mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
724 lines
22 KiB
C++
724 lines
22 KiB
C++
/*
|
|
This file is part of solidity.
|
|
|
|
solidity is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
solidity is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with solidity. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
// SPDX-License-Identifier: GPL-3.0
|
|
|
|
#include <libsolutil/BooleanLP.h>
|
|
|
|
#include <libsolutil/CommonData.h>
|
|
#include <libsolutil/StringUtils.h>
|
|
#include <liblangutil/Exceptions.h>
|
|
|
|
#include <libsolutil/LinearExpression.h>
|
|
|
|
#include <range/v3/view/enumerate.hpp>
|
|
#include <range/v3/view/transform.hpp>
|
|
#include <range/v3/view/filter.hpp>
|
|
#include <range/v3/view/tail.hpp>
|
|
#include <range/v3/view/iota.hpp>
|
|
#include <range/v3/algorithm/all_of.hpp>
|
|
#include <range/v3/algorithm/any_of.hpp>
|
|
#include <range/v3/algorithm/max.hpp>
|
|
#include <range/v3/algorithm/count_if.hpp>
|
|
#include <range/v3/iterator/operations.hpp>
|
|
|
|
#include <boost/range/algorithm_ext/erase.hpp>
|
|
|
|
using namespace std;
|
|
using namespace solidity;
|
|
using namespace solidity::util;
|
|
using namespace solidity::smtutil;
|
|
|
|
using rational = boost::rational<bigint>;
|
|
|
|
|
|
pair<bool, map<size_t, bool>> DPLL::simplify()
|
|
{
|
|
// TODO use vector?
|
|
map<size_t, bool> assignments;
|
|
while (!clauses.empty() && !ranges::all_of(clauses, [](Clause const& _c) { return _c.literals.size() > 1; }))
|
|
{
|
|
// TODO this assumes that no clause contains more than one constraint
|
|
// TODO add an assertion for that.
|
|
|
|
for (Clause const& c: clauses)
|
|
if (c.literals.empty())
|
|
return {false, {}};
|
|
else if (c.literals.size() == 1)
|
|
{
|
|
Literal const& literal = c.literals.front();
|
|
if (literal.kind == Literal::Constraint)
|
|
constraints.push_back(literal.index);
|
|
else
|
|
{
|
|
bool value = literal.kind == Literal::PositiveVariable ? true : false;
|
|
if (assignments.count(literal.index) && assignments.at(literal.index) != value)
|
|
return {false, {}};
|
|
//cout << "Assigning" << variableName(literal.index) << " " << value << endl;
|
|
assignments[literal.index] = value;
|
|
}
|
|
}
|
|
|
|
if (!setVariables(assignments, true))
|
|
return {false, {}};
|
|
}
|
|
return {true, move(assignments)};
|
|
}
|
|
|
|
size_t DPLL::findUnassignedVariable() const
|
|
{
|
|
for (Clause const& c: clauses)
|
|
for (Literal const& l: c.literals)
|
|
if (l.kind != Literal::Constraint)
|
|
return l.index;
|
|
solAssert(false, "");
|
|
return 0;
|
|
}
|
|
|
|
bool DPLL::setVariable(size_t _index, bool _value)
|
|
{
|
|
return setVariables({{_index, _value}});
|
|
}
|
|
|
|
bool DPLL::setVariables(map<size_t, bool> const& _assignments, bool _removeSingleConstraintClauses)
|
|
{
|
|
// TODO do this in a way so that we do not have to copy twice.
|
|
vector<Clause> prunedClauses;
|
|
for (Clause const& c: clauses)
|
|
{
|
|
bool skipClause = false;
|
|
vector<Literal> newClause;
|
|
if (_removeSingleConstraintClauses && c.literals.size() == 1 && c.literals.front().kind == Literal::Constraint)
|
|
continue;
|
|
for (Literal const& l: c.literals)
|
|
if (l.kind != Literal::Constraint && _assignments.count(l.index))
|
|
{
|
|
if (_assignments.at(l.index) == (l.kind == Literal::PositiveVariable))
|
|
{
|
|
skipClause = true;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
newClause.push_back(l);
|
|
if (skipClause)
|
|
continue;
|
|
if (newClause.empty())
|
|
return false;
|
|
prunedClauses.push_back(Clause{move(newClause)});
|
|
}
|
|
clauses = move(prunedClauses);
|
|
return true;
|
|
}
|
|
|
|
void BooleanLPSolver::reset()
|
|
{
|
|
m_state = vector<State>{{State{}}};
|
|
m_internalVariableCounter = 0;
|
|
m_constraintCounter = 0;
|
|
// Do not reset the solver, it should retain its cache.
|
|
}
|
|
|
|
void BooleanLPSolver::push()
|
|
{
|
|
if (m_state.back().infeasible)
|
|
{
|
|
m_state.emplace_back();
|
|
m_state.back().infeasible = true;
|
|
return;
|
|
}
|
|
map<string, size_t> variables = m_state.back().variables;
|
|
map<size_t, array<optional<boost::rational<bigint>>, 2>> bounds = m_state.back().bounds;
|
|
vector<bool> isBooleanVariable = m_state.back().isBooleanVariable;
|
|
m_state.emplace_back();
|
|
m_state.back().variables = move(variables);
|
|
m_state.back().isBooleanVariable = move(isBooleanVariable);
|
|
m_state.back().bounds = move(bounds);
|
|
}
|
|
|
|
void BooleanLPSolver::pop()
|
|
{
|
|
m_state.pop_back();
|
|
solAssert(!m_state.empty(), "");
|
|
}
|
|
|
|
void BooleanLPSolver::declareVariable(string const& _name, SortPointer const& _sort)
|
|
{
|
|
// Internal variables are '$<number>', so escape `$` to `$$`.
|
|
string name = (_name.empty() || _name.at(0) != '$') ? _name : "$$" + _name;
|
|
// TODO This will not be an integer variable in our model.
|
|
// Introduce a new kind?
|
|
solAssert(_sort && (_sort->kind == Kind::Int || _sort->kind == Kind::Bool), "");
|
|
solAssert(!m_state.back().variables.count(name), "");
|
|
declareVariable(name, _sort->kind == Kind::Bool);
|
|
}
|
|
|
|
void BooleanLPSolver::addAssertion(Expression const& _expr)
|
|
{
|
|
if (_expr.arguments.empty())
|
|
m_state.back().clauses.emplace_back(Clause{vector<Literal>{*parseLiteral(_expr)}});
|
|
else if (_expr.name == "=")
|
|
{
|
|
// Try to see if both sides are linear.
|
|
optional<vector<rational>> left = parseLinearSum(_expr.arguments.at(0));
|
|
optional<vector<rational>> right = parseLinearSum(_expr.arguments.at(1));
|
|
if (left && right)
|
|
{
|
|
vector<rational> data = *left - *right;
|
|
data[0] *= -1;
|
|
Constraint c{move(data), _expr.name == "="};
|
|
if (!tryAddDirectBounds(c))
|
|
{
|
|
size_t index = addConstraint(move(c));
|
|
m_state.back().clauses.emplace_back(Clause{vector<Literal>{Literal{Literal::Constraint, index}}});
|
|
}
|
|
}
|
|
else if (_expr.arguments.at(0).arguments.empty() && isBooleanVariable(_expr.arguments.at(0).name))
|
|
addBooleanEquality(*parseLiteral(_expr.arguments.at(0)), _expr.arguments.at(1));
|
|
else if (_expr.arguments.at(1).arguments.empty() && isBooleanVariable(_expr.arguments.at(1).name))
|
|
addBooleanEquality(*parseLiteral(_expr.arguments.at(1)), _expr.arguments.at(0));
|
|
else
|
|
{
|
|
Literal newBoolean = *parseLiteral(declareInternalBoolean());
|
|
addBooleanEquality(newBoolean, _expr.arguments.at(0));
|
|
addBooleanEquality(newBoolean, _expr.arguments.at(1));
|
|
}
|
|
}
|
|
else if (_expr.name == "and")
|
|
{
|
|
addAssertion(_expr.arguments.at(0));
|
|
addAssertion(_expr.arguments.at(1));
|
|
}
|
|
else if (_expr.name == "or")
|
|
{
|
|
// We could try to parse a full clause here.
|
|
Literal left = parseLiteralOrReturnEqualBoolean(_expr.arguments.at(0));
|
|
Literal right = parseLiteralOrReturnEqualBoolean(_expr.arguments.at(1));
|
|
if (left.kind == Literal::Constraint && right.kind == Literal::Constraint)
|
|
{
|
|
// We cannot have more than one constraint per clause.
|
|
right = *parseLiteral(declareInternalBoolean());
|
|
addBooleanEquality(right, _expr.arguments.at(1));
|
|
}
|
|
m_state.back().clauses.emplace_back(Clause{vector<Literal>{left, right}});
|
|
}
|
|
else if (_expr.name == "not")
|
|
{
|
|
Literal l = negate(parseLiteralOrReturnEqualBoolean(_expr.arguments.at(0)));
|
|
m_state.back().clauses.emplace_back(Clause{vector<Literal>{l}});
|
|
}
|
|
else if (_expr.name == "<=")
|
|
{
|
|
optional<vector<rational>> left = parseLinearSum(_expr.arguments.at(0));
|
|
optional<vector<rational>> right = parseLinearSum(_expr.arguments.at(1));
|
|
if (!left || !right)
|
|
return;
|
|
|
|
vector<rational> data = *left - *right;
|
|
data[0] *= -1;
|
|
Constraint c{move(data), _expr.name == "="};
|
|
if (!tryAddDirectBounds(c))
|
|
{
|
|
size_t index = addConstraint(move(c));
|
|
m_state.back().clauses.emplace_back(Clause{vector<Literal>{Literal{Literal::Constraint, index}}});
|
|
}
|
|
}
|
|
else if (_expr.name == ">=")
|
|
addAssertion(_expr.arguments.at(1) <= _expr.arguments.at(0));
|
|
else if (_expr.name == "<")
|
|
addAssertion(_expr.arguments.at(0) <= _expr.arguments.at(1) - 1);
|
|
else if (_expr.name == ">")
|
|
addAssertion(_expr.arguments.at(1) < _expr.arguments.at(0));
|
|
}
|
|
|
|
|
|
pair<CheckResult, vector<string>> BooleanLPSolver::check(vector<Expression> const& _expressionsToEvaluate)
|
|
{
|
|
// cout << "Solving boolean constraint system" << endl;
|
|
// cout << toString() << endl;
|
|
// cout << "--------------" << endl;
|
|
|
|
if (m_state.back().infeasible)
|
|
return make_pair(CheckResult::UNSATISFIABLE, vector<string>{});
|
|
|
|
// TODO compress variables because we ignore boolean variables
|
|
SolvingState state;
|
|
for (auto&& [name, index]: m_state.back().variables)
|
|
resizeAndSet(state.variableNames, index, name);
|
|
for (auto&& [index, value]: m_state.back().bounds)
|
|
resizeAndSet(state.bounds, index, value);
|
|
|
|
std::vector<Clause> clauses;
|
|
for (State const& s: m_state)
|
|
for (Clause const& clause: s.clauses)
|
|
clauses.push_back(clause);
|
|
|
|
auto&& [result, model] = runDPLL(state, DPLL{move(clauses), {}});
|
|
if (result == CheckResult::SATISFIABLE)
|
|
{
|
|
vector<string> requestedModel;
|
|
for (Expression const& e: _expressionsToEvaluate)
|
|
requestedModel.emplace_back(
|
|
e.arguments.empty() && model.count(e.name) ?
|
|
::toString(model[e.name], 0) :
|
|
string("unknown")
|
|
);
|
|
return {result, move(requestedModel)};
|
|
}
|
|
else
|
|
return {result, {}};
|
|
}
|
|
|
|
string BooleanLPSolver::toString() const
|
|
{
|
|
string result;
|
|
|
|
for (State const& s: m_state)
|
|
for (Clause const& c: s.clauses)
|
|
result += toString(c);
|
|
result += "-- Bounds:\n";
|
|
for (State const& s: m_state)
|
|
for (auto&& [index, bounds]: s.bounds)
|
|
{
|
|
if (!bounds[0] && !bounds[1])
|
|
continue;
|
|
if (bounds[0])
|
|
result += ::toString(*bounds[0]) + " <= ";
|
|
result += variableName(index);
|
|
if (bounds[1])
|
|
result += " <= " + ::toString(*bounds[1]);
|
|
result += "\n";
|
|
}
|
|
return result;
|
|
}
|
|
|
|
Expression BooleanLPSolver::declareInternalBoolean()
|
|
{
|
|
string name = "$" + to_string(m_internalVariableCounter++);
|
|
declareVariable(name, true);
|
|
return smtutil::Expression(name, {}, SortProvider::boolSort);
|
|
}
|
|
|
|
void BooleanLPSolver::declareVariable(string const& _name, bool _boolean)
|
|
{
|
|
size_t index = m_state.back().variables.size() + 1;
|
|
m_state.back().variables[_name] = index;
|
|
resizeAndSet(m_state.back().isBooleanVariable, index, _boolean);
|
|
}
|
|
|
|
optional<Literal> BooleanLPSolver::parseLiteral(smtutil::Expression const& _expr)
|
|
{
|
|
// TODO constanst true/false?
|
|
|
|
if (_expr.arguments.empty())
|
|
{
|
|
if (isBooleanVariable(_expr.name))
|
|
return Literal{
|
|
Literal::PositiveVariable,
|
|
m_state.back().variables.at(_expr.name)
|
|
};
|
|
}
|
|
else if (_expr.name == "not")
|
|
return negate(parseLiteralOrReturnEqualBoolean(_expr.arguments.at(0)));
|
|
else if (_expr.name == "<=")
|
|
{
|
|
optional<vector<rational>> left = parseLinearSum(_expr.arguments.at(0));
|
|
optional<vector<rational>> right = parseLinearSum(_expr.arguments.at(1));
|
|
if (!left || !right)
|
|
return {};
|
|
|
|
vector<rational> data = *left - *right;
|
|
data[0] *= -1;
|
|
|
|
return Literal{Literal::Constraint, addConstraint(Constraint{move(data), false})};
|
|
}
|
|
else if (_expr.name == ">=")
|
|
return parseLiteral(_expr.arguments.at(1) <= _expr.arguments.at(0));
|
|
else if (_expr.name == "<")
|
|
return parseLiteral(_expr.arguments.at(0) <= _expr.arguments.at(1) - 1);
|
|
else if (_expr.name == ">")
|
|
return parseLiteral(_expr.arguments.at(1) < _expr.arguments.at(0));
|
|
|
|
return {};
|
|
}
|
|
|
|
Literal BooleanLPSolver::negate(Literal const& _lit)
|
|
{
|
|
switch (_lit.kind)
|
|
{
|
|
case Literal::NegativeVariable:
|
|
return Literal{Literal::PositiveVariable, _lit.index};
|
|
case Literal::PositiveVariable:
|
|
return Literal{Literal::NegativeVariable, _lit.index};
|
|
default:
|
|
break;
|
|
}
|
|
|
|
Constraint const& c = constraint(_lit.index);
|
|
|
|
solAssert(!c.equality, "");
|
|
|
|
// X > b
|
|
// -x < -b
|
|
// -x <= -b - 1
|
|
|
|
Constraint negated = c;
|
|
negated.data *= -1;
|
|
negated.data[0] -= 1;
|
|
|
|
return Literal{Literal::Constraint, addConstraint(move(negated))};
|
|
}
|
|
|
|
Literal BooleanLPSolver::parseLiteralOrReturnEqualBoolean(Expression const& _expr)
|
|
{
|
|
if (optional<Literal> literal = parseLiteral(_expr))
|
|
return *literal;
|
|
else
|
|
{
|
|
Literal newBoolean = *parseLiteral(declareInternalBoolean());
|
|
addBooleanEquality(newBoolean, _expr);
|
|
return newBoolean;
|
|
}
|
|
}
|
|
|
|
optional<vector<rational>> BooleanLPSolver::parseLinearSum(smtutil::Expression const& _expr) const
|
|
{
|
|
if (_expr.arguments.empty() || _expr.name == "*")
|
|
return parseProduct(_expr);
|
|
else if (_expr.name == "+" || _expr.name == "-")
|
|
{
|
|
optional<vector<rational>> left = parseLinearSum(_expr.arguments.at(0));
|
|
optional<vector<rational>> right = parseLinearSum(_expr.arguments.at(1));
|
|
if (!left || !right)
|
|
return std::nullopt;
|
|
return _expr.name == "+" ? add(*left, *right) : *left - *right;
|
|
}
|
|
else
|
|
return std::nullopt;
|
|
}
|
|
|
|
optional<vector<rational>> BooleanLPSolver::parseProduct(smtutil::Expression const& _expr) const
|
|
{
|
|
if (_expr.arguments.empty())
|
|
return parseFactor(_expr);
|
|
else if (_expr.name == "*")
|
|
// The multiplication ensures that only one of them can be a variable.
|
|
return vectorProduct(parseFactor(_expr.arguments.at(0)), parseFactor(_expr.arguments.at(1)));
|
|
else
|
|
return std::nullopt;
|
|
}
|
|
|
|
optional<vector<rational>> BooleanLPSolver::parseFactor(smtutil::Expression const& _expr) const
|
|
{
|
|
solAssert(_expr.arguments.empty(), "");
|
|
solAssert(!_expr.name.empty(), "");
|
|
if ('0' <= _expr.name[0] && _expr.name[0] <= '9')
|
|
return vector<rational>{rational(bigint(_expr.name))};
|
|
else if (_expr.name == "true")
|
|
return vector<rational>{rational(bigint(1))};
|
|
else if (_expr.name == "false")
|
|
return vector<rational>{rational(bigint(0))};
|
|
|
|
size_t index = m_state.back().variables.at(_expr.name);
|
|
solAssert(index > 0, "");
|
|
if (isBooleanVariable(index))
|
|
return nullopt;
|
|
return factorForVariable(index, rational(bigint(1)));
|
|
}
|
|
|
|
bool BooleanLPSolver::tryAddDirectBounds(Constraint const& _constraint)
|
|
{
|
|
auto nonzero = _constraint.data | ranges::views::enumerate | ranges::views::tail | ranges::views::filter(
|
|
[](std::pair<size_t, rational> const& _x) { return !!_x.second; }
|
|
);
|
|
// TODO we can exit early on in the loop above.
|
|
if (ranges::distance(nonzero) > 1)
|
|
return false;
|
|
|
|
//cout << "adding direct bound." << endl;
|
|
if (ranges::distance(nonzero) == 0)
|
|
{
|
|
// 0 <= b or 0 = b
|
|
if (
|
|
_constraint.data.front() < 0 ||
|
|
(_constraint.equality && _constraint.data.front() != 0)
|
|
)
|
|
{
|
|
// cout << "SETTING INF" << endl;
|
|
m_state.back().infeasible = true;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
auto&& [varIndex, factor] = nonzero.front();
|
|
// a * x <= b
|
|
rational bound = _constraint.data[0] / factor;
|
|
if (factor > 0 || _constraint.equality)
|
|
addUpperBound(varIndex, bound);
|
|
if (factor < 0 || _constraint.equality)
|
|
addLowerBound(varIndex, bound);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void BooleanLPSolver::addUpperBound(size_t _index, rational _value)
|
|
{
|
|
//cout << "adding " << variableName(_index) << " <= " << toString(_value) << endl;
|
|
if (!m_state.back().bounds[_index][1] || _value < *m_state.back().bounds[_index][1])
|
|
m_state.back().bounds[_index][1] = move(_value);
|
|
}
|
|
|
|
void BooleanLPSolver::addLowerBound(size_t _index, rational _value)
|
|
{
|
|
// Lower bound must be at least zero.
|
|
_value = max(_value, rational{});
|
|
//cout << "adding " << variableName(_index) << " >= " << toString(_value) << endl;
|
|
if (!m_state.back().bounds[_index][0] || _value > *m_state.back().bounds[_index][0])
|
|
m_state.back().bounds[_index][0] = move(_value);
|
|
}
|
|
|
|
size_t BooleanLPSolver::addConstraint(Constraint _constraint)
|
|
{
|
|
size_t index = ++m_constraintCounter;
|
|
m_state.back().constraints[index] = move(_constraint);
|
|
return index;
|
|
}
|
|
|
|
void BooleanLPSolver::addBooleanEquality(Literal const& _left, smtutil::Expression const& _right)
|
|
{
|
|
if (optional<Literal> right = parseLiteral(_right))
|
|
{
|
|
// includes: not, <=, <, >=, >, boolean variables.
|
|
// a = b <=> (-a \/ b) /\ (a \/ -b)
|
|
Literal negLeft = negate(_left);
|
|
Literal negRight = negate(*right);
|
|
m_state.back().clauses.emplace_back(Clause{vector<Literal>{negLeft, *right}});
|
|
m_state.back().clauses.emplace_back(Clause{vector<Literal>{_left, negRight}});
|
|
}
|
|
else if (_right.name == "=" && parseLinearSum(_right.arguments.at(0)) && parseLinearSum(_right.arguments.at(1)))
|
|
// a = (x = y) <=> a = (x <= y && x >= y)
|
|
addBooleanEquality(
|
|
_left,
|
|
_right.arguments.at(0) <= _right.arguments.at(1) &&
|
|
_right.arguments.at(1) <= _right.arguments.at(0)
|
|
);
|
|
else
|
|
{
|
|
Literal a = parseLiteralOrReturnEqualBoolean(_right.arguments.at(0));
|
|
Literal b = parseLiteralOrReturnEqualBoolean(_right.arguments.at(1));
|
|
if (a.kind == Literal::Constraint && b.kind == Literal::Constraint)
|
|
{
|
|
// We cannot have more than one constraint per clause.
|
|
b = *parseLiteral(declareInternalBoolean());
|
|
addBooleanEquality(b, _right.arguments.at(1));
|
|
}
|
|
|
|
if (_right.name == "and")
|
|
{
|
|
// a = and(x, y) <=> (-a \/ x) /\ ( -a \/ y) /\ (a \/ -x \/ -y)
|
|
m_state.back().clauses.emplace_back(Clause{vector<Literal>{negate(_left), a}});
|
|
m_state.back().clauses.emplace_back(Clause{vector<Literal>{negate(_left), b}});
|
|
m_state.back().clauses.emplace_back(Clause{vector<Literal>{_left, negate(a), negate(b)}});
|
|
}
|
|
else if (_right.name == "or")
|
|
{
|
|
// a = or(x, y) <=> (-a \/ x \/ y) /\ (a \/ -x) /\ (a \/ -y)
|
|
m_state.back().clauses.emplace_back(Clause{vector<Literal>{negate(_left), a, b}});
|
|
m_state.back().clauses.emplace_back(Clause{vector<Literal>{_left, negate(a)}});
|
|
m_state.back().clauses.emplace_back(Clause{vector<Literal>{_left, negate(b)}});
|
|
}
|
|
else if (_right.name == "=")
|
|
{
|
|
// l = eq(a, b) <=> (-l or -a or b) and (-l or a or -b) and (l or -a or -b) and (l or a or b)
|
|
m_state.back().clauses.emplace_back(Clause{vector<Literal>{negate(_left), negate(a), b}});
|
|
m_state.back().clauses.emplace_back(Clause{vector<Literal>{negate(_left), a, negate(b)}});
|
|
m_state.back().clauses.emplace_back(Clause{vector<Literal>{_left, negate(a), negate(b)}});
|
|
m_state.back().clauses.emplace_back(Clause{vector<Literal>{_left, a, b}});
|
|
}
|
|
else
|
|
solAssert(false, "Unsupported operation: " + _right.name);
|
|
}
|
|
}
|
|
|
|
|
|
// TODO as input we do not need the full solving state, only the bounds
|
|
// (and the variable names)
|
|
pair<CheckResult, map<string, rational>> BooleanLPSolver::runDPLL(SolvingState& _solvingState, DPLL _dpll)
|
|
{
|
|
//cout << "Running dpll on" << endl << toString(_solvingState.bounds) << "\nwith clauses\n" << toString(_dpll) << endl;
|
|
|
|
// Simplify clauses with only one literal.
|
|
// TODO Maybe this could already analyze clauses and add bounds?
|
|
auto&& [simplifyResult, booleanModel] = _dpll.simplify();
|
|
if (!simplifyResult)
|
|
return {CheckResult::UNSATISFIABLE, {}};
|
|
|
|
// cout << "Simplified to" << endl << toString(_solvingState.bounds) << "\nwith clauses\n" << toString(_dpll) << endl;
|
|
// cout << "----------" << endl;
|
|
|
|
CheckResult result = CheckResult::UNKNOWN;
|
|
map<string, rational> model;
|
|
|
|
{
|
|
//cout << "Invoking LP..." << endl;
|
|
_solvingState.constraints.clear();
|
|
for (size_t c: _dpll.constraints)
|
|
_solvingState.constraints.emplace_back(constraint(c));
|
|
LPResult lpResult;
|
|
tie(lpResult, model) = m_lpSolver.check(_solvingState);
|
|
// LP solver is a rational solver, not an integer solver,
|
|
// so "feasible" does not mean there is an integer solution.
|
|
|
|
// TODO we could check the model to see if all variables are integer....s
|
|
|
|
// TODO if it is a pure boolean problem, we can actually answer "satisfiable"
|
|
switch (lpResult)
|
|
{
|
|
case LPResult::Infeasible:
|
|
// cout << "Infeasible." << endl;
|
|
result = CheckResult::UNSATISFIABLE;
|
|
break;
|
|
case LPResult::Feasible:
|
|
case LPResult::Unbounded:
|
|
// cout << "Feasible." << endl;
|
|
// TODO this is actually wrong, but difficult to test otherwise.
|
|
result = CheckResult::SATISFIABLE;
|
|
break;
|
|
case LPResult::Unknown:
|
|
// cout << "Unknown." << endl;
|
|
result = CheckResult::UNKNOWN;
|
|
break;
|
|
}
|
|
}
|
|
if (result != CheckResult::UNSATISFIABLE && !_dpll.clauses.empty())
|
|
{
|
|
size_t varIndex = _dpll.findUnassignedVariable();
|
|
|
|
DPLL copy = _dpll;
|
|
if (_dpll.setVariable(varIndex, true))
|
|
{
|
|
booleanModel[varIndex] = true;
|
|
//cout << "Trying " << variableName(varIndex) << " = true\n";
|
|
tie(result, model) = runDPLL(_solvingState, move(_dpll));
|
|
// TODO actually we should also handle UNKNOWN here.
|
|
}
|
|
// TODO it will never be "satisfiable"
|
|
if (result != CheckResult::SATISFIABLE)
|
|
{
|
|
//cout << "Trying " << variableName(varIndex) << " = false\n";
|
|
if (!copy.setVariable(varIndex, false))
|
|
return {CheckResult::UNSATISFIABLE, {}};
|
|
booleanModel[varIndex] = false;
|
|
tie(result, model) = runDPLL(_solvingState, move(copy));
|
|
}
|
|
}
|
|
if (result == CheckResult::SATISFIABLE)
|
|
{
|
|
for (auto const& [index, value]: booleanModel)
|
|
model[variableName(index)] = value ? 1 : 0;
|
|
return {result, move(model)};
|
|
}
|
|
else
|
|
return {result, {}};
|
|
}
|
|
|
|
string BooleanLPSolver::toString(DPLL const& _dpll) const
|
|
{
|
|
string result;
|
|
for (size_t c: _dpll.constraints)
|
|
result += toString(Clause{{Literal{Literal::Constraint, c}}});
|
|
for (Clause const& c: _dpll.clauses)
|
|
result += toString(c);
|
|
return result;
|
|
}
|
|
|
|
string BooleanLPSolver::toString(std::vector<std::array<std::optional<boost::rational<bigint>>, 2>> const& _bounds) const
|
|
{
|
|
string result;
|
|
for (auto&& [index, bounds]: _bounds | ranges::views::enumerate)
|
|
{
|
|
if (!bounds[0] && !bounds[1])
|
|
continue;
|
|
if (bounds[0])
|
|
result += ::toString(*bounds[0]) + " <= ";
|
|
// TODO If the variables are compressed, this does no longer work.
|
|
result += variableName(index);
|
|
if (bounds[1])
|
|
result += " <= " + ::toString(*bounds[1]);
|
|
result += "\n";
|
|
}
|
|
return result;
|
|
}
|
|
|
|
string BooleanLPSolver::toString(Clause const& _clause) const
|
|
{
|
|
vector<string> literals;
|
|
for (Literal const& l: _clause.literals)
|
|
if (l.kind == Literal::Constraint)
|
|
{
|
|
Constraint const& constr = constraint(l.index);
|
|
vector<string> line;
|
|
for (auto&& [index, multiplier]: constr.data | ranges::views::enumerate)
|
|
if (index > 0 && multiplier != 0)
|
|
{
|
|
string mult =
|
|
multiplier == -1 ?
|
|
"-" :
|
|
multiplier == 1 ?
|
|
"" :
|
|
::toString(multiplier) + " ";
|
|
line.emplace_back(mult + variableName(index));
|
|
}
|
|
literals.emplace_back(joinHumanReadable(line, " + ") + (constr.equality ? " = " : " <= ") + ::toString(constr.data.front()));
|
|
}
|
|
else
|
|
literals.emplace_back((l.kind == Literal::NegativeVariable ? "!" : "") + variableName(l.index));
|
|
return joinHumanReadable(literals, " \\/ ") + "\n";
|
|
}
|
|
|
|
Constraint const& BooleanLPSolver::constraint(size_t _index) const
|
|
{
|
|
for (State const& state: m_state)
|
|
if (state.constraints.count(_index))
|
|
return state.constraints.at(_index);
|
|
solAssert(false, "");
|
|
}
|
|
|
|
|
|
string BooleanLPSolver::variableName(size_t _index) const
|
|
{
|
|
for (auto const& v: m_state.back().variables)
|
|
if (v.second == _index)
|
|
return v.first;
|
|
return {};
|
|
}
|
|
|
|
bool BooleanLPSolver::isBooleanVariable(string const& _name) const
|
|
{
|
|
if (!m_state.back().variables.count(_name))
|
|
return false;
|
|
size_t index = m_state.back().variables.at(_name);
|
|
solAssert(index > 0, "");
|
|
return isBooleanVariable(index);
|
|
}
|
|
|
|
bool BooleanLPSolver::isBooleanVariable(size_t _index) const
|
|
{
|
|
return
|
|
_index < m_state.back().isBooleanVariable.size() &&
|
|
m_state.back().isBooleanVariable.at(_index);
|
|
}
|