solidity/test/ExecutionFramework.h
2023-05-11 10:56:55 -05:00

316 lines
9.9 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
// SPDX-License-Identifier: GPL-3.0
/**
* @author Christian <c@ethdev.com>
* @date 2014
* Framework for executing contracts and testing them using RPC.
*/
#pragma once
#include <test/Common.h>
#include <test/EVMHost.h>
#include <libsolidity/interface/OptimiserSettings.h>
#include <libsolidity/interface/DebugSettings.h>
#include <liblangutil/EVMVersion.h>
#include <libsolutil/FunctionSelector.h>
#include <libsolutil/ErrorCodes.h>
#include <functional>
#include <boost/rational.hpp>
#include <boost/test/unit_test.hpp>
namespace solidity::frontend::test
{
struct LogRecord;
} // namespace solidity::frontend::test
namespace solidity::test
{
using rational = boost::rational<bigint>;
// The ether and gwei denominations; here for ease of use where needed within code.
static u256 const gwei = u256(1) << 9;
static u256 const ether = u256(1) << 18;
class ExecutionFramework
{
public:
ExecutionFramework();
ExecutionFramework(langutil::EVMVersion _evmVersion, std::vector<boost::filesystem::path> const& _vmPaths);
virtual ~ExecutionFramework() = default;
virtual bytes const& compileAndRunWithoutCheck(
std::map<std::string, std::string> const& _sourceCode,
u256 const& _value = 0,
std::string const& _contractName = "",
bytes const& _arguments = {},
std::map<std::string, util::h160> const& _libraryAddresses = {},
std::optional<std::string> const& _sourceName = std::nullopt
) = 0;
bytes const& compileAndRun(
std::string const& _sourceCode,
u256 const& _value = 0,
std::string const& _contractName = "",
bytes const& _arguments = {},
std::map<std::string, util::h160> const& _libraryAddresses = {}
)
{
compileAndRunWithoutCheck(
{{"", _sourceCode}},
_value,
_contractName,
_arguments,
_libraryAddresses
);
BOOST_REQUIRE(m_transactionSuccessful);
BOOST_REQUIRE(!m_output.empty());
return m_output;
}
bytes const& callFallbackWithValue(u256 const& _value)
{
sendMessage(bytes(), false, _value);
return m_output;
}
bytes const & callFallback()
{
return callFallbackWithValue(0);
}
bytes const& callLowLevel(bytes const& _data, u256 const& _value)
{
sendMessage(_data, false, _value);
return m_output;
}
bytes const& callContractFunctionWithValueNoEncoding(std::string _sig, u256 const& _value, bytes const& _arguments)
{
sendMessage(util::selectorFromSignatureH32(_sig).asBytes() + _arguments, false, _value);
return m_output;
}
bytes const& callContractFunctionNoEncoding(std::string _sig, bytes const& _arguments)
{
return callContractFunctionWithValueNoEncoding(_sig, 0, _arguments);
}
template <class... Args>
bytes const& callContractFunctionWithValue(std::string _sig, u256 const& _value, Args const&... _arguments)
{
return callContractFunctionWithValueNoEncoding(_sig, _value, encodeArgs(_arguments...));
}
template <class... Args>
bytes const& callContractFunction(std::string _sig, Args const&... _arguments)
{
return callContractFunctionWithValue(_sig, 0, _arguments...);
}
template <class CppFunction, class... Args>
void testContractAgainstCpp(std::string _sig, CppFunction const& _cppFunction, Args const&... _arguments)
{
bytes contractResult = callContractFunction(_sig, _arguments...);
bytes cppResult = callCppAndEncodeResult(_cppFunction, _arguments...);
BOOST_CHECK_MESSAGE(
contractResult == cppResult,
"Computed values do not match.\nContract: " +
util::toHex(contractResult) +
"\nC++: " +
util::toHex(cppResult)
);
}
template <class CppFunction, class... Args>
void testContractAgainstCppOnRange(std::string _sig, CppFunction const& _cppFunction, u256 const& _rangeStart, u256 const& _rangeEnd)
{
for (u256 argument = _rangeStart; argument < _rangeEnd; ++argument)
{
bytes contractResult = callContractFunction(_sig, argument);
bytes cppResult = callCppAndEncodeResult(_cppFunction, argument);
BOOST_CHECK_MESSAGE(
contractResult == cppResult,
"Computed values do not match.\nContract: " +
util::toHex(contractResult) +
"\nC++: " +
util::toHex(cppResult) +
"\nArgument: " +
util::toHex(encode(argument))
);
}
}
static std::pair<bool, std::string> compareAndCreateMessage(bytes const& _result, bytes const& _expectation);
static bytes encode(bool _value) { return encode(uint8_t(_value)); }
static bytes encode(int _value) { return encode(u256(_value)); }
static bytes encode(size_t _value) { return encode(u256(_value)); }
static bytes encode(char const* _value) { return encode(std::string(_value)); }
static bytes encode(uint8_t _value) { return bytes(31, 0) + bytes{_value}; }
static bytes encode(u256 const& _value) { return toBigEndian(_value); }
/// @returns the fixed-point encoding of a rational number with a given
/// number of fractional bits.
static bytes encode(std::pair<rational, int> const& _valueAndPrecision)
{
rational const& value = _valueAndPrecision.first;
int fractionalBits = _valueAndPrecision.second;
return encode(u256((value.numerator() << fractionalBits) / value.denominator()));
}
static bytes encode(util::h256 const& _value) { return _value.asBytes(); }
static bytes encode(util::h160 const& _value) { return encode(util::h256(_value, util::h256::AlignRight)); }
static bytes encode(bytes const& _value, bool _padLeft = true)
{
bytes padding = bytes((32 - _value.size() % 32) % 32, 0);
return _padLeft ? padding + _value : _value + padding;
}
static bytes encode(std::string const& _value) { return encode(util::asBytes(_value), false); }
template <class T>
static bytes encode(std::vector<T> const& _value)
{
bytes ret;
for (auto const& v: _value)
ret += encode(v);
return ret;
}
template <class FirstArg, class... Args>
static bytes encodeArgs(FirstArg const& _firstArg, Args const&... _followingArgs)
{
return encode(_firstArg) + encodeArgs(_followingArgs...);
}
static bytes encodeArgs()
{
return bytes();
}
/// @returns error returndata corresponding to the Panic(uint256) error code,
/// if REVERT is supported by the current EVM version and the empty string otherwise.
bytes panicData(util::PanicCode _code);
//@todo might be extended in the future
template <class Arg>
static bytes encodeDyn(Arg const& _arg)
{
return encodeArgs(u256(0x20), u256(_arg.size()), _arg);
}
u256 gasLimit() const;
u256 gasPrice() const;
u256 blockHash(u256 const& _blockNumber) const;
u256 blockNumber() const;
template<typename Range>
static bytes encodeArray(bool _dynamicallySized, bool _dynamicallyEncoded, Range const& _elements)
{
bytes result;
if (_dynamicallySized)
result += encode(u256(_elements.size()));
if (_dynamicallyEncoded)
{
u256 offset = u256(_elements.size()) * 32;
std::vector<bytes> subEncodings;
for (auto const& element: _elements)
{
result += encode(offset);
subEncodings.emplace_back(encode(element));
offset += subEncodings.back().size();
}
for (auto const& subEncoding: subEncodings)
result += subEncoding;
}
else
for (auto const& element: _elements)
result += encode(element);
return result;
}
util::h160 setAccount(size_t _accountNumber)
{
m_sender = account(_accountNumber);
return m_sender;
}
size_t numLogs() const;
size_t numLogTopics(size_t _logIdx) const;
util::h256 logTopic(size_t _logIdx, size_t _topicIdx) const;
util::h160 logAddress(size_t _logIdx) const;
bytes logData(size_t _logIdx) const;
private:
template <class CppFunction, class... Args>
auto callCppAndEncodeResult(CppFunction const& _cppFunction, Args const&... _arguments)
-> typename std::enable_if<std::is_void<decltype(_cppFunction(_arguments...))>::value, bytes>::type
{
_cppFunction(_arguments...);
return bytes();
}
template <class CppFunction, class... Args>
auto callCppAndEncodeResult(CppFunction const& _cppFunction, Args const&... _arguments)
-> typename std::enable_if<!std::is_void<decltype(_cppFunction(_arguments...))>::value, bytes>::type
{
return encode(_cppFunction(_arguments...));
}
protected:
u256 const InitialGas = 100000000;
void selectVM(evmc_capabilities _cap = evmc_capabilities::EVMC_CAPABILITY_EVM1);
void reset();
void sendMessage(bytes const& _data, bool _isCreation, u256 const& _value = 0);
void sendEther(util::h160 const& _to, u256 const& _value);
size_t currentTimestamp();
size_t blockTimestamp(u256 _number);
/// @returns the (potentially newly created) _ith address.
util::h160 account(size_t _i);
u256 balanceAt(util::h160 const& _addr) const;
bool storageEmpty(util::h160 const& _addr) const;
bool addressHasCode(util::h160 const& _addr) const;
std::vector<frontend::test::LogRecord> recordedLogs() const;
langutil::EVMVersion m_evmVersion;
solidity::frontend::RevertStrings m_revertStrings = solidity::frontend::RevertStrings::Default;
solidity::frontend::OptimiserSettings m_optimiserSettings = solidity::frontend::OptimiserSettings::minimal();
bool m_showMessages = false;
std::unique_ptr<EVMHost> m_evmcHost;
std::vector<boost::filesystem::path> m_vmPaths;
bool m_transactionSuccessful = true;
util::h160 m_sender = account(0);
util::h160 m_contractAddress;
bytes m_output;
u256 m_gasUsed;
};
#define ABI_CHECK(result, expectation) do { \
auto abiCheckResult = ExecutionFramework::compareAndCreateMessage((result), (expectation)); \
BOOST_CHECK_MESSAGE(abiCheckResult.first, abiCheckResult.second); \
} while (0)
} // end namespaces