mirror of
https://github.com/ethereum/solidity
synced 2023-10-03 13:03:40 +00:00
277 lines
8.4 KiB
C++
277 lines
8.4 KiB
C++
|
||
/*
|
||
This file is part of solidity.
|
||
|
||
solidity is free software: you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation, either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
solidity is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with solidity. If not, see <http://www.gnu.org/licenses/>.
|
||
*/
|
||
// SPDX-License-Identifier: GPL-3.0
|
||
/**
|
||
* Dominator analysis of a control flow graph.
|
||
* The implementation is based on the following paper:
|
||
* https://www.cs.princeton.edu/courses/archive/spr03/cs423/download/dominators.pdf
|
||
* See appendix B pg. 139.
|
||
*/
|
||
#pragma once
|
||
|
||
#include <libyul/backends/evm/ControlFlowGraph.h>
|
||
#include <libsolutil/Visitor.h>
|
||
|
||
#include <range/v3/algorithm.hpp>
|
||
#include <range/v3/view/drop.hpp>
|
||
#include <range/v3/view/reverse.hpp>
|
||
#include <range/v3/view/transform.hpp>
|
||
|
||
#include <deque>
|
||
#include <map>
|
||
#include <vector>
|
||
#include <set>
|
||
|
||
namespace solidity::yul
|
||
{
|
||
|
||
template<typename Vertex, typename ForEachSuccessor>
|
||
class Dominator
|
||
{
|
||
public:
|
||
|
||
Dominator(Vertex const& _entry, size_t _numVertices):
|
||
m_vertex(_numVertices),
|
||
m_immediateDominator(lengauerTarjanDominator(_entry, _numVertices))
|
||
{
|
||
buildDominatorTree();
|
||
}
|
||
|
||
std::vector<Vertex> const& vertices() const
|
||
{
|
||
return m_vertex;
|
||
}
|
||
|
||
std::map<Vertex, size_t> const& vertexIndices() const
|
||
{
|
||
return m_vertexIndex;
|
||
}
|
||
|
||
std::vector<size_t> const& immediateDominators() const
|
||
{
|
||
return m_immediateDominator;
|
||
}
|
||
|
||
std::map<size_t, std::vector<size_t>> const& dominatorTree() const
|
||
{
|
||
return m_dominatorTree;
|
||
}
|
||
|
||
// Checks whether ``_a`` dominates ``_b`` by going
|
||
// through the path from ``_b`` to the entry node.
|
||
// If ``_a`` is found, then it dominates ``_b``
|
||
// otherwise it doesn't.
|
||
bool dominates(Vertex const& _a, Vertex const& _b)
|
||
{
|
||
size_t aIdx = m_vertexIndex[_a];
|
||
size_t bIdx = m_vertexIndex[_b];
|
||
|
||
if (aIdx == bIdx)
|
||
return true;
|
||
|
||
size_t idomIdx = m_immediateDominator[bIdx];
|
||
while (idomIdx != 0)
|
||
{
|
||
if (idomIdx == aIdx)
|
||
return true;
|
||
idomIdx = m_immediateDominator[idomIdx];
|
||
}
|
||
// Now that we reach the entry node (i.e. idomIdx = 0),
|
||
// either ``aIdx == 0`` or it does not dominates the other node.
|
||
solAssert(idomIdx == 0, "");
|
||
return aIdx == 0;
|
||
}
|
||
|
||
// Find all dominators of a node _v
|
||
// @note for a vertex ``_v``, the _v’s inclusion in the set of dominators of ``_v`` is implicit.
|
||
std::vector<Vertex> dominatorsOf(Vertex const& _v)
|
||
{
|
||
solAssert(!m_vertex.empty());
|
||
// The entry node always dominates all other nodes
|
||
std::vector<Vertex> dominators{m_vertex[0]};
|
||
|
||
size_t idomIdx = m_immediateDominator[m_vertexIndex[_v]];
|
||
if (idomIdx == 0)
|
||
return dominators;
|
||
|
||
while (idomIdx != 0)
|
||
{
|
||
dominators.emplace_back(m_vertex[idomIdx]);
|
||
idomIdx = m_immediateDominator[idomIdx];
|
||
}
|
||
return dominators;
|
||
}
|
||
|
||
void buildDominatorTree()
|
||
{
|
||
solAssert(!m_vertex.empty());
|
||
solAssert(!m_immediateDominator.empty());
|
||
|
||
//Ignoring the entry node since no one dominates it.
|
||
for (size_t idomIdx: m_immediateDominator | ranges::views::drop(1))
|
||
m_dominatorTree[idomIdx].emplace_back(idomIdx);
|
||
}
|
||
|
||
// Path compression updates the ancestors of vertices along
|
||
// the path to the ancestor with the minimum label value.
|
||
void compressPath(
|
||
std::vector<size_t> &_ancestor,
|
||
std::vector<size_t> &_label,
|
||
std::vector<size_t> &_semi,
|
||
size_t _v
|
||
)
|
||
{
|
||
solAssert(_ancestor[_v] != std::numeric_limits<size_t>::max());
|
||
size_t u = _ancestor[_v];
|
||
if (_ancestor[u] != std::numeric_limits<size_t>::max())
|
||
{
|
||
compressPath(_ancestor, _label, _semi, u);
|
||
if (_semi[_label[u]] < _semi[_label[_v]])
|
||
_label[_v] = _label[u];
|
||
_ancestor[_v] = _ancestor[u];
|
||
}
|
||
}
|
||
|
||
std::vector<size_t> lengauerTarjanDominator(Vertex const& _entry, size_t numVertices)
|
||
{
|
||
solAssert(numVertices > 0);
|
||
// semi(w): The dfs index of the semidominator of ``w``.
|
||
std::vector<size_t> semi(numVertices, std::numeric_limits<size_t>::max());
|
||
// parent(w): The index of the vertex which is the parent of ``w`` in the spanning
|
||
// tree generated by the dfs.
|
||
std::vector<size_t> parent(numVertices, std::numeric_limits<size_t>::max());
|
||
// ancestor(w): The highest ancestor of a vertex ``w`` in the dominator tree used
|
||
// for path compression.
|
||
std::vector<size_t> ancestor(numVertices, std::numeric_limits<size_t>::max());
|
||
// label(w): The index of the vertex ``w`` with the minimum semidominator in the path
|
||
// to its parent.
|
||
std::vector<size_t> label(numVertices, 0);
|
||
|
||
// ``link`` adds an edge to the virtual forest.
|
||
// It copies the parent of w to the ancestor array to limit the search path upwards.
|
||
// TODO: implement sophisticated link-eval algorithm as shown in pg 132
|
||
// See: https://www.cs.princeton.edu/courses/archive/spr03/cs423/download/dominators.pdf
|
||
auto link = [&](size_t _parent, size_t _w)
|
||
{
|
||
ancestor[_w] = _parent;
|
||
};
|
||
|
||
// ``eval`` computes the path compression.
|
||
// Finds ancestor with lowest semi-dominator dfs number (i.e. index).
|
||
auto eval = [&](size_t _v) -> size_t
|
||
{
|
||
if (ancestor[_v] != std::numeric_limits<size_t>::max())
|
||
{
|
||
compressPath(ancestor, label, semi, _v);
|
||
return label[_v];
|
||
}
|
||
return _v;
|
||
};
|
||
|
||
auto toIdx = [&](Vertex const& v) { return m_vertexIndex[v]; };
|
||
|
||
// step 1
|
||
std::set<Vertex> visited;
|
||
// predecessors(w): The set of vertices ``v`` such that (``v``, ``w``) is an edge of the graph.
|
||
std::vector<std::set<size_t>> predecessors(numVertices);
|
||
// bucket(w): a set of vertices whose semidominator is ``w``
|
||
// The index of the array represents the vertex's ``dfIdx``
|
||
std::vector<std::deque<size_t>> bucket(numVertices);
|
||
// idom(w): the index of the immediate dominator of ``w``
|
||
std::vector<size_t> idom(numVertices, std::numeric_limits<size_t>::max());
|
||
// The number of vertices reached during the dfs.
|
||
// The vertices are indexed based on this number.
|
||
size_t dfIdx = 0;
|
||
auto dfs = [&](Vertex const& _v, auto _dfs) -> void {
|
||
if (visited.count(_v))
|
||
return;
|
||
visited.insert(_v);
|
||
m_vertex[dfIdx] = _v;
|
||
m_vertexIndex[_v] = dfIdx;
|
||
semi[dfIdx] = dfIdx;
|
||
label[dfIdx] = dfIdx;
|
||
dfIdx++;
|
||
ForEachSuccessor{}(_v, [&](Vertex const& w) {
|
||
if (semi[dfIdx] == std::numeric_limits<size_t>::max())
|
||
{
|
||
parent[dfIdx] = m_vertexIndex[_v];
|
||
_dfs(w, _dfs);
|
||
}
|
||
predecessors[m_vertexIndex[w]].insert(m_vertexIndex[_v]);
|
||
});
|
||
};
|
||
dfs(_entry, dfs);
|
||
|
||
// Process the vertices in decreasing order of the dfs number
|
||
for (size_t w: m_vertex | ranges::views::reverse | ranges::views::transform(toIdx))
|
||
{
|
||
// step 3
|
||
// NOTE: this is an optimization, i.e. performing the step 3 before step 2.
|
||
// The goal is to process the bucket in the beginning of the loop for the vertex ``w``
|
||
// instead of ``parent[w]`` in the end of the loop as described in the original paper.
|
||
// Inverting those steps ensures that a bucket is only processed once and
|
||
// it does not need to be erased.
|
||
// The optimization proposal is available here: https://jgaa.info/accepted/2006/GeorgiadisTarjanWerneck2006.10.1.pdf pg.77
|
||
ranges::for_each(
|
||
bucket[w],
|
||
[&](size_t v)
|
||
{
|
||
size_t u = eval(v);
|
||
idom[v] = (semi[u] < semi[v]) ? u : w;
|
||
}
|
||
);
|
||
|
||
// step 2
|
||
for (size_t v: predecessors[w])
|
||
{
|
||
size_t u = eval(v);
|
||
if (semi[u] < semi[w])
|
||
semi[w] = semi[u];
|
||
}
|
||
bucket[semi[w]].emplace_back(w);
|
||
link(parent[w], w);
|
||
}
|
||
|
||
// step 4
|
||
idom[0] = 0;
|
||
for (size_t w: m_vertex | ranges::views::drop(1) | ranges::views::transform(toIdx))
|
||
if (idom[w] != semi[w])
|
||
idom[w] = idom[idom[w]];
|
||
|
||
return idom;
|
||
}
|
||
private:
|
||
// Keep the list of vertices in the dfs order.
|
||
// i.e. m_vertex[i]: the vertex whose dfs index is i.
|
||
std::vector<Vertex> m_vertex;
|
||
// Maps Vertex to their dfs index.
|
||
std::map<Vertex, size_t> m_vertexIndex;
|
||
// Immediate dominators by index.
|
||
// Maps a Vertex based on its dfs index (i.e. array index) to its immediate dominator dfs index.
|
||
//
|
||
// e.g. to get the immediate dominator of a Vertex w:
|
||
// idomIdx = m_immediateDominator[m_vertexIndex[w]]
|
||
// idomVertex = m_vertex[domIdx]
|
||
std::vector<size_t> m_immediateDominator;
|
||
|
||
// Maps a Vertex to all vertices that it dominates.
|
||
// If the vertex does not dominates any other vertex it has no entry in the map.
|
||
std::map<size_t, std::vector<size_t>> m_dominatorTree;
|
||
};
|
||
}
|