solidity/libsolidity/formal/SymbolicState.cpp
2023-08-15 14:40:27 +02:00

496 lines
16 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
// SPDX-License-Identifier: GPL-3.0
#include <libsolidity/formal/SymbolicState.h>
#include <libsolidity/formal/SymbolicTypes.h>
#include <libsolidity/formal/EncodingContext.h>
#include <libsolidity/formal/SMTEncoder.h>
#include <libsmtutil/Sorts.h>
#include <range/v3/view.hpp>
using namespace solidity;
using namespace solidity::util;
using namespace solidity::smtutil;
using namespace solidity::frontend::smt;
BlockchainVariable::BlockchainVariable(
std::string _name,
std::map<std::string, smtutil::SortPointer> _members,
EncodingContext& _context
):
m_name(std::move(_name)),
m_members(std::move(_members)),
m_context(_context)
{
std::vector<std::string> members;
std::vector<SortPointer> sorts;
for (auto const& [component, sort]: m_members)
{
members.emplace_back(component);
sorts.emplace_back(sort);
m_componentIndices[component] = static_cast<unsigned>(members.size() - 1);
}
m_tuple = std::make_unique<SymbolicTupleVariable>(
std::make_shared<smtutil::TupleSort>(m_name + "_type", members, sorts),
m_name,
m_context
);
}
smtutil::Expression BlockchainVariable::member(std::string const& _member) const
{
return m_tuple->component(m_componentIndices.at(_member));
}
smtutil::Expression BlockchainVariable::assignMember(std::string const& _member, smtutil::Expression const& _value)
{
smtutil::Expression newTuple = smt::assignMember(m_tuple->currentValue(), {{_member, _value}});
m_context.addAssertion(m_tuple->increaseIndex() == newTuple);
return m_tuple->currentValue();
}
void SymbolicState::reset()
{
m_error.resetIndex();
m_thisAddress.resetIndex();
m_tx.reset();
m_crypto.reset();
if (m_abi)
m_abi->reset();
/// We don't reset nor clear these pointers on purpose,
/// since it only helps to keep the already generated types.
if (m_state)
m_state->reset();
}
smtutil::Expression SymbolicState::balances() const
{
return m_state->member("balances");
}
smtutil::Expression SymbolicState::balance() const
{
return balance(thisAddress());
}
smtutil::Expression SymbolicState::balance(smtutil::Expression _address) const
{
return smtutil::Expression::select(balances(), std::move(_address));
}
smtutil::Expression SymbolicState::blockhash(smtutil::Expression _blockNumber) const
{
return smtutil::Expression::select(m_tx.member("blockhash"), std::move(_blockNumber));
}
void SymbolicState::newBalances()
{
auto tupleSort = std::dynamic_pointer_cast<TupleSort>(stateSort());
auto balanceSort = tupleSort->components.at(tupleSort->memberToIndex.at("balances"));
SymbolicVariable newBalances(balanceSort, "fresh_balances_" + std::to_string(m_context.newUniqueId()), m_context);
m_state->assignMember("balances", newBalances.currentValue());
}
void SymbolicState::transfer(smtutil::Expression _from, smtutil::Expression _to, smtutil::Expression _value)
{
unsigned indexBefore = m_state->index();
addBalance(_from, 0 - _value);
addBalance(_to, std::move(_value));
unsigned indexAfter = m_state->index();
solAssert(indexAfter > indexBefore, "");
m_state->newVar();
/// Do not apply the transfer operation if _from == _to.
auto newState = smtutil::Expression::ite(
std::move(_from) == std::move(_to),
m_state->value(indexBefore),
m_state->value(indexAfter)
);
m_context.addAssertion(m_state->value() == newState);
}
smtutil::Expression SymbolicState::storage(ContractDefinition const& _contract) const
{
return smt::member(m_state->member("storage"), contractStorageKey(_contract));
}
smtutil::Expression SymbolicState::storage(ContractDefinition const& _contract, smtutil::Expression _address) const
{
return smtutil::Expression::select(storage(_contract), std::move(_address));
}
smtutil::Expression SymbolicState::addressActive(smtutil::Expression _address) const
{
return smtutil::Expression::select(m_state->member("isActive"), std::move(_address));
}
void SymbolicState::setAddressActive(
smtutil::Expression _address,
bool _active
)
{
m_state->assignMember("isActive", smtutil::Expression::store(
m_state->member("isActive"),
std::move(_address),
smtutil::Expression(_active))
);
}
void SymbolicState::newStorage()
{
auto newStorageVar = SymbolicTupleVariable(
m_state->member("storage").sort,
"havoc_storage_" + std::to_string(m_context.newUniqueId()),
m_context
);
m_state->assignMember("storage", newStorageVar.currentValue());
}
void SymbolicState::writeStateVars(ContractDefinition const& _contract, smtutil::Expression _address)
{
auto stateVars = SMTEncoder::stateVariablesIncludingInheritedAndPrivate(_contract);
if (stateVars.empty())
return;
std::map<std::string, smtutil::Expression> values;
for (auto var: stateVars)
values.emplace(stateVarStorageKey(*var, _contract), m_context.variable(*var)->currentValue());
smtutil::Expression thisStorage = storage(_contract, _address);
smtutil::Expression newStorage = smt::assignMember(thisStorage, values);
auto newContractStorage = smtutil::Expression::store(
storage(_contract), std::move(_address), newStorage
);
smtutil::Expression newAllStorage = smt::assignMember(m_state->member("storage"), {{contractStorageKey(_contract), newContractStorage}});
m_state->assignMember("storage", newAllStorage);
}
void SymbolicState::readStateVars(ContractDefinition const& _contract, smtutil::Expression _address)
{
auto stateVars = SMTEncoder::stateVariablesIncludingInheritedAndPrivate(_contract);
if (stateVars.empty())
return;
auto contractStorage = storage(_contract, std::move(_address));
for (auto var: stateVars)
m_context.addAssertion(
m_context.variable(*var)->increaseIndex() ==
smt::member(contractStorage, stateVarStorageKey(*var, _contract))
);
}
void SymbolicState::addBalance(smtutil::Expression _address, smtutil::Expression _value)
{
auto newBalances = smtutil::Expression::store(
balances(),
_address,
balance(_address) + std::move(_value)
);
m_state->assignMember("balances", newBalances);
}
smtutil::Expression SymbolicState::txMember(std::string const& _member) const
{
return m_tx.member(_member);
}
smtutil::Expression SymbolicState::evmParisConstraints() const
{
// Ensure prevrandao range as defined by EIP-4399.
return txMember("block.prevrandao") > (u256(1) << 64);
}
smtutil::Expression SymbolicState::txTypeConstraints() const
{
return
evmParisConstraints() &&
smt::symbolicUnknownConstraints(m_tx.member("block.basefee"), TypeProvider::uint256()) &&
smt::symbolicUnknownConstraints(m_tx.member("block.chainid"), TypeProvider::uint256()) &&
smt::symbolicUnknownConstraints(m_tx.member("block.coinbase"), TypeProvider::address()) &&
smt::symbolicUnknownConstraints(m_tx.member("block.prevrandao"), TypeProvider::uint256()) &&
smt::symbolicUnknownConstraints(m_tx.member("block.gaslimit"), TypeProvider::uint256()) &&
smt::symbolicUnknownConstraints(m_tx.member("block.number"), TypeProvider::uint256()) &&
smt::symbolicUnknownConstraints(m_tx.member("block.timestamp"), TypeProvider::uint256()) &&
smt::symbolicUnknownConstraints(m_tx.member("msg.sender"), TypeProvider::address()) &&
smt::symbolicUnknownConstraints(m_tx.member("msg.value"), TypeProvider::uint256()) &&
smt::symbolicUnknownConstraints(m_tx.member("tx.origin"), TypeProvider::address()) &&
smt::symbolicUnknownConstraints(m_tx.member("tx.gasprice"), TypeProvider::uint256());
}
smtutil::Expression SymbolicState::txNonPayableConstraint() const
{
return m_tx.member("msg.value") == 0;
}
smtutil::Expression SymbolicState::txFunctionConstraints(FunctionDefinition const& _function) const
{
smtutil::Expression conj = _function.isPayable() ? smtutil::Expression(true) : txNonPayableConstraint();
if (_function.isPartOfExternalInterface())
{
auto sig = TypeProvider::function(_function)->externalIdentifier();
conj = conj && m_tx.member("msg.sig") == sig;
auto b0 = sig >> (3 * 8);
auto b1 = (sig & 0x00ff0000) >> (2 * 8);
auto b2 = (sig & 0x0000ff00) >> (1 * 8);
auto b3 = (sig & 0x000000ff);
auto data = smtutil::Expression::tuple_get(m_tx.member("msg.data"), 0);
conj = conj && smtutil::Expression::select(data, 0) == b0;
conj = conj && smtutil::Expression::select(data, 1) == b1;
conj = conj && smtutil::Expression::select(data, 2) == b2;
conj = conj && smtutil::Expression::select(data, 3) == b3;
auto length = smtutil::Expression::tuple_get(m_tx.member("msg.data"), 1);
// TODO add ABI size of function input parameters here \/
conj = conj && length >= 4;
}
return conj;
}
void SymbolicState::prepareForSourceUnit(SourceUnit const& _source, bool _storage)
{
auto allSources = _source.referencedSourceUnits(true);
allSources.insert(&_source);
std::set<FunctionCall const*, ASTCompareByID<FunctionCall>> abiCalls;
std::set<ContractDefinition const*, ASTCompareByID<ContractDefinition>> contracts;
for (auto const& source: allSources)
{
abiCalls += SMTEncoder::collectABICalls(source);
for (auto node: source->nodes())
if (auto contract = dynamic_cast<ContractDefinition const*>(node.get()))
contracts.insert(contract);
}
buildState(contracts, _storage);
buildABIFunctions(abiCalls);
}
/// Private helpers.
std::string SymbolicState::contractSuffix(ContractDefinition const& _contract) const
{
return "_" + _contract.name() + "_" + std::to_string(_contract.id());
}
std::string SymbolicState::contractStorageKey(ContractDefinition const& _contract) const
{
return "storage" + contractSuffix(_contract);
}
std::string SymbolicState::stateVarStorageKey(VariableDeclaration const& _var, ContractDefinition const& _contract) const
{
return _var.name() + "_" + std::to_string(_var.id()) + contractSuffix(_contract);
}
void SymbolicState::buildState(std::set<ContractDefinition const*, ASTCompareByID<ContractDefinition>> const& _contracts, bool _allStorages)
{
std::map<std::string, SortPointer> stateMembers{
{"balances", std::make_shared<smtutil::ArraySort>(smtutil::SortProvider::uintSort, smtutil::SortProvider::uintSort)}
};
if (_allStorages)
{
std::vector<std::string> memberNames;
std::vector<SortPointer> memberSorts;
for (auto contract: _contracts)
{
std::string suffix = contractSuffix(*contract);
// z3 doesn't like empty tuples, so if the contract has 0
// state vars we can't put it there.
auto stateVars = SMTEncoder::stateVariablesIncludingInheritedAndPrivate(*contract);
if (stateVars.empty())
continue;
auto names = applyMap(stateVars, [&](auto var) {
return var->name() + "_" + std::to_string(var->id()) + suffix;
});
auto sorts = applyMap(stateVars, [](auto var) { return smtSortAbstractFunction(*var->type()); });
std::string name = "storage" + suffix;
auto storageTuple = std::make_shared<smtutil::TupleSort>(
name + "_type", names, sorts
);
auto storageSort = std::make_shared<smtutil::ArraySort>(
smtSort(*TypeProvider::address()),
storageTuple
);
memberNames.emplace_back(name);
memberSorts.emplace_back(storageSort);
}
stateMembers.emplace(
"isActive",
std::make_shared<smtutil::ArraySort>(smtSort(*TypeProvider::address()), smtutil::SortProvider::boolSort)
);
stateMembers.emplace(
"storage",
std::make_shared<smtutil::TupleSort>(
"storage_type", memberNames, memberSorts
)
);
}
m_state = std::make_unique<BlockchainVariable>(
"state",
std::move(stateMembers),
m_context
);
}
void SymbolicState::buildABIFunctions(std::set<FunctionCall const*, ASTCompareByID<FunctionCall>> const& _abiFunctions)
{
std::map<std::string, SortPointer> functions;
for (auto const* funCall: _abiFunctions)
{
auto t = dynamic_cast<FunctionType const*>(funCall->expression().annotation().type);
auto const& args = funCall->sortedArguments();
auto const& paramTypes = t->parameterTypes();
auto const& returnTypes = t->returnParameterTypes();
auto argTypes = [](auto const& _args) {
return util::applyMap(_args, [](auto arg) { return arg->annotation().type; });
};
/// Since each abi.* function may have a different number of input/output parameters,
/// we generically compute those types.
std::vector<frontend::Type const*> inTypes;
std::vector<frontend::Type const*> outTypes;
if (t->kind() == FunctionType::Kind::ABIDecode)
{
/// abi.decode : (bytes, tuple_of_types(return_types)) -> (return_types)
solAssert(args.size() == 2, "Unexpected number of arguments for abi.decode");
inTypes.emplace_back(TypeProvider::bytesMemory());
auto argType = args.at(1)->annotation().type;
if (auto const* tupleType = dynamic_cast<TupleType const*>(argType))
for (auto componentType: tupleType->components())
{
auto typeType = dynamic_cast<TypeType const*>(componentType);
solAssert(typeType, "");
outTypes.emplace_back(typeType->actualType());
}
else if (auto const* typeType = dynamic_cast<TypeType const*>(argType))
outTypes.emplace_back(typeType->actualType());
else
solAssert(false, "Unexpected argument of abi.decode");
}
else if (t->kind() == FunctionType::Kind::ABIEncodeCall)
{
// abi.encodeCall : (functionPointer, tuple_of_args_or_one_non_tuple_arg(arguments)) -> bytes
solAssert(args.size() == 2, "Unexpected number of arguments for abi.encodeCall");
outTypes.emplace_back(TypeProvider::bytesMemory());
inTypes.emplace_back(args.at(0)->annotation().type);
inTypes.emplace_back(args.at(1)->annotation().type);
}
else
{
outTypes = returnTypes;
if (
t->kind() == FunctionType::Kind::ABIEncodeWithSelector ||
t->kind() == FunctionType::Kind::ABIEncodeWithSignature
)
{
/// abi.encodeWithSelector : (bytes4, one_or_more_types) -> bytes
/// abi.encodeWithSignature : (string, one_or_more_types) -> bytes
inTypes.emplace_back(paramTypes.front());
inTypes += argTypes(std::vector<ASTPointer<Expression const>>(args.begin() + 1, args.end()));
}
else
{
/// abi.encode/abi.encodePacked : one_or_more_types -> bytes
solAssert(
t->kind() == FunctionType::Kind::ABIEncode ||
t->kind() == FunctionType::Kind::ABIEncodePacked,
""
);
inTypes = argTypes(args);
}
}
/// Rational numbers and string literals add the concrete values to the type name,
/// so we replace them by uint256 and bytes since those are the same as their SMT types.
/// TODO we could also replace all types by their ABI type.
auto replaceTypes = [](auto& _types) {
for (auto& t: _types)
if (t->category() == frontend::Type::Category::RationalNumber)
t = TypeProvider::uint256();
else if (t->category() == frontend::Type::Category::StringLiteral)
t = TypeProvider::bytesMemory();
else if (auto userType = dynamic_cast<UserDefinedValueType const*>(t))
t = &userType->underlyingType();
};
replaceTypes(inTypes);
replaceTypes(outTypes);
auto name = t->richIdentifier();
for (auto paramType: inTypes + outTypes)
name += "_" + paramType->richIdentifier();
m_abiMembers[funCall] = {name, inTypes, outTypes};
if (functions.count(name))
continue;
/// If there is only one input or output parameter, we use that type directly.
/// Otherwise we create a tuple wrapping the necessary input or output types.
auto typesToSort = [](auto const& _types, std::string const& _name) -> std::shared_ptr<Sort> {
if (_types.size() == 1)
return smtSortAbstractFunction(*_types.front());
std::vector<std::string> inNames;
std::vector<SortPointer> sorts;
for (unsigned i = 0; i < _types.size(); ++i)
{
inNames.emplace_back(_name + "_input_" + std::to_string(i));
sorts.emplace_back(smtSortAbstractFunction(*_types.at(i)));
}
return std::make_shared<smtutil::TupleSort>(
_name + "_input",
inNames,
sorts
);
};
auto functionSort = std::make_shared<smtutil::ArraySort>(
typesToSort(inTypes, name),
typesToSort(outTypes, name)
);
functions[name] = functionSort;
}
m_abi = std::make_unique<BlockchainVariable>("abi", std::move(functions), m_context);
}
smtutil::Expression SymbolicState::abiFunction(frontend::FunctionCall const* _funCall)
{
solAssert(m_abi, "");
return m_abi->member(std::get<0>(m_abiMembers.at(_funCall)));
}
SymbolicState::SymbolicABIFunction const& SymbolicState::abiFunctionTypes(FunctionCall const* _funCall) const
{
return m_abiMembers.at(_funCall);
}