solidity/test/libsolidity/util/BytesUtils.cpp

438 lines
10 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
// SPDX-License-Identifier: GPL-3.0
#include <test/libsolidity/util/BytesUtils.h>
#include <test/libsolidity/util/ContractABIUtils.h>
#include <test/libsolidity/util/SoltestErrors.h>
#include <libsolutil/CommonData.h>
#include <libsolutil/CommonIO.h>
#include <libsolutil/StringUtils.h>
#include <boost/algorithm/string.hpp>
#include <algorithm>
#include <iterator>
#include <iomanip>
#include <memory>
#include <regex>
#include <stdexcept>
using namespace solidity;
using namespace solidity::util;
using namespace solidity::frontend;
using namespace solidity::frontend::test;
using namespace std;
bytes BytesUtils::alignLeft(bytes _bytes)
{
soltestAssert(_bytes.size() <= 32, "");
size_t size = _bytes.size();
return std::move(_bytes) + bytes(32 - size, 0);
}
bytes BytesUtils::alignRight(bytes _bytes)
{
soltestAssert(_bytes.size() <= 32, "");
return bytes(32 - _bytes.size(), 0) + std::move(_bytes);
}
bytes BytesUtils::applyAlign(
Parameter::Alignment _alignment,
ABIType& _abiType,
bytes _bytes
)
{
if (_alignment != Parameter::Alignment::None)
_abiType.alignDeclared = true;
switch (_alignment)
{
case Parameter::Alignment::Left:
_abiType.align = ABIType::AlignLeft;
return alignLeft(std::move(_bytes));
case Parameter::Alignment::Right:
default:
_abiType.align = ABIType::AlignRight;
return alignRight(std::move(_bytes));
}
}
bytes BytesUtils::convertBoolean(string const& _literal)
{
if (_literal == "true")
return bytes{true};
else if (_literal == "false")
return bytes{false};
else
BOOST_THROW_EXCEPTION(TestParserError("Boolean literal invalid."));
}
bytes BytesUtils::convertNumber(string const& _literal)
{
try
{
return toCompactBigEndian(u256{_literal});
}
catch (std::exception const&)
{
BOOST_THROW_EXCEPTION(TestParserError("Number encoding invalid."));
}
}
bytes BytesUtils::convertFixedPoint(string const& _literal, size_t& o_fractionalDigits)
{
size_t dotPos = _literal.find('.');
o_fractionalDigits = dotPos < _literal.size() ? _literal.size() - dotPos : 0;
bool negative = !_literal.empty() && _literal.at(0) == '-';
// remove decimal point
string valueInteger = _literal.substr(0, dotPos) + _literal.substr(dotPos + 1);
// erase leading zeros to avoid parsing as octal.
while (!valueInteger.empty() && (valueInteger.at(0) == '0' || valueInteger.at(0) == '-'))
valueInteger.erase(valueInteger.begin());
if (valueInteger.empty())
valueInteger = "0";
try
{
u256 value(valueInteger);
if (negative)
value = s2u(-u2s(value));
return toBigEndian(value);
}
catch (std::exception const&)
{
BOOST_THROW_EXCEPTION(TestParserError("Number encoding invalid."));
}
}
bytes BytesUtils::convertHexNumber(string const& _literal)
{
try
{
return fromHex(_literal);
}
catch (std::exception const&)
{
BOOST_THROW_EXCEPTION(TestParserError("Hex number encoding invalid."));
}
}
bytes BytesUtils::convertString(string const& _literal)
{
try
{
return asBytes(_literal);
}
catch (std::exception const&)
{
BOOST_THROW_EXCEPTION(TestParserError("String encoding invalid."));
}
}
string BytesUtils::formatUnsigned(bytes const& _bytes)
{
stringstream os;
soltestAssert(!_bytes.empty() && _bytes.size() <= 32, "");
return fromBigEndian<u256>(_bytes).str();
}
string BytesUtils::formatSigned(bytes const& _bytes)
{
stringstream os;
soltestAssert(!_bytes.empty() && _bytes.size() <= 32, "");
if (*_bytes.begin() & 0x80)
os << u2s(fromBigEndian<u256>(_bytes));
else
os << fromBigEndian<u256>(_bytes);
return os.str();
}
string BytesUtils::formatBoolean(bytes const& _bytes)
{
stringstream os;
u256 result = fromBigEndian<u256>(_bytes);
if (result == 0)
os << "false";
else if (result == 1)
os << "true";
else
os << result;
return os.str();
}
string BytesUtils::formatHex(bytes const& _bytes, bool _shorten)
{
soltestAssert(!_bytes.empty() && _bytes.size() <= 32, "");
u256 value = fromBigEndian<u256>(_bytes);
string output = toCompactHexWithPrefix(value);
if (_shorten)
return output.substr(0, output.size() - countRightPaddedZeros(_bytes) * 2);
return output;
}
string BytesUtils::formatHexString(bytes const& _bytes)
{
stringstream os;
os << "hex\"" << util::toHex(_bytes) << "\"";
return os.str();
}
string BytesUtils::formatString(bytes const& _bytes, size_t _cutOff)
{
stringstream os;
os << "\"";
for (size_t i = 0; i < min(_cutOff, _bytes.size()); ++i)
{
auto const v = _bytes[i];
switch (v)
{
case '\0':
os << "\\0";
break;
case '\n':
os << "\\n";
break;
default:
if (isPrint(static_cast<char>(v)))
os << v;
else
os << "\\x" << util::toHex(v, HexCase::Lower);
}
}
os << "\"";
return os.str();
}
std::string BytesUtils::formatFixedPoint(bytes const& _bytes, bool _signed, size_t _fractionalDigits)
{
string decimal;
bool negative = false;
if (_signed)
{
s256 signedValue{u2s(fromBigEndian<u256>(_bytes))};
negative = (signedValue < 0);
decimal = signedValue.str();
}
else
decimal = fromBigEndian<u256>(_bytes).str();
if (_fractionalDigits > 0)
{
size_t numDigits = decimal.length() - (negative ? 1 : 0);
if (_fractionalDigits >= numDigits)
decimal.insert(negative ? 1 : 0, string(_fractionalDigits + 1 - numDigits, '0'));
decimal.insert(decimal.length() - _fractionalDigits, ".");
}
return decimal;
}
string BytesUtils::formatRawBytes(
bytes const& _bytes,
solidity::frontend::test::ParameterList const& _parameters,
string _linePrefix
)
{
stringstream os;
ParameterList parameters;
auto it = _bytes.begin();
if (_bytes.size() != ContractABIUtils::encodingSize(_parameters))
{
// Interpret all full 32-byte values as integers.
parameters = ContractABIUtils::defaultParameters(_bytes.size() / 32);
// We'd introduce trailing zero bytes if we interpreted the final bit as an integer.
// We want a right-aligned sequence of bytes instead.
if (_bytes.size() % 32 != 0)
parameters.push_back({
bytes(),
"",
ABIType{ABIType::HexString, ABIType::AlignRight, _bytes.size() % 32},
FormatInfo{},
});
}
else
parameters = _parameters;
soltestAssert(ContractABIUtils::encodingSize(parameters) >= _bytes.size());
for (auto const& parameter: parameters)
{
long actualSize = min(distance(it, _bytes.end()), static_cast<long>(parameter.abiType.size));
bytes byteRange(parameter.abiType.size, 0);
copy(it, it + actualSize, byteRange.begin());
os << _linePrefix << byteRange;
if (&parameter != &parameters.back())
os << endl;
it += actualSize;
}
return os.str();
}
string BytesUtils::formatBytes(
bytes const& _bytes,
ABIType const& _abiType
)
{
stringstream os;
switch (_abiType.type)
{
case ABIType::UnsignedDec:
// Check if the detected type was wrong and if this could
// be signed. If an unsigned was detected in the expectations,
// but the actual result returned a signed, it would be formatted
// incorrectly.
if (*_bytes.begin() & 0x80)
os << formatSigned(_bytes);
else
{
std::string decimal(formatUnsigned(_bytes));
std::string hexadecimal(formatHex(_bytes));
unsigned int value = u256(_bytes).convert_to<unsigned int>();
if (value < 0x10)
os << decimal;
else if (value >= 0x10 && value <= 0xff) {
os << hexadecimal;
}
else
{
auto entropy = [](std::string const& str) -> double {
double result = 0;
map<char, double> frequencies;
for (char c: str)
frequencies[c]++;
for (auto p: frequencies)
{
double freq = p.second / double(str.length());
result -= freq * (log(freq) / log(2.0));
}
return result;
};
if (entropy(decimal) < entropy(hexadecimal.substr(2, hexadecimal.length())))
os << decimal;
else
os << hexadecimal;
}
}
break;
case ABIType::SignedDec:
os << formatSigned(_bytes);
break;
case ABIType::Boolean:
os << formatBoolean(_bytes);
break;
case ABIType::Hex:
os << formatHex(_bytes, _abiType.alignDeclared);
break;
case ABIType::HexString:
os << formatHexString(_bytes);
break;
case ABIType::String:
os << formatString(_bytes, _bytes.size() - countRightPaddedZeros(_bytes));
break;
case ABIType::UnsignedFixedPoint:
case ABIType::SignedFixedPoint:
os << formatFixedPoint(_bytes, _abiType.type == ABIType::SignedFixedPoint, _abiType.fractionalDigits);
break;
case ABIType::Failure:
case ABIType::None:
break;
}
if (_abiType.alignDeclared)
return (_abiType.align == ABIType::AlignLeft ? "left(" : "right(") + os.str() + ")";
return os.str();
}
string BytesUtils::formatBytesRange(
bytes _bytes,
solidity::frontend::test::ParameterList const& _parameters,
bool _highlight
)
{
stringstream os;
ParameterList parameters;
auto it = _bytes.begin();
if (_bytes.size() != ContractABIUtils::encodingSize(_parameters))
{
// Interpret all full 32-byte values as integers.
parameters = ContractABIUtils::defaultParameters(_bytes.size() / 32);
// We'd introduce trailing zero bytes if we interpreted the final bit as an integer.
// We want a right-aligned sequence of bytes instead.
if (_bytes.size() % 32 != 0)
parameters.push_back({
bytes(),
"",
ABIType{ABIType::HexString, ABIType::AlignRight, _bytes.size() % 32},
FormatInfo{},
});
}
else
parameters = _parameters;
soltestAssert(ContractABIUtils::encodingSize(parameters) >= _bytes.size());
for (auto const& parameter: parameters)
{
long actualSize = min(distance(it, _bytes.end()), static_cast<long>(parameter.abiType.size));
bytes byteRange(parameter.abiType.size, 0);
copy(it, it + actualSize, byteRange.begin());
if (!parameter.matchesBytes(byteRange))
AnsiColorized(
os,
_highlight,
{util::formatting::RED_BACKGROUND}
) << formatBytes(byteRange, parameter.abiType);
else
os << parameter.rawString;
if (&parameter != &parameters.back())
os << ", ";
it += actualSize;
}
return os.str();
}
size_t BytesUtils::countRightPaddedZeros(bytes const& _bytes)
{
return static_cast<size_t>(find_if(
_bytes.rbegin(),
_bytes.rend(),
[](uint8_t b) { return b != '\0'; }
) - _bytes.rbegin());
}