solidity/test/libyul/Parser.cpp
Christian Parpart d67322a186 Introduce namespace langutil in liblangutil directory.
Also:
- Use {}-style list initialisation for SourceLocation construction
- Introduce new system includes
- Changes the API of the Scanner to take source as value (with move) as opposed to as a reference
2018-11-21 19:13:44 +00:00

308 lines
8.8 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @date 2017
* Unit tests for parsing Yul.
*/
#include <test/Options.h>
#include <test/libsolidity/ErrorCheck.h>
#include <libsolidity/inlineasm/AsmParser.h>
#include <libsolidity/inlineasm/AsmAnalysis.h>
#include <libsolidity/inlineasm/AsmAnalysisInfo.h>
#include <liblangutil/Scanner.h>
#include <liblangutil/ErrorReporter.h>
#include <boost/optional.hpp>
#include <boost/algorithm/string/replace.hpp>
#include <string>
#include <memory>
using namespace std;
using namespace langutil;
namespace dev
{
namespace solidity
{
namespace test
{
namespace
{
bool parse(string const& _source, ErrorReporter& errorReporter)
{
try
{
auto scanner = make_shared<Scanner>(CharStream(_source));
auto parserResult = assembly::Parser(errorReporter, assembly::AsmFlavour::Yul).parse(scanner, false);
if (parserResult)
{
assembly::AsmAnalysisInfo analysisInfo;
return (assembly::AsmAnalyzer(
analysisInfo,
errorReporter,
dev::test::Options::get().evmVersion(),
boost::none,
assembly::AsmFlavour::Yul
)).analyze(*parserResult);
}
}
catch (FatalError const&)
{
BOOST_FAIL("Fatal error leaked.");
}
return false;
}
boost::optional<Error> parseAndReturnFirstError(string const& _source, bool _allowWarnings = true)
{
ErrorList errors;
ErrorReporter errorReporter(errors);
if (!parse(_source, errorReporter))
{
BOOST_REQUIRE_EQUAL(errors.size(), 1);
return *errors.front();
}
else
{
// If success is true, there might still be an error in the assembly stage.
if (_allowWarnings && Error::containsOnlyWarnings(errors))
return {};
else if (!errors.empty())
{
if (!_allowWarnings)
BOOST_CHECK_EQUAL(errors.size(), 1);
return *errors.front();
}
}
return {};
}
bool successParse(std::string const& _source, bool _allowWarnings = true)
{
return !parseAndReturnFirstError(_source, _allowWarnings);
}
Error expectError(std::string const& _source, bool _allowWarnings = false)
{
auto error = parseAndReturnFirstError(_source, _allowWarnings);
BOOST_REQUIRE(error);
return *error;
}
}
#define CHECK_ERROR(text, typ, substring) \
do \
{ \
Error err = expectError((text), false); \
BOOST_CHECK(err.type() == (Error::Type::typ)); \
BOOST_CHECK(searchErrorMessage(err, (substring))); \
} while(0)
BOOST_AUTO_TEST_SUITE(YulParser)
BOOST_AUTO_TEST_CASE(smoke_test)
{
BOOST_CHECK(successParse("{ }"));
}
BOOST_AUTO_TEST_CASE(vardecl)
{
BOOST_CHECK(successParse("{ let x:u256 := 7:u256 }"));
}
BOOST_AUTO_TEST_CASE(vardecl_bool)
{
BOOST_CHECK(successParse("{ let x:bool := true:bool }"));
BOOST_CHECK(successParse("{ let x:bool := false:bool }"));
}
BOOST_AUTO_TEST_CASE(vardecl_empty)
{
BOOST_CHECK(successParse("{ let x:u256 }"));
}
BOOST_AUTO_TEST_CASE(assignment)
{
BOOST_CHECK(successParse("{ let x:u256 := 2:u256 let y:u256 := x }"));
}
BOOST_AUTO_TEST_CASE(vardecl_complex)
{
BOOST_CHECK(successParse("{ function add(a:u256, b:u256) -> c:u256 {} let y:u256 := 2:u256 let x:u256 := add(7:u256, add(6:u256, y)) }"));
}
BOOST_AUTO_TEST_CASE(blocks)
{
BOOST_CHECK(successParse("{ let x:u256 := 7:u256 { let y:u256 := 3:u256 } { let z:u256 := 2:u256 } }"));
}
BOOST_AUTO_TEST_CASE(function_definitions)
{
BOOST_CHECK(successParse("{ function f() { } function g(a:u256) -> x:u256 { } }"));
}
BOOST_AUTO_TEST_CASE(function_definitions_multiple_args)
{
BOOST_CHECK(successParse("{ function f(a:u256, d:u256) { } function g(a:u256, d:u256) -> x:u256, y:u256 { } }"));
}
BOOST_AUTO_TEST_CASE(function_calls)
{
BOOST_CHECK(successParse("{ function f(a:u256) -> b:u256 {} function g(a:u256, b:u256, c:u256) {} function x() { g(1:u256, 2:u256, f(3:u256)) x() } }"));
}
BOOST_AUTO_TEST_CASE(tuple_assignment)
{
BOOST_CHECK(successParse("{ function f() -> a:u256, b:u256, c:u256 {} let x:u256, y:u256, z:u256 := f() }"));
}
BOOST_AUTO_TEST_CASE(label)
{
CHECK_ERROR("{ label: }", ParserError, "Labels are not supported.");
}
BOOST_AUTO_TEST_CASE(instructions)
{
CHECK_ERROR("{ pop }", ParserError, "Call or assignment expected.");
}
BOOST_AUTO_TEST_CASE(push)
{
CHECK_ERROR("{ 0x42:u256 }", ParserError, "Call or assignment expected.");
}
BOOST_AUTO_TEST_CASE(assign_from_stack)
{
CHECK_ERROR("{ =: x:u256 }", ParserError, "Literal or identifier expected.");
}
BOOST_AUTO_TEST_CASE(empty_call)
{
CHECK_ERROR("{ () }", ParserError, "Literal or identifier expected.");
}
BOOST_AUTO_TEST_CASE(tokens_as_identifers)
{
BOOST_CHECK(successParse("{ let return:u256 := 1:u256 }"));
BOOST_CHECK(successParse("{ let byte:u256 := 1:u256 }"));
BOOST_CHECK(successParse("{ let address:u256 := 1:u256 }"));
BOOST_CHECK(successParse("{ let bool:u256 := 1:u256 }"));
}
BOOST_AUTO_TEST_CASE(lacking_types)
{
CHECK_ERROR("{ let x := 1:u256 }", ParserError, "Expected identifier but got '='");
CHECK_ERROR("{ let x:u256 := 1 }", ParserError, "Expected ':' but got '}'");
CHECK_ERROR("{ function f(a) {} }", ParserError, "Expected ':' but got ')'");
CHECK_ERROR("{ function f(a:u256) -> b {} }", ParserError, "Expected ':' but got '{'");
}
BOOST_AUTO_TEST_CASE(invalid_types)
{
/// testing invalid literal
/// NOTE: these will need to change when types are compared
CHECK_ERROR("{ let x:bool := 1:invalid }", TypeError, "\"invalid\" is not a valid type (user defined types are not yet supported).");
/// testing invalid variable declaration
CHECK_ERROR("{ let x:invalid := 1:bool }", TypeError, "\"invalid\" is not a valid type (user defined types are not yet supported).");
CHECK_ERROR("{ function f(a:invalid) {} }", TypeError, "\"invalid\" is not a valid type (user defined types are not yet supported).");
}
BOOST_AUTO_TEST_CASE(number_literals)
{
BOOST_CHECK(successParse("{ let x:u256 := 1:u256 }"));
CHECK_ERROR("{ let x:u256 := .1:u256 }", ParserError, "Invalid number literal.");
CHECK_ERROR("{ let x:u256 := 1e5:u256 }", ParserError, "Invalid number literal.");
CHECK_ERROR("{ let x:u256 := 67.235:u256 }", ParserError, "Invalid number literal.");
CHECK_ERROR("{ let x:u256 := 0x1ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff:u256 }", TypeError, "Number literal too large (> 256 bits)");
}
BOOST_AUTO_TEST_CASE(builtin_types)
{
BOOST_CHECK(successParse("{ let x:bool := true:bool }"));
BOOST_CHECK(successParse("{ let x:u8 := 1:u8 }"));
BOOST_CHECK(successParse("{ let x:s8 := 1:u8 }"));
BOOST_CHECK(successParse("{ let x:u32 := 1:u32 }"));
BOOST_CHECK(successParse("{ let x:s32 := 1:s32 }"));
BOOST_CHECK(successParse("{ let x:u64 := 1:u64 }"));
BOOST_CHECK(successParse("{ let x:s64 := 1:s64 }"));
BOOST_CHECK(successParse("{ let x:u128 := 1:u128 }"));
BOOST_CHECK(successParse("{ let x:s128 := 1:s128 }"));
BOOST_CHECK(successParse("{ let x:u256 := 1:u256 }"));
BOOST_CHECK(successParse("{ let x:s256 := 1:s256 }"));
}
BOOST_AUTO_TEST_CASE(recursion_depth)
{
string input;
for (size_t i = 0; i < 20000; i++)
input += "{";
input += "let x:u256 := 0:u256";
for (size_t i = 0; i < 20000; i++)
input += "}";
CHECK_ERROR(input, ParserError, "recursion");
}
BOOST_AUTO_TEST_CASE(multiple_assignment)
{
CHECK_ERROR("{ let x:u256 function f() -> a:u256, b:u256 {} 123:u256, x := f() }", ParserError, "Label name / variable name must precede \",\" (multiple assignment).");
CHECK_ERROR("{ let x:u256 function f() -> a:u256, b:u256 {} x, 123:u256 := f() }", ParserError, "Variable name expected in multiple assignment.");
/// NOTE: Travis hiccups if not having a variable
char const* text = R"(
{
function f(a:u256) -> r1:u256, r2:u256 {
r1 := a
r2 := 7:u256
}
let x:u256 := 9:u256
let y:u256 := 2:u256
x, y := f(x)
}
)";
BOOST_CHECK(successParse(text));
}
BOOST_AUTO_TEST_CASE(if_statement)
{
BOOST_CHECK(successParse("{ if true:bool {} }"));
BOOST_CHECK(successParse("{ if false:bool { let x:u256 := 3:u256 } }"));
BOOST_CHECK(successParse("{ function f() -> x:bool {} if f() { let b:bool := f() } }"));
}
BOOST_AUTO_TEST_CASE(if_statement_invalid)
{
CHECK_ERROR("{ if let x:u256 {} }", ParserError, "Literal or identifier expected.");
CHECK_ERROR("{ if true:bool let x:u256 := 3:u256 }", ParserError, "Expected '{' but got reserved keyword 'let'");
// TODO change this to an error once we check types.
BOOST_CHECK(successParse("{ if 42:u256 { } }"));
}
BOOST_AUTO_TEST_SUITE_END()
}
}
} // end namespaces