isValueType())
 | 
						|
				{
 | 
						|
					solAssert(memberType->calldataEncodedSize() > 0, "");
 | 
						|
					solAssert(memberType->storageBytes() <= 32, "");
 | 
						|
					if (memberType->storageBytes() < 32 && m_context.experimentalFeatureActive(ExperimentalFeature::ABIEncoderV2))
 | 
						|
					{
 | 
						|
						m_context << u256(32);
 | 
						|
						CompilerUtils(m_context).abiDecodeV2({memberType}, false);
 | 
						|
					}
 | 
						|
					else
 | 
						|
						CompilerUtils(m_context).loadFromMemoryDynamic(*memberType, true, true, false);
 | 
						|
				}
 | 
						|
				else
 | 
						|
					solAssert(
 | 
						|
						memberType->category() == Type::Category::Array ||
 | 
						|
						memberType->category() == Type::Category::Struct,
 | 
						|
						""
 | 
						|
					);
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		default:
 | 
						|
			solAssert(false, "Illegal data location for struct.");
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	case Type::Category::Enum:
 | 
						|
	{
 | 
						|
		EnumType const& type = dynamic_cast<EnumType const&>(*_memberAccess.expression().annotation().type);
 | 
						|
		m_context << type.memberValue(_memberAccess.memberName());
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	case Type::Category::Array:
 | 
						|
	{
 | 
						|
		auto const& type = dynamic_cast<ArrayType const&>(*_memberAccess.expression().annotation().type);
 | 
						|
		if (member == "length")
 | 
						|
		{
 | 
						|
			if (!type.isDynamicallySized())
 | 
						|
			{
 | 
						|
				utils().popStackElement(type);
 | 
						|
				m_context << type.length();
 | 
						|
			}
 | 
						|
			else
 | 
						|
				switch (type.location())
 | 
						|
				{
 | 
						|
				case DataLocation::CallData:
 | 
						|
					m_context << Instruction::SWAP1 << Instruction::POP;
 | 
						|
					break;
 | 
						|
				case DataLocation::Storage:
 | 
						|
					setLValue<StorageArrayLength>(_memberAccess, type);
 | 
						|
					break;
 | 
						|
				case DataLocation::Memory:
 | 
						|
					m_context << Instruction::MLOAD;
 | 
						|
					break;
 | 
						|
				}
 | 
						|
		}
 | 
						|
		else if (member == "push" || member == "pop")
 | 
						|
		{
 | 
						|
			solAssert(
 | 
						|
				type.isDynamicallySized() &&
 | 
						|
				type.location() == DataLocation::Storage &&
 | 
						|
				type.category() == Type::Category::Array,
 | 
						|
				"Tried to use ." + member + "() on a non-dynamically sized array"
 | 
						|
			);
 | 
						|
		}
 | 
						|
		else
 | 
						|
			solAssert(false, "Illegal array member.");
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	case Type::Category::FixedBytes:
 | 
						|
	{
 | 
						|
		auto const& type = dynamic_cast<FixedBytesType const&>(*_memberAccess.expression().annotation().type);
 | 
						|
		utils().popStackElement(type);
 | 
						|
		if (member == "length")
 | 
						|
			m_context << u256(type.numBytes());
 | 
						|
		else
 | 
						|
			solAssert(false, "Illegal fixed bytes member.");
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	default:
 | 
						|
		solAssert(false, "Member access to unknown type.");
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ExpressionCompiler::visit(IndexAccess const& _indexAccess)
 | 
						|
{
 | 
						|
	CompilerContext::LocationSetter locationSetter(m_context, _indexAccess);
 | 
						|
	_indexAccess.baseExpression().accept(*this);
 | 
						|
 | 
						|
	Type const& baseType = *_indexAccess.baseExpression().annotation().type;
 | 
						|
 | 
						|
	switch (baseType.category())
 | 
						|
	{
 | 
						|
		case Type::Category::Mapping:
 | 
						|
		{
 | 
						|
			// stack: storage_base_ref
 | 
						|
			TypePointer keyType = dynamic_cast<MappingType const&>(baseType).keyType();
 | 
						|
			solAssert(_indexAccess.indexExpression(), "Index expression expected.");
 | 
						|
			if (keyType->isDynamicallySized())
 | 
						|
			{
 | 
						|
				_indexAccess.indexExpression()->accept(*this);
 | 
						|
				utils().fetchFreeMemoryPointer();
 | 
						|
				// stack: base index mem
 | 
						|
				// note: the following operations must not allocate memory!
 | 
						|
				utils().packedEncode(
 | 
						|
					TypePointers{_indexAccess.indexExpression()->annotation().type},
 | 
						|
					TypePointers{keyType}
 | 
						|
				);
 | 
						|
				m_context << Instruction::SWAP1;
 | 
						|
				utils().storeInMemoryDynamic(*TypeProvider::uint256());
 | 
						|
				utils().toSizeAfterFreeMemoryPointer();
 | 
						|
			}
 | 
						|
			else
 | 
						|
			{
 | 
						|
				m_context << u256(0); // memory position
 | 
						|
				appendExpressionCopyToMemory(*keyType, *_indexAccess.indexExpression());
 | 
						|
				m_context << Instruction::SWAP1;
 | 
						|
				solAssert(CompilerUtils::freeMemoryPointer >= 0x40, "");
 | 
						|
				utils().storeInMemoryDynamic(*TypeProvider::uint256());
 | 
						|
				m_context << u256(0);
 | 
						|
			}
 | 
						|
			m_context << Instruction::KECCAK256;
 | 
						|
			m_context << u256(0);
 | 
						|
			setLValueToStorageItem(_indexAccess);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		case Type::Category::ArraySlice:
 | 
						|
		{
 | 
						|
			auto const& arrayType = dynamic_cast<ArraySliceType const&>(baseType).arrayType();
 | 
						|
			solAssert(arrayType.location() == DataLocation::CallData && arrayType.isDynamicallySized(), "");
 | 
						|
			solAssert(_indexAccess.indexExpression(), "Index expression expected.");
 | 
						|
 | 
						|
			acceptAndConvert(*_indexAccess.indexExpression(), *TypeProvider::uint256(), true);
 | 
						|
			ArrayUtils(m_context).accessCallDataArrayElement(arrayType);
 | 
						|
			break;
 | 
						|
 | 
						|
		}
 | 
						|
		case Type::Category::Array:
 | 
						|
		{
 | 
						|
			ArrayType const& arrayType = dynamic_cast<ArrayType const&>(baseType);
 | 
						|
			solAssert(_indexAccess.indexExpression(), "Index expression expected.");
 | 
						|
 | 
						|
			acceptAndConvert(*_indexAccess.indexExpression(), *TypeProvider::uint256(), true);
 | 
						|
			// stack layout: <base_ref> [<length>] <index>
 | 
						|
			switch (arrayType.location())
 | 
						|
			{
 | 
						|
				case DataLocation::Storage:
 | 
						|
					ArrayUtils(m_context).accessIndex(arrayType);
 | 
						|
					if (arrayType.isByteArray())
 | 
						|
					{
 | 
						|
						solAssert(!arrayType.isString(), "Index access to string is not allowed.");
 | 
						|
						setLValue<StorageByteArrayElement>(_indexAccess);
 | 
						|
					}
 | 
						|
					else
 | 
						|
						setLValueToStorageItem(_indexAccess);
 | 
						|
					break;
 | 
						|
				case DataLocation::Memory:
 | 
						|
					ArrayUtils(m_context).accessIndex(arrayType);
 | 
						|
					setLValue<MemoryItem>(_indexAccess, *_indexAccess.annotation().type, !arrayType.isByteArray());
 | 
						|
					break;
 | 
						|
				case DataLocation::CallData:
 | 
						|
					ArrayUtils(m_context).accessCallDataArrayElement(arrayType);
 | 
						|
					break;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		case Type::Category::FixedBytes:
 | 
						|
		{
 | 
						|
			FixedBytesType const& fixedBytesType = dynamic_cast<FixedBytesType const&>(baseType);
 | 
						|
			solAssert(_indexAccess.indexExpression(), "Index expression expected.");
 | 
						|
 | 
						|
			acceptAndConvert(*_indexAccess.indexExpression(), *TypeProvider::uint256(), true);
 | 
						|
			// stack layout: <value> <index>
 | 
						|
			// check out-of-bounds access
 | 
						|
			m_context << u256(fixedBytesType.numBytes());
 | 
						|
			m_context << Instruction::DUP2 << Instruction::LT << Instruction::ISZERO;
 | 
						|
			// out-of-bounds access throws exception
 | 
						|
			m_context.appendConditionalInvalid();
 | 
						|
 | 
						|
			m_context << Instruction::BYTE;
 | 
						|
			utils().leftShiftNumberOnStack(256 - 8);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		case Type::Category::TypeType:
 | 
						|
		{
 | 
						|
			solAssert(baseType.sizeOnStack() == 0, "");
 | 
						|
			solAssert(_indexAccess.annotation().type->sizeOnStack() == 0, "");
 | 
						|
			// no-op - this seems to be a lone array type (`structType[];`)
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		default:
 | 
						|
			solAssert(false, "Index access only allowed for mappings or arrays.");
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ExpressionCompiler::visit(IndexRangeAccess const& _indexAccess)
 | 
						|
{
 | 
						|
	CompilerContext::LocationSetter locationSetter(m_context, _indexAccess);
 | 
						|
	_indexAccess.baseExpression().accept(*this);
 | 
						|
 | 
						|
	Type const& baseType = *_indexAccess.baseExpression().annotation().type;
 | 
						|
 | 
						|
	ArrayType const *arrayType = dynamic_cast<ArrayType const*>(&baseType);
 | 
						|
	if (!arrayType)
 | 
						|
		if (ArraySliceType const* sliceType = dynamic_cast<ArraySliceType const*>(&baseType))
 | 
						|
			arrayType = &sliceType->arrayType();
 | 
						|
 | 
						|
	solAssert(arrayType, "");
 | 
						|
	solUnimplementedAssert(arrayType->location() == DataLocation::CallData && arrayType->isDynamicallySized(), "");
 | 
						|
 | 
						|
	if (_indexAccess.startExpression())
 | 
						|
		acceptAndConvert(*_indexAccess.startExpression(), *TypeProvider::uint256());
 | 
						|
	else
 | 
						|
		m_context << u256(0);
 | 
						|
	if (_indexAccess.endExpression())
 | 
						|
		acceptAndConvert(*_indexAccess.endExpression(), *TypeProvider::uint256());
 | 
						|
	else
 | 
						|
		m_context << Instruction::DUP2;
 | 
						|
 | 
						|
	m_context.appendInlineAssembly(
 | 
						|
		Whiskers(R"({
 | 
						|
					if gt(sliceStart, sliceEnd) { revert(0, 0) }
 | 
						|
					if gt(sliceEnd, length) { revert(0, 0) }
 | 
						|
 | 
						|
					offset := add(offset, mul(sliceStart, <stride>))
 | 
						|
					length := sub(sliceEnd, sliceStart)
 | 
						|
				})")("stride", toString(arrayType->calldataStride())).render(),
 | 
						|
		{"offset", "length", "sliceStart", "sliceEnd"}
 | 
						|
	);
 | 
						|
 | 
						|
	m_context << Instruction::POP << Instruction::POP;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
void ExpressionCompiler::endVisit(Identifier const& _identifier)
 | 
						|
{
 | 
						|
	CompilerContext::LocationSetter locationSetter(m_context, _identifier);
 | 
						|
	Declaration const* declaration = _identifier.annotation().referencedDeclaration;
 | 
						|
	if (MagicVariableDeclaration const* magicVar = dynamic_cast<MagicVariableDeclaration const*>(declaration))
 | 
						|
	{
 | 
						|
		switch (magicVar->type()->category())
 | 
						|
		{
 | 
						|
		case Type::Category::Contract:
 | 
						|
			// "this" or "super"
 | 
						|
			if (!dynamic_cast<ContractType const&>(*magicVar->type()).isSuper())
 | 
						|
				m_context << Instruction::ADDRESS;
 | 
						|
			break;
 | 
						|
		case Type::Category::Integer:
 | 
						|
			// "now"
 | 
						|
			m_context << Instruction::TIMESTAMP;
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else if (FunctionDefinition const* functionDef = dynamic_cast<FunctionDefinition const*>(declaration))
 | 
						|
		// If the identifier is called right away, this code is executed in visit(FunctionCall...), because
 | 
						|
		// we want to avoid having a reference to the runtime function entry point in the
 | 
						|
		// constructor context, since this would force the compiler to include unreferenced
 | 
						|
		// internal functions in the runtime contex.
 | 
						|
		utils().pushCombinedFunctionEntryLabel(m_context.resolveVirtualFunction(*functionDef));
 | 
						|
	else if (auto variable = dynamic_cast<VariableDeclaration const*>(declaration))
 | 
						|
		appendVariable(*variable, static_cast<Expression const&>(_identifier));
 | 
						|
	else if (auto contract = dynamic_cast<ContractDefinition const*>(declaration))
 | 
						|
	{
 | 
						|
		if (contract->isLibrary())
 | 
						|
			m_context.appendLibraryAddress(contract->fullyQualifiedName());
 | 
						|
	}
 | 
						|
	else if (dynamic_cast<EventDefinition const*>(declaration))
 | 
						|
	{
 | 
						|
		// no-op
 | 
						|
	}
 | 
						|
	else if (dynamic_cast<EnumDefinition const*>(declaration))
 | 
						|
	{
 | 
						|
		// no-op
 | 
						|
	}
 | 
						|
	else if (dynamic_cast<StructDefinition const*>(declaration))
 | 
						|
	{
 | 
						|
		// no-op
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		solAssert(false, "Identifier type not expected in expression context.");
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void ExpressionCompiler::endVisit(Literal const& _literal)
 | 
						|
{
 | 
						|
	CompilerContext::LocationSetter locationSetter(m_context, _literal);
 | 
						|
	TypePointer type = _literal.annotation().type;
 | 
						|
 | 
						|
	switch (type->category())
 | 
						|
	{
 | 
						|
	case Type::Category::RationalNumber:
 | 
						|
	case Type::Category::Bool:
 | 
						|
	case Type::Category::Address:
 | 
						|
		m_context << type->literalValue(&_literal);
 | 
						|
		break;
 | 
						|
	case Type::Category::StringLiteral:
 | 
						|
		break; // will be done during conversion
 | 
						|
	default:
 | 
						|
		solUnimplemented("Only integer, boolean and string literals implemented for now.");
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void ExpressionCompiler::appendAndOrOperatorCode(BinaryOperation const& _binaryOperation)
 | 
						|
{
 | 
						|
	Token const c_op = _binaryOperation.getOperator();
 | 
						|
	solAssert(c_op == Token::Or || c_op == Token::And, "");
 | 
						|
 | 
						|
	_binaryOperation.leftExpression().accept(*this);
 | 
						|
	m_context << Instruction::DUP1;
 | 
						|
	if (c_op == Token::And)
 | 
						|
		m_context << Instruction::ISZERO;
 | 
						|
	eth::AssemblyItem endLabel = m_context.appendConditionalJump();
 | 
						|
	m_context << Instruction::POP;
 | 
						|
	_binaryOperation.rightExpression().accept(*this);
 | 
						|
	m_context << endLabel;
 | 
						|
}
 | 
						|
 | 
						|
void ExpressionCompiler::appendCompareOperatorCode(Token _operator, Type const& _type)
 | 
						|
{
 | 
						|
	solAssert(_type.sizeOnStack() == 1, "Comparison of multi-slot types.");
 | 
						|
	if (_operator == Token::Equal || _operator == Token::NotEqual)
 | 
						|
	{
 | 
						|
		if (FunctionType const* funType = dynamic_cast<decltype(funType)>(&_type))
 | 
						|
		{
 | 
						|
			if (funType->kind() == FunctionType::Kind::Internal)
 | 
						|
			{
 | 
						|
				// We have to remove the upper bits (construction time value) because they might
 | 
						|
				// be "unknown" in one of the operands and not in the other.
 | 
						|
				m_context << ((u256(1) << 32) - 1) << Instruction::AND;
 | 
						|
				m_context << Instruction::SWAP1;
 | 
						|
				m_context << ((u256(1) << 32) - 1) << Instruction::AND;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		m_context << Instruction::EQ;
 | 
						|
		if (_operator == Token::NotEqual)
 | 
						|
			m_context << Instruction::ISZERO;
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		bool isSigned = false;
 | 
						|
		if (auto type = dynamic_cast<IntegerType const*>(&_type))
 | 
						|
			isSigned = type->isSigned();
 | 
						|
 | 
						|
		switch (_operator)
 | 
						|
		{
 | 
						|
		case Token::GreaterThanOrEqual:
 | 
						|
			m_context <<
 | 
						|
				(isSigned ? Instruction::SLT : Instruction::LT) <<
 | 
						|
				Instruction::ISZERO;
 | 
						|
			break;
 | 
						|
		case Token::LessThanOrEqual:
 | 
						|
			m_context <<
 | 
						|
				(isSigned ? Instruction::SGT : Instruction::GT) <<
 | 
						|
				Instruction::ISZERO;
 | 
						|
			break;
 | 
						|
		case Token::GreaterThan:
 | 
						|
			m_context << (isSigned ? Instruction::SGT : Instruction::GT);
 | 
						|
			break;
 | 
						|
		case Token::LessThan:
 | 
						|
			m_context << (isSigned ? Instruction::SLT : Instruction::LT);
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			solAssert(false, "Unknown comparison operator.");
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void ExpressionCompiler::appendOrdinaryBinaryOperatorCode(Token _operator, Type const& _type)
 | 
						|
{
 | 
						|
	if (TokenTraits::isArithmeticOp(_operator))
 | 
						|
		appendArithmeticOperatorCode(_operator, _type);
 | 
						|
	else if (TokenTraits::isBitOp(_operator))
 | 
						|
		appendBitOperatorCode(_operator);
 | 
						|
	else
 | 
						|
		solAssert(false, "Unknown binary operator.");
 | 
						|
}
 | 
						|
 | 
						|
void ExpressionCompiler::appendArithmeticOperatorCode(Token _operator, Type const& _type)
 | 
						|
{
 | 
						|
	if (_type.category() == Type::Category::FixedPoint)
 | 
						|
		solUnimplemented("Not yet implemented - FixedPointType.");
 | 
						|
 | 
						|
	IntegerType const& type = dynamic_cast<IntegerType const&>(_type);
 | 
						|
	bool const c_isSigned = type.isSigned();
 | 
						|
 | 
						|
	switch (_operator)
 | 
						|
	{
 | 
						|
	case Token::Add:
 | 
						|
		m_context << Instruction::ADD;
 | 
						|
		break;
 | 
						|
	case Token::Sub:
 | 
						|
		m_context << Instruction::SUB;
 | 
						|
		break;
 | 
						|
	case Token::Mul:
 | 
						|
		m_context << Instruction::MUL;
 | 
						|
		break;
 | 
						|
	case Token::Div:
 | 
						|
	case Token::Mod:
 | 
						|
	{
 | 
						|
		// Test for division by zero
 | 
						|
		m_context << Instruction::DUP2 << Instruction::ISZERO;
 | 
						|
		m_context.appendConditionalInvalid();
 | 
						|
 | 
						|
		if (_operator == Token::Div)
 | 
						|
			m_context << (c_isSigned ? Instruction::SDIV : Instruction::DIV);
 | 
						|
		else
 | 
						|
			m_context << (c_isSigned ? Instruction::SMOD : Instruction::MOD);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	case Token::Exp:
 | 
						|
		m_context << Instruction::EXP;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		solAssert(false, "Unknown arithmetic operator.");
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void ExpressionCompiler::appendBitOperatorCode(Token _operator)
 | 
						|
{
 | 
						|
	switch (_operator)
 | 
						|
	{
 | 
						|
	case Token::BitOr:
 | 
						|
		m_context << Instruction::OR;
 | 
						|
		break;
 | 
						|
	case Token::BitAnd:
 | 
						|
		m_context << Instruction::AND;
 | 
						|
		break;
 | 
						|
	case Token::BitXor:
 | 
						|
		m_context << Instruction::XOR;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		solAssert(false, "Unknown bit operator.");
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void ExpressionCompiler::appendShiftOperatorCode(Token _operator, Type const& _valueType, Type const& _shiftAmountType)
 | 
						|
{
 | 
						|
	// stack: shift_amount value_to_shift
 | 
						|
 | 
						|
	bool c_valueSigned = false;
 | 
						|
	if (auto valueType = dynamic_cast<IntegerType const*>(&_valueType))
 | 
						|
		c_valueSigned = valueType->isSigned();
 | 
						|
	else
 | 
						|
		solAssert(dynamic_cast<FixedBytesType const*>(&_valueType), "Only integer and fixed bytes type supported for shifts.");
 | 
						|
 | 
						|
	// The amount can be a RationalNumberType too.
 | 
						|
	bool c_amountSigned = false;
 | 
						|
	if (auto amountType = dynamic_cast<RationalNumberType const*>(&_shiftAmountType))
 | 
						|
	{
 | 
						|
		// This should be handled by the type checker.
 | 
						|
		solAssert(amountType->integerType(), "");
 | 
						|
		solAssert(!amountType->integerType()->isSigned(), "");
 | 
						|
	}
 | 
						|
	else if (auto amountType = dynamic_cast<IntegerType const*>(&_shiftAmountType))
 | 
						|
		c_amountSigned = amountType->isSigned();
 | 
						|
	else
 | 
						|
		solAssert(false, "Invalid shift amount type.");
 | 
						|
 | 
						|
	// shift by negative amount throws exception
 | 
						|
	if (c_amountSigned)
 | 
						|
	{
 | 
						|
		m_context << u256(0) << Instruction::DUP3 << Instruction::SLT;
 | 
						|
		m_context.appendConditionalInvalid();
 | 
						|
	}
 | 
						|
 | 
						|
	m_context << Instruction::SWAP1;
 | 
						|
	// stack: value_to_shift shift_amount
 | 
						|
 | 
						|
	switch (_operator)
 | 
						|
	{
 | 
						|
	case Token::SHL:
 | 
						|
		if (m_context.evmVersion().hasBitwiseShifting())
 | 
						|
			m_context << Instruction::SHL;
 | 
						|
		else
 | 
						|
			m_context << u256(2) << Instruction::EXP << Instruction::MUL;
 | 
						|
		break;
 | 
						|
	case Token::SAR:
 | 
						|
		if (m_context.evmVersion().hasBitwiseShifting())
 | 
						|
			m_context << (c_valueSigned ? Instruction::SAR : Instruction::SHR);
 | 
						|
		else
 | 
						|
		{
 | 
						|
			if (c_valueSigned)
 | 
						|
				// In the following assembly snippet, xor_mask will be zero, if value_to_shift is positive.
 | 
						|
				// Therefore xor'ing with xor_mask is the identity and the computation reduces to
 | 
						|
				// div(value_to_shift, exp(2, shift_amount)), which is correct, since for positive values
 | 
						|
				// arithmetic right shift is dividing by a power of two (which, as a bitwise operation, results
 | 
						|
				// in discarding bits on the right and filling with zeros from the left).
 | 
						|
				// For negative values arithmetic right shift, viewed as a bitwise operation, discards bits to the
 | 
						|
				// right and fills in ones from the left. This is achieved as follows:
 | 
						|
				// If value_to_shift is negative, then xor_mask will have all bits set, so xor'ing with xor_mask
 | 
						|
				// will flip all bits. First all bits in value_to_shift are flipped. As for the positive case,
 | 
						|
				// dividing by a power of two using integer arithmetic results in discarding bits to the right
 | 
						|
				// and filling with zeros from the left. Flipping all bits in the result again, turns all zeros
 | 
						|
				// on the left to ones and restores the non-discarded, shifted bits to their original value (they
 | 
						|
				// have now been flipped twice). In summary we now have discarded bits to the right and filled with
 | 
						|
				// ones from the left, i.e. we have performed an arithmetic right shift.
 | 
						|
				m_context.appendInlineAssembly(R"({
 | 
						|
					let xor_mask := sub(0, slt(value_to_shift, 0))
 | 
						|
					value_to_shift := xor(div(xor(value_to_shift, xor_mask), exp(2, shift_amount)), xor_mask)
 | 
						|
				})", {"value_to_shift", "shift_amount"});
 | 
						|
			else
 | 
						|
				m_context.appendInlineAssembly(R"({
 | 
						|
					value_to_shift := div(value_to_shift, exp(2, shift_amount))
 | 
						|
				})", {"value_to_shift", "shift_amount"});
 | 
						|
			m_context << Instruction::POP;
 | 
						|
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	case Token::SHR:
 | 
						|
	default:
 | 
						|
		solAssert(false, "Unknown shift operator.");
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void ExpressionCompiler::appendExternalFunctionCall(
 | 
						|
	FunctionType const& _functionType,
 | 
						|
	vector<ASTPointer<Expression const>> const& _arguments,
 | 
						|
	bool _tryCall
 | 
						|
)
 | 
						|
{
 | 
						|
	solAssert(
 | 
						|
		_functionType.takesArbitraryParameters() ||
 | 
						|
		_arguments.size() == _functionType.parameterTypes().size(), ""
 | 
						|
	);
 | 
						|
 | 
						|
	// Assumed stack content here:
 | 
						|
	// <stack top>
 | 
						|
	// value [if _functionType.valueSet()]
 | 
						|
	// gas [if _functionType.gasSet()]
 | 
						|
	// self object [if bound - moved to top right away]
 | 
						|
	// function identifier [unless bare]
 | 
						|
	// contract address
 | 
						|
 | 
						|
	unsigned selfSize = _functionType.bound() ? _functionType.selfType()->sizeOnStack() : 0;
 | 
						|
	unsigned gasValueSize = (_functionType.gasSet() ? 1 : 0) + (_functionType.valueSet() ? 1 : 0);
 | 
						|
	unsigned contractStackPos = m_context.currentToBaseStackOffset(1 + gasValueSize + selfSize + (_functionType.isBareCall() ? 0 : 1));
 | 
						|
	unsigned gasStackPos = m_context.currentToBaseStackOffset(gasValueSize);
 | 
						|
	unsigned valueStackPos = m_context.currentToBaseStackOffset(1);
 | 
						|
 | 
						|
	// move self object to top
 | 
						|
	if (_functionType.bound())
 | 
						|
		utils().moveToStackTop(gasValueSize, _functionType.selfType()->sizeOnStack());
 | 
						|
 | 
						|
	auto funKind = _functionType.kind();
 | 
						|
 | 
						|
	solAssert(funKind != FunctionType::Kind::BareStaticCall || m_context.evmVersion().hasStaticCall(), "");
 | 
						|
 | 
						|
	solAssert(funKind != FunctionType::Kind::BareCallCode, "Callcode has been removed.");
 | 
						|
 | 
						|
	bool returnSuccessConditionAndReturndata = funKind == FunctionType::Kind::BareCall || funKind == FunctionType::Kind::BareDelegateCall || funKind == FunctionType::Kind::BareStaticCall;
 | 
						|
	bool isDelegateCall = funKind == FunctionType::Kind::BareDelegateCall || funKind == FunctionType::Kind::DelegateCall;
 | 
						|
	bool useStaticCall = funKind == FunctionType::Kind::BareStaticCall || (_functionType.stateMutability() <= StateMutability::View && m_context.evmVersion().hasStaticCall());
 | 
						|
 | 
						|
	if (_tryCall)
 | 
						|
	{
 | 
						|
		solAssert(!returnSuccessConditionAndReturndata, "");
 | 
						|
		solAssert(!_functionType.isBareCall(), "");
 | 
						|
	}
 | 
						|
 | 
						|
	bool haveReturndatacopy = m_context.evmVersion().supportsReturndata();
 | 
						|
	unsigned retSize = 0;
 | 
						|
	bool dynamicReturnSize = false;
 | 
						|
	TypePointers returnTypes;
 | 
						|
	if (!returnSuccessConditionAndReturndata)
 | 
						|
	{
 | 
						|
		if (haveReturndatacopy)
 | 
						|
			returnTypes = _functionType.returnParameterTypes();
 | 
						|
		else
 | 
						|
			returnTypes = _functionType.returnParameterTypesWithoutDynamicTypes();
 | 
						|
 | 
						|
		for (auto const& retType: returnTypes)
 | 
						|
			if (retType->isDynamicallyEncoded())
 | 
						|
			{
 | 
						|
				solAssert(haveReturndatacopy, "");
 | 
						|
				dynamicReturnSize = true;
 | 
						|
				retSize = 0;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			else if (retType->decodingType())
 | 
						|
				retSize += retType->decodingType()->calldataEncodedSize();
 | 
						|
			else
 | 
						|
				retSize += retType->calldataEncodedSize();
 | 
						|
	}
 | 
						|
 | 
						|
	// Evaluate arguments.
 | 
						|
	TypePointers argumentTypes;
 | 
						|
	TypePointers parameterTypes = _functionType.parameterTypes();
 | 
						|
	if (_functionType.bound())
 | 
						|
	{
 | 
						|
		argumentTypes.push_back(_functionType.selfType());
 | 
						|
		parameterTypes.insert(parameterTypes.begin(), _functionType.selfType());
 | 
						|
	}
 | 
						|
	for (size_t i = 0; i < _arguments.size(); ++i)
 | 
						|
	{
 | 
						|
		_arguments[i]->accept(*this);
 | 
						|
		argumentTypes.push_back(_arguments[i]->annotation().type);
 | 
						|
	}
 | 
						|
 | 
						|
	if (funKind == FunctionType::Kind::ECRecover)
 | 
						|
	{
 | 
						|
		// Clears 32 bytes of currently free memory and advances free memory pointer.
 | 
						|
		// Output area will be "start of input area" - 32.
 | 
						|
		// The reason is that a failing ECRecover cannot be detected, it will just return
 | 
						|
		// zero bytes (which we cannot detect).
 | 
						|
		solAssert(0 < retSize && retSize <= 32, "");
 | 
						|
		utils().fetchFreeMemoryPointer();
 | 
						|
		m_context << u256(0) << Instruction::DUP2 << Instruction::MSTORE;
 | 
						|
		m_context << u256(32) << Instruction::ADD;
 | 
						|
		utils().storeFreeMemoryPointer();
 | 
						|
	}
 | 
						|
 | 
						|
	if (!m_context.evmVersion().canOverchargeGasForCall())
 | 
						|
	{
 | 
						|
		// Touch the end of the output area so that we do not pay for memory resize during the call
 | 
						|
		// (which we would have to subtract from the gas left)
 | 
						|
		// We could also just use MLOAD; POP right before the gas calculation, but the optimizer
 | 
						|
		// would remove that, so we use MSTORE here.
 | 
						|
		if (!_functionType.gasSet() && retSize > 0)
 | 
						|
		{
 | 
						|
			m_context << u256(0);
 | 
						|
			utils().fetchFreeMemoryPointer();
 | 
						|
			// This touches too much, but that way we save some rounding arithmetic
 | 
						|
			m_context << u256(retSize) << Instruction::ADD << Instruction::MSTORE;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// Copy function identifier to memory.
 | 
						|
	utils().fetchFreeMemoryPointer();
 | 
						|
	if (!_functionType.isBareCall())
 | 
						|
	{
 | 
						|
		m_context << dupInstruction(2 + gasValueSize + CompilerUtils::sizeOnStack(argumentTypes));
 | 
						|
		utils().storeInMemoryDynamic(IntegerType(8 * CompilerUtils::dataStartOffset), false);
 | 
						|
	}
 | 
						|
 | 
						|
	// If the function takes arbitrary parameters or is a bare call, copy dynamic length data in place.
 | 
						|
	// Move arguments to memory, will not update the free memory pointer (but will update the memory
 | 
						|
	// pointer on the stack).
 | 
						|
	bool encodeInPlace = _functionType.takesArbitraryParameters() || _functionType.isBareCall();
 | 
						|
	if (_functionType.kind() == FunctionType::Kind::ECRecover)
 | 
						|
		// This would be the only combination of padding and in-place encoding,
 | 
						|
		// but all parameters of ecrecover are value types anyway.
 | 
						|
		encodeInPlace = false;
 | 
						|
	bool encodeForLibraryCall = funKind == FunctionType::Kind::DelegateCall;
 | 
						|
	utils().encodeToMemory(
 | 
						|
		argumentTypes,
 | 
						|
		parameterTypes,
 | 
						|
		_functionType.padArguments(),
 | 
						|
		encodeInPlace,
 | 
						|
		encodeForLibraryCall
 | 
						|
	);
 | 
						|
 | 
						|
	// Stack now:
 | 
						|
	// <stack top>
 | 
						|
	// input_memory_end
 | 
						|
	// value [if _functionType.valueSet()]
 | 
						|
	// gas [if _functionType.gasSet()]
 | 
						|
	// function identifier [unless bare]
 | 
						|
	// contract address
 | 
						|
 | 
						|
	// Output data will replace input data, unless we have ECRecover (then, output
 | 
						|
	// area will be 32 bytes just before input area).
 | 
						|
	// put on stack: <size of output> <memory pos of output> <size of input> <memory pos of input>
 | 
						|
	m_context << u256(retSize);
 | 
						|
	utils().fetchFreeMemoryPointer(); // This is the start of input
 | 
						|
	if (funKind == FunctionType::Kind::ECRecover)
 | 
						|
	{
 | 
						|
		// In this case, output is 32 bytes before input and has already been cleared.
 | 
						|
		m_context << u256(32) << Instruction::DUP2 << Instruction::SUB << Instruction::SWAP1;
 | 
						|
		// Here: <input end> <output size> <outpos> <input pos>
 | 
						|
		m_context << Instruction::DUP1 << Instruction::DUP5 << Instruction::SUB;
 | 
						|
		m_context << Instruction::SWAP1;
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		m_context << Instruction::DUP1 << Instruction::DUP4 << Instruction::SUB;
 | 
						|
		m_context << Instruction::DUP2;
 | 
						|
	}
 | 
						|
 | 
						|
	// CALL arguments: outSize, outOff, inSize, inOff (already present up to here)
 | 
						|
	// [value,] addr, gas (stack top)
 | 
						|
	if (isDelegateCall)
 | 
						|
		solAssert(!_functionType.valueSet(), "Value set for delegatecall");
 | 
						|
	else if (useStaticCall)
 | 
						|
		solAssert(!_functionType.valueSet(), "Value set for staticcall");
 | 
						|
	else if (_functionType.valueSet())
 | 
						|
		m_context << dupInstruction(m_context.baseToCurrentStackOffset(valueStackPos));
 | 
						|
	else
 | 
						|
		m_context << u256(0);
 | 
						|
	m_context << dupInstruction(m_context.baseToCurrentStackOffset(contractStackPos));
 | 
						|
 | 
						|
	bool existenceChecked = false;
 | 
						|
	// Check the target contract exists (has code) for non-low-level calls.
 | 
						|
	if (funKind == FunctionType::Kind::External || funKind == FunctionType::Kind::DelegateCall)
 | 
						|
	{
 | 
						|
		m_context << Instruction::DUP1 << Instruction::EXTCODESIZE << Instruction::ISZERO;
 | 
						|
		// TODO: error message?
 | 
						|
		m_context.appendConditionalRevert();
 | 
						|
		existenceChecked = true;
 | 
						|
	}
 | 
						|
 | 
						|
	if (_functionType.gasSet())
 | 
						|
		m_context << dupInstruction(m_context.baseToCurrentStackOffset(gasStackPos));
 | 
						|
	else if (m_context.evmVersion().canOverchargeGasForCall())
 | 
						|
		// Send all gas (requires tangerine whistle EVM)
 | 
						|
		m_context << Instruction::GAS;
 | 
						|
	else
 | 
						|
	{
 | 
						|
		// send all gas except the amount needed to execute "SUB" and "CALL"
 | 
						|
		// @todo this retains too much gas for now, needs to be fine-tuned.
 | 
						|
		u256 gasNeededByCaller = eth::GasCosts::callGas(m_context.evmVersion()) + 10;
 | 
						|
		if (_functionType.valueSet())
 | 
						|
			gasNeededByCaller += eth::GasCosts::callValueTransferGas;
 | 
						|
		if (!existenceChecked)
 | 
						|
			gasNeededByCaller += eth::GasCosts::callNewAccountGas; // we never know
 | 
						|
		m_context << gasNeededByCaller << Instruction::GAS << Instruction::SUB;
 | 
						|
	}
 | 
						|
	// Order is important here, STATICCALL might overlap with DELEGATECALL.
 | 
						|
	if (isDelegateCall)
 | 
						|
		m_context << Instruction::DELEGATECALL;
 | 
						|
	else if (useStaticCall)
 | 
						|
		m_context << Instruction::STATICCALL;
 | 
						|
	else
 | 
						|
		m_context << Instruction::CALL;
 | 
						|
 | 
						|
	unsigned remainsSize =
 | 
						|
		2 + // contract address, input_memory_end
 | 
						|
		(_functionType.valueSet() ? 1 : 0) +
 | 
						|
		(_functionType.gasSet() ? 1 : 0) +
 | 
						|
		(!_functionType.isBareCall() ? 1 : 0);
 | 
						|
 | 
						|
	eth::AssemblyItem endTag = m_context.newTag();
 | 
						|
 | 
						|
	if (!returnSuccessConditionAndReturndata && !_tryCall)
 | 
						|
	{
 | 
						|
		// Propagate error condition (if CALL pushes 0 on stack).
 | 
						|
		m_context << Instruction::ISZERO;
 | 
						|
		m_context.appendConditionalRevert(true);
 | 
						|
	}
 | 
						|
	else
 | 
						|
		m_context << swapInstruction(remainsSize);
 | 
						|
	utils().popStackSlots(remainsSize);
 | 
						|
 | 
						|
	// Only success flag is remaining on stack.
 | 
						|
 | 
						|
	if (_tryCall)
 | 
						|
	{
 | 
						|
		m_context << Instruction::DUP1 << Instruction::ISZERO;
 | 
						|
		m_context.appendConditionalJumpTo(endTag);
 | 
						|
		m_context << Instruction::POP;
 | 
						|
	}
 | 
						|
 | 
						|
	if (returnSuccessConditionAndReturndata)
 | 
						|
	{
 | 
						|
		// success condition is already there
 | 
						|
		// The return parameter types can be empty, when this function is used as
 | 
						|
		// an internal helper function e.g. for ``send`` and ``transfer``. In that
 | 
						|
		// case we're only interested in the success condition, not the return data.
 | 
						|
		if (!_functionType.returnParameterTypes().empty())
 | 
						|
			utils().returnDataToArray();
 | 
						|
	}
 | 
						|
	else if (funKind == FunctionType::Kind::RIPEMD160)
 | 
						|
	{
 | 
						|
		// fix: built-in contract returns right-aligned data
 | 
						|
		utils().fetchFreeMemoryPointer();
 | 
						|
		utils().loadFromMemoryDynamic(IntegerType(160), false, true, false);
 | 
						|
		utils().convertType(IntegerType(160), FixedBytesType(20));
 | 
						|
	}
 | 
						|
	else if (funKind == FunctionType::Kind::ECRecover)
 | 
						|
	{
 | 
						|
		// Output is 32 bytes before input / free mem pointer.
 | 
						|
		// Failing ecrecover cannot be detected, so we clear output before the call.
 | 
						|
		m_context << u256(32);
 | 
						|
		utils().fetchFreeMemoryPointer();
 | 
						|
		m_context << Instruction::SUB << Instruction::MLOAD;
 | 
						|
	}
 | 
						|
	else if (!returnTypes.empty())
 | 
						|
	{
 | 
						|
		utils().fetchFreeMemoryPointer();
 | 
						|
		// Stack: return_data_start
 | 
						|
 | 
						|
		// The old decoder did not allocate any memory (i.e. did not touch the free
 | 
						|
		// memory pointer), but kept references to the return data for
 | 
						|
		// (statically-sized) arrays
 | 
						|
		bool needToUpdateFreeMemoryPtr = false;
 | 
						|
		if (dynamicReturnSize || m_context.experimentalFeatureActive(ExperimentalFeature::ABIEncoderV2))
 | 
						|
			needToUpdateFreeMemoryPtr = true;
 | 
						|
		else
 | 
						|
			for (auto const& retType: returnTypes)
 | 
						|
				if (dynamic_cast<ReferenceType const*>(retType))
 | 
						|
					needToUpdateFreeMemoryPtr = true;
 | 
						|
 | 
						|
		// Stack: return_data_start
 | 
						|
		if (dynamicReturnSize)
 | 
						|
		{
 | 
						|
			solAssert(haveReturndatacopy, "");
 | 
						|
			m_context.appendInlineAssembly("{ returndatacopy(return_data_start, 0, returndatasize()) }", {"return_data_start"});
 | 
						|
		}
 | 
						|
		else
 | 
						|
			solAssert(retSize > 0, "");
 | 
						|
		// Always use the actual return length, and not our calculated expected length, if returndatacopy is supported.
 | 
						|
		// This ensures it can catch badly formatted input from external calls.
 | 
						|
		m_context << (haveReturndatacopy ? eth::AssemblyItem(Instruction::RETURNDATASIZE) : u256(retSize));
 | 
						|
		// Stack: return_data_start return_data_size
 | 
						|
		if (needToUpdateFreeMemoryPtr)
 | 
						|
			m_context.appendInlineAssembly(R"({
 | 
						|
				// round size to the next multiple of 32
 | 
						|
				let newMem := add(start, and(add(size, 0x1f), not(0x1f)))
 | 
						|
				mstore(0x40, newMem)
 | 
						|
			})", {"start", "size"});
 | 
						|
 | 
						|
		utils().abiDecode(returnTypes, true);
 | 
						|
	}
 | 
						|
 | 
						|
	if (_tryCall)
 | 
						|
	{
 | 
						|
		// Success branch will reach this, failure branch will directly jump to endTag.
 | 
						|
		m_context << u256(1);
 | 
						|
		m_context << endTag;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void ExpressionCompiler::appendExpressionCopyToMemory(Type const& _expectedType, Expression const& _expression)
 | 
						|
{
 | 
						|
	solUnimplementedAssert(_expectedType.isValueType(), "Not implemented for non-value types.");
 | 
						|
	acceptAndConvert(_expression, _expectedType, true);
 | 
						|
	utils().storeInMemoryDynamic(_expectedType);
 | 
						|
}
 | 
						|
 | 
						|
void ExpressionCompiler::appendVariable(VariableDeclaration const& _variable, Expression const& _expression)
 | 
						|
{
 | 
						|
	if (!_variable.isConstant())
 | 
						|
		setLValueFromDeclaration(_variable, _expression);
 | 
						|
	else
 | 
						|
		acceptAndConvert(*_variable.value(), *_variable.annotation().type);
 | 
						|
}
 | 
						|
 | 
						|
void ExpressionCompiler::setLValueFromDeclaration(Declaration const& _declaration, Expression const& _expression)
 | 
						|
{
 | 
						|
	if (m_context.isLocalVariable(&_declaration))
 | 
						|
		setLValue<StackVariable>(_expression, dynamic_cast<VariableDeclaration const&>(_declaration));
 | 
						|
	else if (m_context.isStateVariable(&_declaration))
 | 
						|
		setLValue<StorageItem>(_expression, dynamic_cast<VariableDeclaration const&>(_declaration));
 | 
						|
	else
 | 
						|
		BOOST_THROW_EXCEPTION(InternalCompilerError()
 | 
						|
			<< errinfo_sourceLocation(_expression.location())
 | 
						|
			<< errinfo_comment("Identifier type not supported or identifier not found."));
 | 
						|
}
 | 
						|
 | 
						|
void ExpressionCompiler::setLValueToStorageItem(Expression const& _expression)
 | 
						|
{
 | 
						|
	setLValue<StorageItem>(_expression, *_expression.annotation().type);
 | 
						|
}
 | 
						|
 | 
						|
bool ExpressionCompiler::cleanupNeededForOp(Type::Category _type, Token _op)
 | 
						|
{
 | 
						|
	if (TokenTraits::isCompareOp(_op) || TokenTraits::isShiftOp(_op))
 | 
						|
		return true;
 | 
						|
	else if (_type == Type::Category::Integer && (_op == Token::Div || _op == Token::Mod || _op == Token::Exp))
 | 
						|
		// We need cleanup for EXP because 0**0 == 1, but 0**0x100 == 0
 | 
						|
		// It would suffice to clean the exponent, though.
 | 
						|
		return true;
 | 
						|
	else
 | 
						|
		return false;
 | 
						|
}
 | 
						|
 | 
						|
void ExpressionCompiler::acceptAndConvert(Expression const& _expression, Type const& _type, bool _cleanupNeeded)
 | 
						|
{
 | 
						|
	_expression.accept(*this);
 | 
						|
	utils().convertType(*_expression.annotation().type, _type, _cleanupNeeded);
 | 
						|
}
 | 
						|
 | 
						|
CompilerUtils ExpressionCompiler::utils()
 | 
						|
{
 | 
						|
	return CompilerUtils(m_context);
 | 
						|
}
 |