solidity/libsolidity/codegen/ir/IRGeneratorForStatements.cpp

3402 lines
116 KiB
C++

/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see <http://www.gnu.org/licenses/>.
*/
// SPDX-License-Identifier: GPL-3.0
/**
* Component that translates Solidity code into Yul at statement level and below.
*/
#include <libsolidity/codegen/ir/IRGeneratorForStatements.h>
#include <libsolidity/codegen/ABIFunctions.h>
#include <libsolidity/codegen/ir/IRGenerationContext.h>
#include <libsolidity/codegen/ir/IRLValue.h>
#include <libsolidity/codegen/ir/IRVariable.h>
#include <libsolidity/codegen/YulUtilFunctions.h>
#include <libsolidity/codegen/ABIFunctions.h>
#include <libsolidity/codegen/CompilerUtils.h>
#include <libsolidity/codegen/ReturnInfo.h>
#include <libsolidity/ast/TypeProvider.h>
#include <libsolidity/ast/ASTUtils.h>
#include <libevmasm/GasMeter.h>
#include <libyul/AsmPrinter.h>
#include <libyul/AST.h>
#include <libyul/Dialect.h>
#include <libyul/optimiser/ASTCopier.h>
#include <liblangutil/Exceptions.h>
#include <libsolutil/Whiskers.h>
#include <libsolutil/StringUtils.h>
#include <libsolutil/Keccak256.h>
#include <libsolutil/FunctionSelector.h>
#include <libsolutil/Visitor.h>
#include <range/v3/view/transform.hpp>
using namespace solidity;
using namespace solidity::util;
using namespace solidity::frontend;
using namespace std::string_literals;
namespace
{
struct CopyTranslate: public yul::ASTCopier
{
using ExternalRefsMap = std::map<yul::Identifier const*, InlineAssemblyAnnotation::ExternalIdentifierInfo>;
CopyTranslate(yul::Dialect const& _dialect, IRGenerationContext& _context, ExternalRefsMap const& _references):
m_dialect(_dialect), m_context(_context), m_references(_references) {}
using ASTCopier::operator();
yul::Expression operator()(yul::Identifier const& _identifier) override
{
// The operator() function is only called in lvalue context. In rvalue context,
// only translate(yul::Identifier) is called.
if (m_references.count(&_identifier))
return translateReference(_identifier);
else
return ASTCopier::operator()(_identifier);
}
yul::YulString translateIdentifier(yul::YulString _name) override
{
// Strictly, the dialect used by inline assembly (m_dialect) could be different
// from the Yul dialect we are compiling to. So we are assuming here that the builtin
// functions are identical. This should not be a problem for now since everything
// is EVM anyway.
if (m_dialect.builtin(_name))
return _name;
else
return yul::YulString{"usr$" + _name.str()};
}
yul::Identifier translate(yul::Identifier const& _identifier) override
{
if (!m_references.count(&_identifier))
return ASTCopier::translate(_identifier);
yul::Expression translated = translateReference(_identifier);
solAssert(std::holds_alternative<yul::Identifier>(translated));
return std::get<yul::Identifier>(std::move(translated));
}
private:
/// Translates a reference to a local variable, potentially including
/// a suffix. Might return a literal, which causes this to be invalid in
/// lvalue-context.
yul::Expression translateReference(yul::Identifier const& _identifier)
{
auto const& reference = m_references.at(&_identifier);
auto const varDecl = dynamic_cast<VariableDeclaration const*>(reference.declaration);
solUnimplementedAssert(varDecl);
std::string const& suffix = reference.suffix;
std::string value;
if (suffix.empty() && varDecl->isLocalVariable())
{
auto const& var = m_context.localVariable(*varDecl);
solAssert(var.type().sizeOnStack() == 1);
value = var.commaSeparatedList();
}
else if (varDecl->isConstant())
{
VariableDeclaration const* variable = rootConstVariableDeclaration(*varDecl);
solAssert(variable);
if (variable->value()->annotation().type->category() == Type::Category::RationalNumber)
{
u256 intValue = dynamic_cast<RationalNumberType const&>(*variable->value()->annotation().type).literalValue(nullptr);
if (auto const* bytesType = dynamic_cast<FixedBytesType const*>(variable->type()))
intValue <<= 256 - 8 * bytesType->numBytes();
else
solAssert(variable->type()->category() == Type::Category::Integer);
value = intValue.str();
}
else if (auto const* literal = dynamic_cast<Literal const*>(variable->value().get()))
{
Type const* type = literal->annotation().type;
switch (type->category())
{
case Type::Category::Bool:
case Type::Category::Address:
solAssert(type->category() == variable->annotation().type->category());
value = toCompactHexWithPrefix(type->literalValue(literal));
break;
case Type::Category::StringLiteral:
{
auto const& stringLiteral = dynamic_cast<StringLiteralType const&>(*type);
solAssert(variable->type()->category() == Type::Category::FixedBytes);
unsigned const numBytes = dynamic_cast<FixedBytesType const&>(*variable->type()).numBytes();
solAssert(stringLiteral.value().size() <= numBytes);
value = formatNumber(u256(h256(stringLiteral.value(), h256::AlignLeft)));
break;
}
default:
solAssert(false);
}
}
else
solAssert(false, "Invalid constant in inline assembly.");
}
else if (varDecl->isStateVariable())
{
if (suffix == "slot")
value = m_context.storageLocationOfStateVariable(*varDecl).first.str();
else if (suffix == "offset")
value = std::to_string(m_context.storageLocationOfStateVariable(*varDecl).second);
else
solAssert(false);
}
else if (varDecl->type()->dataStoredIn(DataLocation::Storage))
{
solAssert(suffix == "slot" || suffix == "offset");
solAssert(varDecl->isLocalVariable());
solAssert(!varDecl->type()->isValueType());
if (suffix == "slot")
value = IRVariable{*varDecl}.part("slot").name();
else
{
solAssert(!IRVariable{*varDecl}.hasPart("offset"));
value = "0"s;
}
}
else if (varDecl->type()->dataStoredIn(DataLocation::CallData))
{
solAssert(suffix == "offset" || suffix == "length");
value = IRVariable{*varDecl}.part(suffix).name();
}
else if (
auto const* functionType = dynamic_cast<FunctionType const*>(varDecl->type());
functionType && functionType->kind() == FunctionType::Kind::External
)
{
solAssert(suffix == "selector" || suffix == "address");
solAssert(varDecl->type()->sizeOnStack() == 2);
if (suffix == "selector")
value = IRVariable{*varDecl}.part("functionSelector").name();
else
value = IRVariable{*varDecl}.part("address").name();
}
else
solAssert(false);
if (isDigit(value.front()))
return yul::Literal{_identifier.debugData, yul::LiteralKind::Number, yul::YulString{value}, {}};
else
return yul::Identifier{_identifier.debugData, yul::YulString{value}};
}
yul::Dialect const& m_dialect;
IRGenerationContext& m_context;
ExternalRefsMap const& m_references;
};
}
std::string IRGeneratorForStatementsBase::code() const
{
return m_code.str();
}
std::ostringstream& IRGeneratorForStatementsBase::appendCode(bool _addLocationComment)
{
if (
_addLocationComment &&
m_currentLocation.isValid() &&
m_lastLocation != m_currentLocation
)
m_code << dispenseLocationComment(m_currentLocation, m_context) << "\n";
m_lastLocation = m_currentLocation;
return m_code;
}
void IRGeneratorForStatementsBase::setLocation(ASTNode const& _node)
{
m_currentLocation = _node.location();
}
std::string IRGeneratorForStatements::code() const
{
solAssert(!m_currentLValue, "LValue not reset!");
return IRGeneratorForStatementsBase::code();
}
void IRGeneratorForStatements::generate(Block const& _block)
{
try
{
_block.accept(*this);
}
catch (langutil::UnimplementedFeatureError const& _error)
{
if (!boost::get_error_info<langutil::errinfo_sourceLocation>(_error))
_error << langutil::errinfo_sourceLocation(m_currentLocation);
BOOST_THROW_EXCEPTION(_error);
}
}
void IRGeneratorForStatements::initializeStateVar(VariableDeclaration const& _varDecl)
{
try
{
setLocation(_varDecl);
solAssert(_varDecl.immutable() || m_context.isStateVariable(_varDecl), "Must be immutable or a state variable.");
solAssert(!_varDecl.isConstant());
if (!_varDecl.value())
return;
_varDecl.value()->accept(*this);
writeToLValue(
_varDecl.immutable() ?
IRLValue{*_varDecl.annotation().type, IRLValue::Immutable{&_varDecl}} :
IRLValue{*_varDecl.annotation().type, IRLValue::Storage{
toCompactHexWithPrefix(m_context.storageLocationOfStateVariable(_varDecl).first),
m_context.storageLocationOfStateVariable(_varDecl).second
}},
*_varDecl.value()
);
}
catch (langutil::UnimplementedFeatureError const& _error)
{
if (!boost::get_error_info<langutil::errinfo_sourceLocation>(_error))
_error << langutil::errinfo_sourceLocation(m_currentLocation);
BOOST_THROW_EXCEPTION(_error);
}
}
void IRGeneratorForStatements::initializeLocalVar(VariableDeclaration const& _varDecl)
{
try
{
setLocation(_varDecl);
solAssert(m_context.isLocalVariable(_varDecl), "Must be a local variable.");
auto const* type = _varDecl.type();
if (dynamic_cast<MappingType const*>(type))
return;
else if (auto const* refType = dynamic_cast<ReferenceType const*>(type))
if (refType->dataStoredIn(DataLocation::Storage) && refType->isPointer())
return;
IRVariable zero = zeroValue(*type);
assign(m_context.localVariable(_varDecl), zero);
}
catch (langutil::UnimplementedFeatureError const& _error)
{
if (!boost::get_error_info<langutil::errinfo_sourceLocation>(_error))
_error << langutil::errinfo_sourceLocation(m_currentLocation);
BOOST_THROW_EXCEPTION(_error);
}
}
IRVariable IRGeneratorForStatements::evaluateExpression(Expression const& _expression, Type const& _targetType)
{
try
{
setLocation(_expression);
_expression.accept(*this);
setLocation(_expression);
IRVariable variable{m_context.newYulVariable(), _targetType};
define(variable, _expression);
return variable;
}
catch (langutil::UnimplementedFeatureError const& _error)
{
if (!boost::get_error_info<langutil::errinfo_sourceLocation>(_error))
_error << langutil::errinfo_sourceLocation(m_currentLocation);
BOOST_THROW_EXCEPTION(_error);
}
}
std::string IRGeneratorForStatements::constantValueFunction(VariableDeclaration const& _constant)
{
try
{
std::string functionName = IRNames::constantValueFunction(_constant);
return m_context.functionCollector().createFunction(functionName, [&] {
Whiskers templ(R"(
<sourceLocationComment>
function <functionName>() -> <ret> {
<code>
<ret> := <value>
}
)");
templ("sourceLocationComment", dispenseLocationComment(_constant, m_context));
templ("functionName", functionName);
IRGeneratorForStatements generator(m_context, m_utils);
solAssert(_constant.value());
Type const& constantType = *_constant.type();
templ("value", generator.evaluateExpression(*_constant.value(), constantType).commaSeparatedList());
templ("code", generator.code());
templ("ret", IRVariable("ret", constantType).commaSeparatedList());
return templ.render();
});
}
catch (langutil::UnimplementedFeatureError const& _error)
{
if (!boost::get_error_info<langutil::errinfo_sourceLocation>(_error))
_error << langutil::errinfo_sourceLocation(m_currentLocation);
BOOST_THROW_EXCEPTION(_error);
}
}
void IRGeneratorForStatements::endVisit(VariableDeclarationStatement const& _varDeclStatement)
{
setLocation(_varDeclStatement);
if (Expression const* expression = _varDeclStatement.initialValue())
{
if (_varDeclStatement.declarations().size() > 1)
{
auto const* tupleType = dynamic_cast<TupleType const*>(expression->annotation().type);
solAssert(tupleType, "Expected expression of tuple type.");
solAssert(_varDeclStatement.declarations().size() == tupleType->components().size(), "Invalid number of tuple components.");
for (size_t i = 0; i < _varDeclStatement.declarations().size(); ++i)
if (auto const& decl = _varDeclStatement.declarations()[i])
{
solAssert(tupleType->components()[i]);
define(m_context.addLocalVariable(*decl), IRVariable(*expression).tupleComponent(i));
}
}
else
{
VariableDeclaration const& varDecl = *_varDeclStatement.declarations().front();
define(m_context.addLocalVariable(varDecl), *expression);
}
}
else
for (auto const& decl: _varDeclStatement.declarations())
if (decl)
{
declare(m_context.addLocalVariable(*decl));
initializeLocalVar(*decl);
}
}
bool IRGeneratorForStatements::visit(Conditional const& _conditional)
{
_conditional.condition().accept(*this);
setLocation(_conditional);
std::string condition = expressionAsType(_conditional.condition(), *TypeProvider::boolean());
declare(_conditional);
appendCode() << "switch " << condition << "\n" "case 0 {\n";
_conditional.falseExpression().accept(*this);
setLocation(_conditional);
assign(_conditional, _conditional.falseExpression());
appendCode() << "}\n" "default {\n";
_conditional.trueExpression().accept(*this);
setLocation(_conditional);
assign(_conditional, _conditional.trueExpression());
appendCode() << "}\n";
return false;
}
bool IRGeneratorForStatements::visit(Assignment const& _assignment)
{
_assignment.rightHandSide().accept(*this);
setLocation(_assignment);
Token assignmentOperator = _assignment.assignmentOperator();
Token binaryOperator =
assignmentOperator == Token::Assign ?
assignmentOperator :
TokenTraits::AssignmentToBinaryOp(assignmentOperator);
if (TokenTraits::isShiftOp(binaryOperator))
solAssert(type(_assignment.rightHandSide()).mobileType());
IRVariable value =
type(_assignment.leftHandSide()).isValueType() ?
convert(
_assignment.rightHandSide(),
TokenTraits::isShiftOp(binaryOperator) ? *type(_assignment.rightHandSide()).mobileType() : type(_assignment)
) :
_assignment.rightHandSide();
_assignment.leftHandSide().accept(*this);
solAssert(!!m_currentLValue, "LValue not retrieved.");
setLocation(_assignment);
if (assignmentOperator != Token::Assign)
{
solAssert(type(_assignment.leftHandSide()).isValueType(), "Compound operators only available for value types.");
solAssert(binaryOperator != Token::Exp);
solAssert(type(_assignment) == type(_assignment.leftHandSide()));
IRVariable leftIntermediate = readFromLValue(*m_currentLValue);
solAssert(type(_assignment) == leftIntermediate.type());
define(_assignment) << (
TokenTraits::isShiftOp(binaryOperator) ?
shiftOperation(binaryOperator, leftIntermediate, value) :
binaryOperation(binaryOperator, type(_assignment), leftIntermediate.name(), value.name())
) << "\n";
writeToLValue(*m_currentLValue, IRVariable(_assignment));
}
else
{
writeToLValue(*m_currentLValue, value);
if (dynamic_cast<ReferenceType const*>(&m_currentLValue->type))
define(_assignment, readFromLValue(*m_currentLValue));
else if (*_assignment.annotation().type != *TypeProvider::emptyTuple())
define(_assignment, value);
}
m_currentLValue.reset();
return false;
}
bool IRGeneratorForStatements::visit(TupleExpression const& _tuple)
{
setLocation(_tuple);
if (_tuple.isInlineArray())
{
auto const& arrayType = dynamic_cast<ArrayType const&>(*_tuple.annotation().type);
solAssert(!arrayType.isDynamicallySized(), "Cannot create dynamically sized inline array.");
define(_tuple) <<
m_utils.allocateMemoryArrayFunction(arrayType) <<
"(" <<
_tuple.components().size() <<
")\n";
std::string mpos = IRVariable(_tuple).part("mpos").name();
Type const& baseType = *arrayType.baseType();
for (size_t i = 0; i < _tuple.components().size(); i++)
{
Expression const& component = *_tuple.components()[i];
component.accept(*this);
setLocation(_tuple);
IRVariable converted = convert(component, baseType);
appendCode() <<
m_utils.writeToMemoryFunction(baseType) <<
"(" <<
("add(" + mpos + ", " + std::to_string(i * arrayType.memoryStride()) + ")") <<
", " <<
converted.commaSeparatedList() <<
")\n";
}
}
else
{
bool willBeWrittenTo = _tuple.annotation().willBeWrittenTo;
if (willBeWrittenTo)
solAssert(!m_currentLValue);
if (_tuple.components().size() == 1)
{
solAssert(_tuple.components().front());
_tuple.components().front()->accept(*this);
setLocation(_tuple);
if (willBeWrittenTo)
solAssert(!!m_currentLValue);
else
define(_tuple, *_tuple.components().front());
}
else
{
std::vector<std::optional<IRLValue>> lvalues;
for (size_t i = 0; i < _tuple.components().size(); ++i)
if (auto const& component = _tuple.components()[i])
{
component->accept(*this);
setLocation(_tuple);
if (willBeWrittenTo)
{
solAssert(!!m_currentLValue);
lvalues.emplace_back(std::move(m_currentLValue));
m_currentLValue.reset();
}
else
define(IRVariable(_tuple).tupleComponent(i), *component);
}
else if (willBeWrittenTo)
lvalues.emplace_back();
if (_tuple.annotation().willBeWrittenTo)
m_currentLValue.emplace(IRLValue{
*_tuple.annotation().type,
IRLValue::Tuple{std::move(lvalues)}
});
}
}
return false;
}
bool IRGeneratorForStatements::visit(Block const& _block)
{
if (_block.unchecked())
{
solAssert(m_context.arithmetic() == Arithmetic::Checked);
m_context.setArithmetic(Arithmetic::Wrapping);
}
return true;
}
void IRGeneratorForStatements::endVisit(Block const& _block)
{
if (_block.unchecked())
{
solAssert(m_context.arithmetic() == Arithmetic::Wrapping);
m_context.setArithmetic(Arithmetic::Checked);
}
}
bool IRGeneratorForStatements::visit(IfStatement const& _ifStatement)
{
_ifStatement.condition().accept(*this);
setLocation(_ifStatement);
std::string condition = expressionAsType(_ifStatement.condition(), *TypeProvider::boolean());
if (_ifStatement.falseStatement())
{
appendCode() << "switch " << condition << "\n" "case 0 {\n";
_ifStatement.falseStatement()->accept(*this);
setLocation(_ifStatement);
appendCode() << "}\n" "default {\n";
}
else
appendCode() << "if " << condition << " {\n";
_ifStatement.trueStatement().accept(*this);
setLocation(_ifStatement);
appendCode() << "}\n";
return false;
}
void IRGeneratorForStatements::endVisit(PlaceholderStatement const& _placeholder)
{
solAssert(m_placeholderCallback);
setLocation(_placeholder);
appendCode() << m_placeholderCallback();
}
bool IRGeneratorForStatements::visit(ForStatement const& _forStatement)
{
setLocation(_forStatement);
generateLoop(
_forStatement.body(),
_forStatement.condition(),
_forStatement.initializationExpression(),
_forStatement.loopExpression()
);
return false;
}
bool IRGeneratorForStatements::visit(WhileStatement const& _whileStatement)
{
setLocation(_whileStatement);
generateLoop(
_whileStatement.body(),
&_whileStatement.condition(),
nullptr,
nullptr,
_whileStatement.isDoWhile()
);
return false;
}
bool IRGeneratorForStatements::visit(Continue const& _continue)
{
setLocation(_continue);
appendCode() << "continue\n";
return false;
}
bool IRGeneratorForStatements::visit(Break const& _break)
{
setLocation(_break);
appendCode() << "break\n";
return false;
}
void IRGeneratorForStatements::endVisit(Return const& _return)
{
setLocation(_return);
if (Expression const* value = _return.expression())
{
solAssert(_return.annotation().functionReturnParameters, "Invalid return parameters pointer.");
std::vector<ASTPointer<VariableDeclaration>> const& returnParameters =
_return.annotation().functionReturnParameters->parameters();
if (returnParameters.size() > 1)
for (size_t i = 0; i < returnParameters.size(); ++i)
assign(m_context.localVariable(*returnParameters[i]), IRVariable(*value).tupleComponent(i));
else if (returnParameters.size() == 1)
assign(m_context.localVariable(*returnParameters.front()), *value);
}
appendCode() << "leave\n";
}
bool IRGeneratorForStatements::visit(UnaryOperation const& _unaryOperation)
{
setLocation(_unaryOperation);
FunctionDefinition const* function = *_unaryOperation.annotation().userDefinedFunction;
if (function)
{
_unaryOperation.subExpression().accept(*this);
setLocation(_unaryOperation);
solAssert(function->isImplemented());
solAssert(function->isFree());
solAssert(function->parameters().size() == 1);
solAssert(function->returnParameters().size() == 1);
solAssert(*function->returnParameters()[0]->type() == *_unaryOperation.annotation().type);
std::string argument = expressionAsType(_unaryOperation.subExpression(), *function->parameters()[0]->type());
solAssert(!argument.empty());
solAssert(_unaryOperation.userDefinedFunctionType()->kind() == FunctionType::Kind::Internal);
define(_unaryOperation) <<
m_context.enqueueFunctionForCodeGeneration(*function) <<
("(" + argument + ")\n");
return false;
}
Type const& resultType = type(_unaryOperation);
Token const op = _unaryOperation.getOperator();
if (resultType.category() == Type::Category::RationalNumber)
{
define(_unaryOperation) << formatNumber(resultType.literalValue(nullptr)) << "\n";
return false;
}
_unaryOperation.subExpression().accept(*this);
setLocation(_unaryOperation);
if (op == Token::Delete)
{
solAssert(!!m_currentLValue, "LValue not retrieved.");
std::visit(
util::GenericVisitor{
[&](IRLValue::Storage const& _storage) {
appendCode() <<
m_utils.storageSetToZeroFunction(m_currentLValue->type) <<
"(" <<
_storage.slot <<
", " <<
_storage.offsetString() <<
")\n";
m_currentLValue.reset();
},
[&](auto const&) {
IRVariable zeroValue(m_context.newYulVariable(), m_currentLValue->type);
define(zeroValue) << m_utils.zeroValueFunction(m_currentLValue->type) << "()\n";
writeToLValue(*m_currentLValue, zeroValue);
m_currentLValue.reset();
}
},
m_currentLValue->kind
);
}
else if (resultType.category() == Type::Category::Integer)
{
solAssert(resultType == type(_unaryOperation.subExpression()), "Result type doesn't match!");
if (op == Token::Inc || op == Token::Dec)
{
solAssert(!!m_currentLValue, "LValue not retrieved.");
IRVariable modifiedValue(m_context.newYulVariable(), resultType);
IRVariable originalValue = readFromLValue(*m_currentLValue);
bool checked = m_context.arithmetic() == Arithmetic::Checked;
define(modifiedValue) <<
(op == Token::Inc ?
(checked ? m_utils.incrementCheckedFunction(resultType) : m_utils.incrementWrappingFunction(resultType)) :
(checked ? m_utils.decrementCheckedFunction(resultType) : m_utils.decrementWrappingFunction(resultType))
) <<
"(" <<
originalValue.name() <<
")\n";
writeToLValue(*m_currentLValue, modifiedValue);
m_currentLValue.reset();
define(_unaryOperation, _unaryOperation.isPrefixOperation() ? modifiedValue : originalValue);
}
else if (op == Token::BitNot)
appendSimpleUnaryOperation(_unaryOperation, _unaryOperation.subExpression());
else if (op == Token::Add)
// According to SyntaxChecker...
solAssert(false, "Use of unary + is disallowed.");
else if (op == Token::Sub)
{
IntegerType const& intType = *dynamic_cast<IntegerType const*>(&resultType);
define(_unaryOperation) << (
m_context.arithmetic() == Arithmetic::Checked ?
m_utils.negateNumberCheckedFunction(intType) :
m_utils.negateNumberWrappingFunction(intType)
) << "(" << IRVariable(_unaryOperation.subExpression()).name() << ")\n";
}
else
solUnimplemented("Unary operator not yet implemented");
}
else if (resultType.category() == Type::Category::FixedBytes)
{
solAssert(op == Token::BitNot, "Only bitwise negation is allowed for FixedBytes");
solAssert(resultType == type(_unaryOperation.subExpression()), "Result type doesn't match!");
appendSimpleUnaryOperation(_unaryOperation, _unaryOperation.subExpression());
}
else if (resultType.category() == Type::Category::Bool)
{
solAssert(
op != Token::BitNot,
"Bitwise Negation can't be done on bool!"
);
appendSimpleUnaryOperation(_unaryOperation, _unaryOperation.subExpression());
}
else
solUnimplemented("Unary operator not yet implemented");
return false;
}
bool IRGeneratorForStatements::visit(BinaryOperation const& _binOp)
{
setLocation(_binOp);
FunctionDefinition const* function = *_binOp.annotation().userDefinedFunction;
if (function)
{
_binOp.leftExpression().accept(*this);
_binOp.rightExpression().accept(*this);
setLocation(_binOp);
solAssert(function->isImplemented());
solAssert(function->isFree());
solAssert(function->parameters().size() == 2);
solAssert(function->returnParameters().size() == 1);
solAssert(*function->returnParameters()[0]->type() == *_binOp.annotation().type);
std::string left = expressionAsType(_binOp.leftExpression(), *function->parameters()[0]->type());
std::string right = expressionAsType(_binOp.rightExpression(), *function->parameters()[1]->type());
solAssert(!left.empty() && !right.empty());
solAssert(_binOp.userDefinedFunctionType()->kind() == FunctionType::Kind::Internal);
define(_binOp) <<
m_context.enqueueFunctionForCodeGeneration(*function) <<
("(" + left + ", " + right + ")\n");
return false;
}
solAssert(!!_binOp.annotation().commonType);
Type const* commonType = _binOp.annotation().commonType;
langutil::Token op = _binOp.getOperator();
if (op == Token::And || op == Token::Or)
{
// This can short-circuit!
appendAndOrOperatorCode(_binOp);
return false;
}
if (commonType->category() == Type::Category::RationalNumber)
{
define(_binOp) << toCompactHexWithPrefix(commonType->literalValue(nullptr)) << "\n";
return false; // skip sub-expressions
}
_binOp.leftExpression().accept(*this);
_binOp.rightExpression().accept(*this);
setLocation(_binOp);
if (TokenTraits::isCompareOp(op))
{
solAssert(commonType->isValueType());
bool isSigned = false;
if (auto type = dynamic_cast<IntegerType const*>(commonType))
isSigned = type->isSigned();
std::string args = expressionAsCleanedType(_binOp.leftExpression(), *commonType);
args += ", " + expressionAsCleanedType(_binOp.rightExpression(), *commonType);
auto functionType = dynamic_cast<FunctionType const*>(commonType);
solAssert(functionType ? (op == Token::Equal || op == Token::NotEqual) : true, "Invalid function pointer comparison!");
std::string expr;
if (functionType && functionType->kind() == FunctionType::Kind::External)
{
solUnimplementedAssert(functionType->sizeOnStack() == 2, "");
expr = m_utils.externalFunctionPointersEqualFunction() +
"(" +
IRVariable{_binOp.leftExpression()}.part("address").name() + "," +
IRVariable{_binOp.leftExpression()}.part("functionSelector").name() + "," +
IRVariable{_binOp.rightExpression()}.part("address").name() + "," +
IRVariable{_binOp.rightExpression()}.part("functionSelector").name() +
")";
if (op == Token::NotEqual)
expr = "iszero(" + expr + ")";
}
else if (op == Token::Equal)
expr = "eq(" + std::move(args) + ")";
else if (op == Token::NotEqual)
expr = "iszero(eq(" + std::move(args) + "))";
else if (op == Token::GreaterThanOrEqual)
expr = "iszero(" + std::string(isSigned ? "slt(" : "lt(") + std::move(args) + "))";
else if (op == Token::LessThanOrEqual)
expr = "iszero(" + std::string(isSigned ? "sgt(" : "gt(") + std::move(args) + "))";
else if (op == Token::GreaterThan)
expr = (isSigned ? "sgt(" : "gt(") + std::move(args) + ")";
else if (op == Token::LessThan)
expr = (isSigned ? "slt(" : "lt(") + std::move(args) + ")";
else
solAssert(false, "Unknown comparison operator.");
define(_binOp) << expr << "\n";
}
else if (op == Token::Exp)
{
IRVariable left = convert(_binOp.leftExpression(), *commonType);
IRVariable right = convert(_binOp.rightExpression(), *type(_binOp.rightExpression()).mobileType());
if (m_context.arithmetic() == Arithmetic::Wrapping)
define(_binOp) << m_utils.wrappingIntExpFunction(
dynamic_cast<IntegerType const&>(left.type()),
dynamic_cast<IntegerType const&>(right.type())
) << "(" << left.name() << ", " << right.name() << ")\n";
else if (auto rationalNumberType = dynamic_cast<RationalNumberType const*>(_binOp.leftExpression().annotation().type))
{
solAssert(rationalNumberType->integerType(), "Invalid literal as the base for exponentiation.");
solAssert(dynamic_cast<IntegerType const*>(commonType));
define(_binOp) << m_utils.overflowCheckedIntLiteralExpFunction(
*rationalNumberType,
dynamic_cast<IntegerType const&>(right.type()),
dynamic_cast<IntegerType const&>(*commonType)
) << "(" << right.name() << ")\n";
}
else
define(_binOp) << m_utils.overflowCheckedIntExpFunction(
dynamic_cast<IntegerType const&>(left.type()),
dynamic_cast<IntegerType const&>(right.type())
) << "(" << left.name() << ", " << right.name() << ")\n";
}
else if (TokenTraits::isShiftOp(op))
{
IRVariable left = convert(_binOp.leftExpression(), *commonType);
IRVariable right = convert(_binOp.rightExpression(), *type(_binOp.rightExpression()).mobileType());
define(_binOp) << shiftOperation(_binOp.getOperator(), left, right) << "\n";
}
else
{
std::string left = expressionAsType(_binOp.leftExpression(), *commonType);
std::string right = expressionAsType(_binOp.rightExpression(), *commonType);
define(_binOp) << binaryOperation(_binOp.getOperator(), *commonType, left, right) << "\n";
}
return false;
}
void IRGeneratorForStatements::endVisit(FunctionCall const& _functionCall)
{
setLocation(_functionCall);
auto functionCallKind = *_functionCall.annotation().kind;
if (functionCallKind == FunctionCallKind::TypeConversion)
{
solAssert(
_functionCall.expression().annotation().type->category() == Type::Category::TypeType,
"Expected category to be TypeType"
);
solAssert(_functionCall.arguments().size() == 1, "Expected one argument for type conversion");
define(_functionCall, *_functionCall.arguments().front());
return;
}
FunctionTypePointer functionType = nullptr;
if (functionCallKind == FunctionCallKind::StructConstructorCall)
{
auto const& type = dynamic_cast<TypeType const&>(*_functionCall.expression().annotation().type);
auto const& structType = dynamic_cast<StructType const&>(*type.actualType());
functionType = structType.constructorType();
}
else
functionType = dynamic_cast<FunctionType const*>(_functionCall.expression().annotation().type);
TypePointers parameterTypes = functionType->parameterTypes();
std::vector<ASTPointer<Expression const>> const& arguments = _functionCall.sortedArguments();
if (functionCallKind == FunctionCallKind::StructConstructorCall)
{
TypeType const& type = dynamic_cast<TypeType const&>(*_functionCall.expression().annotation().type);
auto const& structType = dynamic_cast<StructType const&>(*type.actualType());
define(_functionCall) << m_utils.allocateMemoryStructFunction(structType) << "()\n";
MemberList::MemberMap members = structType.nativeMembers(nullptr);
solAssert(members.size() == arguments.size(), "Struct parameter mismatch.");
for (size_t i = 0; i < arguments.size(); i++)
{
IRVariable converted = convert(*arguments[i], *parameterTypes[i]);
appendCode() <<
m_utils.writeToMemoryFunction(*functionType->parameterTypes()[i]) <<
"(add(" <<
IRVariable(_functionCall).part("mpos").name() <<
", " <<
structType.memoryOffsetOfMember(members[i].name) <<
"), " <<
converted.commaSeparatedList() <<
")\n";
}
return;
}
switch (functionType->kind())
{
case FunctionType::Kind::Declaration:
solAssert(false, "Attempted to generate code for calling a function definition.");
break;
case FunctionType::Kind::Internal:
{
FunctionDefinition const* functionDef = ASTNode::resolveFunctionCall(_functionCall, &m_context.mostDerivedContract());
solAssert(!functionType->takesArbitraryParameters());
std::vector<std::string> args;
if (functionType->hasBoundFirstArgument())
args += IRVariable(_functionCall.expression()).part("self").stackSlots();
for (size_t i = 0; i < arguments.size(); ++i)
args += convert(*arguments[i], *parameterTypes[i]).stackSlots();
if (functionDef)
{
solAssert(functionDef->isImplemented());
define(_functionCall) <<
m_context.enqueueFunctionForCodeGeneration(*functionDef) <<
"(" <<
joinHumanReadable(args) <<
")\n";
}
else
{
YulArity arity = YulArity::fromType(*functionType);
m_context.internalFunctionCalledThroughDispatch(arity);
define(_functionCall) <<
IRNames::internalDispatch(arity) <<
"(" <<
IRVariable(_functionCall.expression()).part("functionIdentifier").name() <<
joinHumanReadablePrefixed(args) <<
")\n";
}
break;
}
case FunctionType::Kind::External:
case FunctionType::Kind::DelegateCall:
appendExternalFunctionCall(_functionCall, arguments);
break;
case FunctionType::Kind::BareCall:
case FunctionType::Kind::BareDelegateCall:
case FunctionType::Kind::BareStaticCall:
appendBareCall(_functionCall, arguments);
break;
case FunctionType::Kind::BareCallCode:
solAssert(false, "Callcode has been removed.");
case FunctionType::Kind::Event:
{
auto const& event = dynamic_cast<EventDefinition const&>(functionType->declaration());
TypePointers paramTypes = functionType->parameterTypes();
ABIFunctions abi(m_context.evmVersion(), m_context.revertStrings(), m_context.functionCollector());
std::vector<IRVariable> indexedArgs;
std::vector<std::string> nonIndexedArgs;
TypePointers nonIndexedArgTypes;
TypePointers nonIndexedParamTypes;
if (!event.isAnonymous())
define(indexedArgs.emplace_back(m_context.newYulVariable(), *TypeProvider::uint256())) <<
formatNumber(u256(h256::Arith(keccak256(functionType->externalSignature())))) << "\n";
for (size_t i = 0; i < event.parameters().size(); ++i)
{
Expression const& arg = *arguments[i];
if (event.parameters()[i]->isIndexed())
{
std::string value;
if (auto const& referenceType = dynamic_cast<ReferenceType const*>(paramTypes[i]))
define(indexedArgs.emplace_back(m_context.newYulVariable(), *TypeProvider::uint256())) <<
m_utils.packedHashFunction({arg.annotation().type}, {referenceType}) <<
"(" <<
IRVariable(arg).commaSeparatedList() <<
")\n";
else if (auto functionType = dynamic_cast<FunctionType const*>(paramTypes[i]))
{
solAssert(
IRVariable(arg).type() == *functionType &&
functionType->kind() == FunctionType::Kind::External &&
!functionType->hasBoundFirstArgument(),
""
);
define(indexedArgs.emplace_back(m_context.newYulVariable(), *TypeProvider::fixedBytes(32))) <<
m_utils.combineExternalFunctionIdFunction() <<
"(" <<
IRVariable(arg).commaSeparatedList() <<
")\n";
}
else
{
solAssert(parameterTypes[i]->sizeOnStack() == 1, "");
indexedArgs.emplace_back(convertAndCleanup(arg, *parameterTypes[i]));
}
}
else
{
nonIndexedArgs += IRVariable(arg).stackSlots();
nonIndexedArgTypes.push_back(arg.annotation().type);
nonIndexedParamTypes.push_back(paramTypes[i]);
}
}
solAssert(indexedArgs.size() <= 4, "Too many indexed arguments.");
Whiskers templ(R"({
let <pos> := <allocateUnbounded>()
let <end> := <encode>(<pos> <nonIndexedArgs>)
<log>(<pos>, sub(<end>, <pos>) <indexedArgs>)
})");
templ("pos", m_context.newYulVariable());
templ("end", m_context.newYulVariable());
templ("allocateUnbounded", m_utils.allocateUnboundedFunction());
templ("encode", abi.tupleEncoder(nonIndexedArgTypes, nonIndexedParamTypes));
templ("nonIndexedArgs", joinHumanReadablePrefixed(nonIndexedArgs));
templ("log", "log" + std::to_string(indexedArgs.size()));
templ("indexedArgs", joinHumanReadablePrefixed(indexedArgs | ranges::views::transform([&](auto const& _arg) {
return _arg.commaSeparatedList();
})));
appendCode() << templ.render();
break;
}
case FunctionType::Kind::Error:
{
ErrorDefinition const* error = dynamic_cast<ErrorDefinition const*>(ASTNode::referencedDeclaration(_functionCall.expression()));
solAssert(error);
revertWithError(
error->functionType(true)->externalSignature(),
error->functionType(true)->parameterTypes(),
_functionCall.sortedArguments()
);
break;
}
case FunctionType::Kind::Wrap:
case FunctionType::Kind::Unwrap:
{
solAssert(arguments.size() == 1);
FunctionType::Kind kind = functionType->kind();
if (kind == FunctionType::Kind::Wrap)
solAssert(
type(*arguments.at(0)).isImplicitlyConvertibleTo(
dynamic_cast<UserDefinedValueType const&>(type(_functionCall)).underlyingType()
),
""
);
else
solAssert(type(*arguments.at(0)).category() == Type::Category::UserDefinedValueType);
define(_functionCall, *arguments.at(0));
break;
}
case FunctionType::Kind::Assert:
case FunctionType::Kind::Require:
{
solAssert(arguments.size() > 0, "Expected at least one parameter for require/assert");
solAssert(arguments.size() <= 2, "Expected no more than two parameters for require/assert");
Type const* messageArgumentType =
arguments.size() > 1 && m_context.revertStrings() != RevertStrings::Strip ?
arguments[1]->annotation().type :
nullptr;
std::string requireOrAssertFunction = m_utils.requireOrAssertFunction(
functionType->kind() == FunctionType::Kind::Assert,
messageArgumentType
);
appendCode() << std::move(requireOrAssertFunction) << "(" << IRVariable(*arguments[0]).name();
if (messageArgumentType && messageArgumentType->sizeOnStack() > 0)
appendCode() << ", " << IRVariable(*arguments[1]).commaSeparatedList();
appendCode() << ")\n";
break;
}
case FunctionType::Kind::ABIEncode:
case FunctionType::Kind::ABIEncodePacked:
case FunctionType::Kind::ABIEncodeWithSelector:
case FunctionType::Kind::ABIEncodeCall:
case FunctionType::Kind::ABIEncodeWithSignature:
{
bool const isPacked = functionType->kind() == FunctionType::Kind::ABIEncodePacked;
solAssert(functionType->padArguments() != isPacked);
bool const hasSelectorOrSignature =
functionType->kind() == FunctionType::Kind::ABIEncodeWithSelector ||
functionType->kind() == FunctionType::Kind::ABIEncodeCall ||
functionType->kind() == FunctionType::Kind::ABIEncodeWithSignature;
TypePointers argumentTypes;
TypePointers targetTypes;
std::vector<std::string> argumentVars;
std::string selector;
std::vector<ASTPointer<Expression const>> argumentsOfEncodeFunction;
if (functionType->kind() == FunctionType::Kind::ABIEncodeCall)
{
solAssert(arguments.size() == 2);
// Account for tuples with one component which become that component
if (type(*arguments[1]).category() == Type::Category::Tuple)
{
auto const& tupleExpression = dynamic_cast<TupleExpression const&>(*arguments[1]);
for (auto component: tupleExpression.components())
argumentsOfEncodeFunction.push_back(component);
}
else
argumentsOfEncodeFunction.push_back(arguments[1]);
}
else
for (size_t i = 0; i < arguments.size(); ++i)
{
// ignore selector
if (hasSelectorOrSignature && i == 0)
continue;
argumentsOfEncodeFunction.push_back(arguments[i]);
}
for (auto const& argument: argumentsOfEncodeFunction)
{
argumentTypes.emplace_back(&type(*argument));
argumentVars += IRVariable(*argument).stackSlots();
}
if (functionType->kind() == FunctionType::Kind::ABIEncodeCall)
{
auto encodedFunctionType = dynamic_cast<FunctionType const*>(arguments.front()->annotation().type);
solAssert(encodedFunctionType);
encodedFunctionType = encodedFunctionType->asExternallyCallableFunction(false);
solAssert(encodedFunctionType);
targetTypes = encodedFunctionType->parameterTypes();
}
else
for (auto const& argument: argumentsOfEncodeFunction)
targetTypes.emplace_back(type(*argument).fullEncodingType(false, true, isPacked));
if (functionType->kind() == FunctionType::Kind::ABIEncodeCall)
{
auto const& selectorType = dynamic_cast<FunctionType const&>(type(*arguments.front()));
if (selectorType.kind() == FunctionType::Kind::Declaration)
{
solAssert(selectorType.hasDeclaration());
selector = formatNumber(selectorType.externalIdentifier() << (256 - 32));
}
else
{
selector = convert(
IRVariable(*arguments[0]).part("functionSelector"),
*TypeProvider::fixedBytes(4)
).name();
}
}
else if (functionType->kind() == FunctionType::Kind::ABIEncodeWithSignature)
{
// hash the signature
Type const& selectorType = type(*arguments.front());
if (auto const* stringType = dynamic_cast<StringLiteralType const*>(&selectorType))
selector = formatNumber(util::selectorFromSignatureU256(stringType->value()));
else
{
// Used to reset the free memory pointer later.
// TODO This is an abuse of the `allocateUnbounded` function.
// We might want to introduce a new set of memory handling functions here
// a la "setMemoryCheckPoint" and "freeUntilCheckPoint".
std::string freeMemoryPre = m_context.newYulVariable();
appendCode() << "let " << freeMemoryPre << " := " << m_utils.allocateUnboundedFunction() << "()\n";
IRVariable array = convert(*arguments[0], *TypeProvider::bytesMemory());
IRVariable hashVariable(m_context.newYulVariable(), *TypeProvider::fixedBytes(32));
std::string dataAreaFunction = m_utils.arrayDataAreaFunction(*TypeProvider::bytesMemory());
std::string arrayLengthFunction = m_utils.arrayLengthFunction(*TypeProvider::bytesMemory());
define(hashVariable) <<
"keccak256(" <<
(dataAreaFunction + "(" + array.commaSeparatedList() + ")") <<
", " <<
(arrayLengthFunction + "(" + array.commaSeparatedList() +")") <<
")\n";
IRVariable selectorVariable(m_context.newYulVariable(), *TypeProvider::fixedBytes(4));
define(selectorVariable, hashVariable);
selector = selectorVariable.name();
appendCode() << m_utils.finalizeAllocationFunction() << "(" << freeMemoryPre << ", 0)\n";
}
}
else if (functionType->kind() == FunctionType::Kind::ABIEncodeWithSelector)
selector = convert(*arguments.front(), *TypeProvider::fixedBytes(4)).name();
Whiskers templ(R"(
let <data> := <allocateUnbounded>()
let <memPtr> := add(<data>, 0x20)
<?+selector>
mstore(<memPtr>, <selector>)
<memPtr> := add(<memPtr>, 4)
</+selector>
let <mend> := <encode>(<memPtr><arguments>)
mstore(<data>, sub(<mend>, add(<data>, 0x20)))
<finalizeAllocation>(<data>, sub(<mend>, <data>))
)");
templ("data", IRVariable(_functionCall).part("mpos").name());
templ("allocateUnbounded", m_utils.allocateUnboundedFunction());
templ("memPtr", m_context.newYulVariable());
templ("mend", m_context.newYulVariable());
templ("selector", selector);
templ("encode",
isPacked ?
m_context.abiFunctions().tupleEncoderPacked(argumentTypes, targetTypes) :
m_context.abiFunctions().tupleEncoder(argumentTypes, targetTypes, false)
);
templ("arguments", joinHumanReadablePrefixed(argumentVars));
templ("finalizeAllocation", m_utils.finalizeAllocationFunction());
appendCode() << templ.render();
break;
}
case FunctionType::Kind::ABIDecode:
{
Whiskers templ(R"(
<?+retVars>let <retVars> := </+retVars> <abiDecode>(<offset>, add(<offset>, <length>))
)");
Type const* firstArgType = arguments.front()->annotation().type;
TypePointers targetTypes;
if (TupleType const* targetTupleType = dynamic_cast<TupleType const*>(_functionCall.annotation().type))
targetTypes = targetTupleType->components();
else
targetTypes = TypePointers{_functionCall.annotation().type};
if (
auto referenceType = dynamic_cast<ReferenceType const*>(firstArgType);
referenceType && referenceType->dataStoredIn(DataLocation::CallData)
)
{
solAssert(referenceType->isImplicitlyConvertibleTo(*TypeProvider::bytesCalldata()));
IRVariable var = convert(*arguments[0], *TypeProvider::bytesCalldata());
templ("abiDecode", m_context.abiFunctions().tupleDecoder(targetTypes, false));
templ("offset", var.part("offset").name());
templ("length", var.part("length").name());
}
else
{
IRVariable var = convert(*arguments[0], *TypeProvider::bytesMemory());
templ("abiDecode", m_context.abiFunctions().tupleDecoder(targetTypes, true));
templ("offset", "add(" + var.part("mpos").name() + ", 32)");
templ("length",
m_utils.arrayLengthFunction(*TypeProvider::bytesMemory()) + "(" + var.part("mpos").name() + ")"
);
}
templ("retVars", IRVariable(_functionCall).commaSeparatedList());
appendCode() << templ.render();
break;
}
case FunctionType::Kind::Revert:
{
solAssert(arguments.size() == parameterTypes.size());
solAssert(arguments.size() <= 1);
solAssert(
arguments.empty() ||
arguments.front()->annotation().type->isImplicitlyConvertibleTo(*TypeProvider::stringMemory()),
"");
if (m_context.revertStrings() == RevertStrings::Strip || arguments.empty())
appendCode() << "revert(0, 0)\n";
else
revertWithError(
"Error(string)",
{TypeProvider::stringMemory()},
{arguments.front()}
);
break;
}
// Array creation using new
case FunctionType::Kind::ObjectCreation:
{
ArrayType const& arrayType = dynamic_cast<ArrayType const&>(*_functionCall.annotation().type);
solAssert(arguments.size() == 1);
IRVariable value = convert(*arguments[0], *TypeProvider::uint256());
define(_functionCall) <<
m_utils.allocateAndInitializeMemoryArrayFunction(arrayType) <<
"(" <<
value.commaSeparatedList() <<
")\n";
break;
}
case FunctionType::Kind::KECCAK256:
{
solAssert(arguments.size() == 1);
ArrayType const* arrayType = TypeProvider::bytesMemory();
if (auto const* stringLiteral = dynamic_cast<StringLiteralType const*>(arguments.front()->annotation().type))
{
// Optimization: Compute keccak256 on string literals at compile-time.
define(_functionCall) <<
("0x" + keccak256(stringLiteral->value()).hex()) <<
"\n";
}
else
{
auto array = convert(*arguments[0], *arrayType);
std::string dataAreaFunction = m_utils.arrayDataAreaFunction(*arrayType);
std::string arrayLengthFunction = m_utils.arrayLengthFunction(*arrayType);
define(_functionCall) <<
"keccak256(" <<
(dataAreaFunction + "(" + array.commaSeparatedList() + ")") <<
", " <<
(arrayLengthFunction + "(" + array.commaSeparatedList() +")") <<
")\n";
}
break;
}
case FunctionType::Kind::ArrayPop:
{
solAssert(functionType->hasBoundFirstArgument());
solAssert(functionType->parameterTypes().empty());
ArrayType const* arrayType = dynamic_cast<ArrayType const*>(functionType->selfType());
solAssert(arrayType);
define(_functionCall) <<
m_utils.storageArrayPopFunction(*arrayType) <<
"(" <<
IRVariable(_functionCall.expression()).commaSeparatedList() <<
")\n";
break;
}
case FunctionType::Kind::ArrayPush:
{
ArrayType const* arrayType = dynamic_cast<ArrayType const*>(functionType->selfType());
solAssert(arrayType);
if (arguments.empty())
{
auto slotName = m_context.newYulVariable();
auto offsetName = m_context.newYulVariable();
appendCode() << "let " << slotName << ", " << offsetName << " := " <<
m_utils.storageArrayPushZeroFunction(*arrayType) <<
"(" << IRVariable(_functionCall.expression()).commaSeparatedList() << ")\n";
setLValue(_functionCall, IRLValue{
*arrayType->baseType(),
IRLValue::Storage{
slotName,
offsetName,
}
});
}
else
{
IRVariable argument =
arrayType->baseType()->isValueType() ?
convert(*arguments.front(), *arrayType->baseType()) :
*arguments.front();
appendCode() <<
m_utils.storageArrayPushFunction(*arrayType, &argument.type()) <<
"(" <<
IRVariable(_functionCall.expression()).commaSeparatedList() <<
(argument.stackSlots().empty() ? "" : (", " + argument.commaSeparatedList())) <<
")\n";
}
break;
}
case FunctionType::Kind::StringConcat:
case FunctionType::Kind::BytesConcat:
{
TypePointers argumentTypes;
std::vector<std::string> argumentVars;
for (ASTPointer<Expression const> const& argument: arguments)
{
argumentTypes.emplace_back(&type(*argument));
argumentVars += IRVariable(*argument).stackSlots();
}
define(IRVariable(_functionCall)) <<
m_utils.bytesOrStringConcatFunction(argumentTypes, functionType->kind()) <<
"(" <<
joinHumanReadable(argumentVars) <<
")\n";
break;
}
case FunctionType::Kind::MetaType:
{
break;
}
case FunctionType::Kind::AddMod:
case FunctionType::Kind::MulMod:
{
static std::map<FunctionType::Kind, std::string> functions = {
{FunctionType::Kind::AddMod, "addmod"},
{FunctionType::Kind::MulMod, "mulmod"},
};
solAssert(functions.find(functionType->kind()) != functions.end());
solAssert(arguments.size() == 3 && parameterTypes.size() == 3);
IRVariable modulus(m_context.newYulVariable(), *(parameterTypes[2]));
define(modulus, *arguments[2]);
Whiskers templ("if iszero(<modulus>) { <panic>() }\n");
templ("modulus", modulus.name());
templ("panic", m_utils.panicFunction(PanicCode::DivisionByZero));
appendCode() << templ.render();
std::string args;
for (size_t i = 0; i < 2; ++i)
args += expressionAsType(*arguments[i], *(parameterTypes[i])) + ", ";
args += modulus.name();
define(_functionCall) << functions[functionType->kind()] << "(" << args << ")\n";
break;
}
case FunctionType::Kind::GasLeft:
case FunctionType::Kind::Selfdestruct:
case FunctionType::Kind::BlockHash:
{
static std::map<FunctionType::Kind, std::string> functions = {
{FunctionType::Kind::GasLeft, "gas"},
{FunctionType::Kind::Selfdestruct, "selfdestruct"},
{FunctionType::Kind::BlockHash, "blockhash"},
};
solAssert(functions.find(functionType->kind()) != functions.end());
std::string args;
for (size_t i = 0; i < arguments.size(); ++i)
args += (args.empty() ? "" : ", ") + expressionAsType(*arguments[i], *(parameterTypes[i]));
define(_functionCall) << functions[functionType->kind()] << "(" << args << ")\n";
break;
}
case FunctionType::Kind::Creation:
{
solAssert(!functionType->gasSet(), "Gas limit set for contract creation.");
solAssert(
functionType->returnParameterTypes().size() == 1,
"Constructor should return only one type"
);
TypePointers argumentTypes;
std::vector<std::string> constructorParams;
for (ASTPointer<Expression const> const& arg: arguments)
{
argumentTypes.push_back(arg->annotation().type);
constructorParams += IRVariable{*arg}.stackSlots();
}
ContractDefinition const* contract =
&dynamic_cast<ContractType const&>(*functionType->returnParameterTypes().front()).contractDefinition();
m_context.subObjectsCreated().insert(contract);
Whiskers t(R"(let <memPos> := <allocateUnbounded>()
let <memEnd> := add(<memPos>, datasize("<object>"))
if or(gt(<memEnd>, 0xffffffffffffffff), lt(<memEnd>, <memPos>)) { <panic>() }
datacopy(<memPos>, dataoffset("<object>"), datasize("<object>"))
<memEnd> := <abiEncode>(<memEnd><constructorParams>)
<?saltSet>
let <address> := create2(<value>, <memPos>, sub(<memEnd>, <memPos>), <salt>)
<!saltSet>
let <address> := create(<value>, <memPos>, sub(<memEnd>, <memPos>))
</saltSet>
<?isTryCall>
let <success> := iszero(iszero(<address>))
<!isTryCall>
if iszero(<address>) { <forwardingRevert>() }
</isTryCall>
)");
t("memPos", m_context.newYulVariable());
t("memEnd", m_context.newYulVariable());
t("allocateUnbounded", m_utils.allocateUnboundedFunction());
t("object", IRNames::creationObject(*contract));
t("panic", m_utils.panicFunction(PanicCode::ResourceError));
t("abiEncode",
m_context.abiFunctions().tupleEncoder(argumentTypes, functionType->parameterTypes(), false)
);
t("constructorParams", joinHumanReadablePrefixed(constructorParams));
t("value", functionType->valueSet() ? IRVariable(_functionCall.expression()).part("value").name() : "0");
t("saltSet", functionType->saltSet());
if (functionType->saltSet())
t("salt", IRVariable(_functionCall.expression()).part("salt").name());
solAssert(IRVariable(_functionCall).stackSlots().size() == 1);
t("address", IRVariable(_functionCall).commaSeparatedList());
t("isTryCall", _functionCall.annotation().tryCall);
if (_functionCall.annotation().tryCall)
t("success", IRNames::trySuccessConditionVariable(_functionCall));
else
t("forwardingRevert", m_utils.forwardingRevertFunction());
appendCode() << t.render();
break;
}
case FunctionType::Kind::Send:
case FunctionType::Kind::Transfer:
{
solAssert(arguments.size() == 1 && parameterTypes.size() == 1);
std::string address{IRVariable(_functionCall.expression()).part("address").name()};
std::string value{expressionAsType(*arguments[0], *(parameterTypes[0]))};
Whiskers templ(R"(
let <gas> := 0
if iszero(<value>) { <gas> := <callStipend> }
let <success> := call(<gas>, <address>, <value>, 0, 0, 0, 0)
<?isTransfer>
if iszero(<success>) { <forwardingRevert>() }
</isTransfer>
)");
templ("gas", m_context.newYulVariable());
templ("callStipend", toString(evmasm::GasCosts::callStipend));
templ("address", address);
templ("value", value);
if (functionType->kind() == FunctionType::Kind::Transfer)
templ("success", m_context.newYulVariable());
else
templ("success", IRVariable(_functionCall).commaSeparatedList());
templ("isTransfer", functionType->kind() == FunctionType::Kind::Transfer);
templ("forwardingRevert", m_utils.forwardingRevertFunction());
appendCode() << templ.render();
break;
}
case FunctionType::Kind::ECRecover:
case FunctionType::Kind::RIPEMD160:
case FunctionType::Kind::SHA256:
{
solAssert(!_functionCall.annotation().tryCall);
solAssert(!functionType->valueSet());
solAssert(!functionType->gasSet());
solAssert(!functionType->hasBoundFirstArgument());
static std::map<FunctionType::Kind, std::tuple<unsigned, size_t>> precompiles = {
{FunctionType::Kind::ECRecover, std::make_tuple(1, 0)},
{FunctionType::Kind::SHA256, std::make_tuple(2, 0)},
{FunctionType::Kind::RIPEMD160, std::make_tuple(3, 12)},
};
auto [ address, offset ] = precompiles[functionType->kind()];
TypePointers argumentTypes;
std::vector<std::string> argumentStrings;
for (auto const& arg: arguments)
{
argumentTypes.emplace_back(&type(*arg));
argumentStrings += IRVariable(*arg).stackSlots();
}
Whiskers templ(R"(
let <pos> := <allocateUnbounded>()
let <end> := <encodeArgs>(<pos> <argumentString>)
<?isECRecover>
mstore(0, 0)
</isECRecover>
let <success> := <call>(<gas>, <address> <?isCall>, 0</isCall>, <pos>, sub(<end>, <pos>), 0, 32)
if iszero(<success>) { <forwardingRevert>() }
let <retVars> := <shl>(mload(0))
)");
templ("call", m_context.evmVersion().hasStaticCall() ? "staticcall" : "call");
templ("isCall", !m_context.evmVersion().hasStaticCall());
templ("shl", m_utils.shiftLeftFunction(offset * 8));
templ("allocateUnbounded", m_utils.allocateUnboundedFunction());
templ("pos", m_context.newYulVariable());
templ("end", m_context.newYulVariable());
templ("isECRecover", FunctionType::Kind::ECRecover == functionType->kind());
if (FunctionType::Kind::ECRecover == functionType->kind())
templ("encodeArgs", m_context.abiFunctions().tupleEncoder(argumentTypes, parameterTypes));
else
templ("encodeArgs", m_context.abiFunctions().tupleEncoderPacked(argumentTypes, parameterTypes));
templ("argumentString", joinHumanReadablePrefixed(argumentStrings));
templ("address", toString(address));
templ("success", m_context.newYulVariable());
templ("retVars", IRVariable(_functionCall).commaSeparatedList());
templ("forwardingRevert", m_utils.forwardingRevertFunction());
if (m_context.evmVersion().canOverchargeGasForCall())
// Send all gas (requires tangerine whistle EVM)
templ("gas", "gas()");
else
{
// @todo The value 10 is not exact and this could be fine-tuned,
// but this has worked for years in the old code generator.
u256 gasNeededByCaller = evmasm::GasCosts::callGas(m_context.evmVersion()) + 10 + evmasm::GasCosts::callNewAccountGas;
templ("gas", "sub(gas(), " + formatNumber(gasNeededByCaller) + ")");
}
appendCode() << templ.render();
break;
}
default:
solUnimplemented("FunctionKind " + toString(static_cast<int>(functionType->kind())) + " not yet implemented");
}
}
void IRGeneratorForStatements::endVisit(FunctionCallOptions const& _options)
{
setLocation(_options);
FunctionType const& previousType = dynamic_cast<FunctionType const&>(*_options.expression().annotation().type);
solUnimplementedAssert(!previousType.hasBoundFirstArgument());
// Copy over existing values.
for (auto const& item: previousType.stackItems())
define(IRVariable(_options).part(std::get<0>(item)), IRVariable(_options.expression()).part(std::get<0>(item)));
for (size_t i = 0; i < _options.names().size(); ++i)
{
std::string const& name = *_options.names()[i];
solAssert(name == "salt" || name == "gas" || name == "value");
define(IRVariable(_options).part(name), *_options.options()[i]);
}
}
bool IRGeneratorForStatements::visit(MemberAccess const& _memberAccess)
{
// A shortcut for <address>.code.length. We skip visiting <address>.code and directly visit
// <address>. The actual code is generated in endVisit.
if (
auto innerExpression = dynamic_cast<MemberAccess const*>(&_memberAccess.expression());
_memberAccess.memberName() == "length" &&
innerExpression &&
innerExpression->memberName() == "code" &&
innerExpression->expression().annotation().type->category() == Type::Category::Address
)
{
solAssert(innerExpression->annotation().type->category() == Type::Category::Array);
// Skip visiting <address>.code
innerExpression->expression().accept(*this);
return false;
}
return true;
}
void IRGeneratorForStatements::endVisit(MemberAccess const& _memberAccess)
{
setLocation(_memberAccess);
ASTString const& member = _memberAccess.memberName();
auto memberFunctionType = dynamic_cast<FunctionType const*>(_memberAccess.annotation().type);
Type::Category objectCategory = _memberAccess.expression().annotation().type->category();
if (memberFunctionType && memberFunctionType->hasBoundFirstArgument())
{
define(IRVariable(_memberAccess).part("self"), _memberAccess.expression());
solAssert(*_memberAccess.annotation().requiredLookup == VirtualLookup::Static);
if (memberFunctionType->kind() == FunctionType::Kind::Internal)
assignInternalFunctionIDIfNotCalledDirectly(
_memberAccess,
dynamic_cast<FunctionDefinition const&>(memberFunctionType->declaration())
);
else if (
memberFunctionType->kind() == FunctionType::Kind::ArrayPush ||
memberFunctionType->kind() == FunctionType::Kind::ArrayPop
)
{
// Nothing to do.
}
else
{
auto const& functionDefinition = dynamic_cast<FunctionDefinition const&>(memberFunctionType->declaration());
solAssert(memberFunctionType->kind() == FunctionType::Kind::DelegateCall);
auto contract = dynamic_cast<ContractDefinition const*>(functionDefinition.scope());
solAssert(contract && contract->isLibrary());
define(IRVariable(_memberAccess).part("address")) << linkerSymbol(*contract) << "\n";
define(IRVariable(_memberAccess).part("functionSelector")) << memberFunctionType->externalIdentifier() << "\n";
}
return;
}
switch (objectCategory)
{
case Type::Category::Contract:
{
ContractType const& type = dynamic_cast<ContractType const&>(*_memberAccess.expression().annotation().type);
if (type.isSuper())
solAssert(false);
// ordinary contract type
else if (Declaration const* declaration = _memberAccess.annotation().referencedDeclaration)
{
u256 identifier;
if (auto const* variable = dynamic_cast<VariableDeclaration const*>(declaration))
identifier = FunctionType(*variable).externalIdentifier();
else if (auto const* function = dynamic_cast<FunctionDefinition const*>(declaration))
identifier = FunctionType(*function).externalIdentifier();
else
solAssert(false, "Contract member is neither variable nor function.");
define(IRVariable(_memberAccess).part("address"), _memberAccess.expression());
define(IRVariable(_memberAccess).part("functionSelector")) << formatNumber(identifier) << "\n";
}
else
solAssert(false, "Invalid member access in contract");
break;
}
case Type::Category::Integer:
{
solAssert(false, "Invalid member access to integer");
break;
}
case Type::Category::Address:
{
if (member == "balance")
define(_memberAccess) <<
"balance(" <<
expressionAsType(_memberAccess.expression(), *TypeProvider::address()) <<
")\n";
else if (member == "code")
{
std::string externalCodeFunction = m_utils.externalCodeFunction();
define(_memberAccess) <<
externalCodeFunction <<
"(" <<
expressionAsType(_memberAccess.expression(), *TypeProvider::address()) <<
")\n";
}
else if (member == "codehash")
define(_memberAccess) <<
"extcodehash(" <<
expressionAsType(_memberAccess.expression(), *TypeProvider::address()) <<
")\n";
else if (std::set<std::string>{"send", "transfer"}.count(member))
{
solAssert(dynamic_cast<AddressType const&>(*_memberAccess.expression().annotation().type).stateMutability() == StateMutability::Payable);
define(IRVariable{_memberAccess}.part("address"), _memberAccess.expression());
}
else if (std::set<std::string>{"call", "callcode", "delegatecall", "staticcall"}.count(member))
define(IRVariable{_memberAccess}.part("address"), _memberAccess.expression());
else
solAssert(false, "Invalid member access to address");
break;
}
case Type::Category::Function:
if (member == "selector")
{
FunctionType const& functionType = dynamic_cast<FunctionType const&>(
*_memberAccess.expression().annotation().type
);
if (
functionType.kind() == FunctionType::Kind::External ||
functionType.kind() == FunctionType::Kind::DelegateCall
)
define(IRVariable{_memberAccess}, IRVariable(_memberAccess.expression()).part("functionSelector"));
else if (
functionType.kind() == FunctionType::Kind::Declaration ||
functionType.kind() == FunctionType::Kind::Error ||
// In some situations, internal function types also provide the "selector" member.
// See Types.cpp for details.
functionType.kind() == FunctionType::Kind::Internal
)
{
solAssert(functionType.hasDeclaration());
solAssert(
functionType.kind() == FunctionType::Kind::Error ||
functionType.declaration().isPartOfExternalInterface(),
""
);
define(IRVariable{_memberAccess}) << formatNumber(
util::selectorFromSignatureU256(functionType.externalSignature())
) << "\n";
}
else if (functionType.kind() == FunctionType::Kind::Event)
{
solAssert(functionType.hasDeclaration());
solAssert(functionType.kind() == FunctionType::Kind::Event);
solAssert(
!(dynamic_cast<EventDefinition const&>(functionType.declaration()).isAnonymous())
);
define(IRVariable{_memberAccess}) << formatNumber(
u256(h256::Arith(util::keccak256(functionType.externalSignature())))
) << "\n";
}
else
solAssert(false, "Invalid use of .selector: " + functionType.toString(false));
}
else if (member == "address")
{
solUnimplementedAssert(
dynamic_cast<FunctionType const&>(*_memberAccess.expression().annotation().type).kind() ==
FunctionType::Kind::External
);
define(IRVariable{_memberAccess}, IRVariable(_memberAccess.expression()).part("address"));
}
else
solAssert(
!!_memberAccess.expression().annotation().type->memberType(member),
"Invalid member access to function."
);
break;
case Type::Category::Magic:
// we can ignore the kind of magic and only look at the name of the member
if (member == "coinbase")
define(_memberAccess) << "coinbase()\n";
else if (member == "timestamp")
define(_memberAccess) << "timestamp()\n";
else if (member == "difficulty" || member == "prevrandao")
{
if (m_context.evmVersion().hasPrevRandao())
define(_memberAccess) << "prevrandao()\n";
else
define(_memberAccess) << "difficulty()\n";
}
else if (member == "number")
define(_memberAccess) << "number()\n";
else if (member == "gaslimit")
define(_memberAccess) << "gaslimit()\n";
else if (member == "sender")
define(_memberAccess) << "caller()\n";
else if (member == "value")
define(_memberAccess) << "callvalue()\n";
else if (member == "origin")
define(_memberAccess) << "origin()\n";
else if (member == "gasprice")
define(_memberAccess) << "gasprice()\n";
else if (member == "chainid")
define(_memberAccess) << "chainid()\n";
else if (member == "basefee")
define(_memberAccess) << "basefee()\n";
else if (member == "data")
{
IRVariable var(_memberAccess);
define(var.part("offset")) << "0\n";
define(var.part("length")) << "calldatasize()\n";
}
else if (member == "sig")
define(_memberAccess) <<
"and(calldataload(0), " <<
formatNumber(u256(0xffffffff) << (256 - 32)) <<
")\n";
else if (member == "gas")
solAssert(false, "Gas has been removed.");
else if (member == "blockhash")
solAssert(false, "Blockhash has been removed.");
else if (member == "creationCode" || member == "runtimeCode")
{
Type const* arg = dynamic_cast<MagicType const&>(*_memberAccess.expression().annotation().type).typeArgument();
auto const& contractType = dynamic_cast<ContractType const&>(*arg);
solAssert(!contractType.isSuper());
ContractDefinition const& contract = contractType.contractDefinition();
m_context.subObjectsCreated().insert(&contract);
appendCode() << Whiskers(R"(
let <size> := datasize("<objectName>")
let <result> := <allocationFunction>(add(<size>, 32))
mstore(<result>, <size>)
datacopy(add(<result>, 32), dataoffset("<objectName>"), <size>)
)")
("allocationFunction", m_utils.allocationFunction())
("size", m_context.newYulVariable())
("objectName", IRNames::creationObject(contract) + (member == "runtimeCode" ? "." + IRNames::deployedObject(contract) : ""))
("result", IRVariable(_memberAccess).commaSeparatedList()).render();
}
else if (member == "name")
{
Type const* arg = dynamic_cast<MagicType const&>(*_memberAccess.expression().annotation().type).typeArgument();
ContractDefinition const& contract = dynamic_cast<ContractType const&>(*arg).contractDefinition();
define(IRVariable(_memberAccess)) << m_utils.copyLiteralToMemoryFunction(contract.name()) << "()\n";
}
else if (member == "interfaceId")
{
Type const* arg = dynamic_cast<MagicType const&>(*_memberAccess.expression().annotation().type).typeArgument();
auto const& contractType = dynamic_cast<ContractType const&>(*arg);
solAssert(!contractType.isSuper());
ContractDefinition const& contract = contractType.contractDefinition();
define(_memberAccess) << formatNumber(u256{contract.interfaceId()} << (256 - 32)) << "\n";
}
else if (member == "min" || member == "max")
{
MagicType const* arg = dynamic_cast<MagicType const*>(_memberAccess.expression().annotation().type);
std::string requestedValue;
if (IntegerType const* integerType = dynamic_cast<IntegerType const*>(arg->typeArgument()))
{
if (member == "min")
requestedValue = formatNumber(integerType->min());
else
requestedValue = formatNumber(integerType->max());
}
else if (EnumType const* enumType = dynamic_cast<EnumType const*>(arg->typeArgument()))
{
if (member == "min")
requestedValue = std::to_string(enumType->minValue());
else
requestedValue = std::to_string(enumType->maxValue());
}
else
solAssert(false, "min/max requested on unexpected type.");
define(_memberAccess) << requestedValue << "\n";
}
else if (std::set<std::string>{"encode", "encodePacked", "encodeWithSelector", "encodeCall", "encodeWithSignature", "decode"}.count(member))
{
// no-op
}
else
solAssert(false, "Unknown magic member.");
break;
case Type::Category::Struct:
{
auto const& structType = dynamic_cast<StructType const&>(*_memberAccess.expression().annotation().type);
IRVariable expression(_memberAccess.expression());
switch (structType.location())
{
case DataLocation::Storage:
{
std::pair<u256, unsigned> const& offsets = structType.storageOffsetsOfMember(member);
std::string slot = m_context.newYulVariable();
appendCode() << "let " << slot << " := " <<
("add(" + expression.part("slot").name() + ", " + offsets.first.str() + ")\n");
setLValue(_memberAccess, IRLValue{
type(_memberAccess),
IRLValue::Storage{slot, offsets.second}
});
break;
}
case DataLocation::Memory:
{
std::string pos = m_context.newYulVariable();
appendCode() << "let " << pos << " := " <<
("add(" + expression.part("mpos").name() + ", " + structType.memoryOffsetOfMember(member).str() + ")\n");
setLValue(_memberAccess, IRLValue{
type(_memberAccess),
IRLValue::Memory{pos}
});
break;
}
case DataLocation::CallData:
{
std::string baseRef = expression.part("offset").name();
std::string offset = m_context.newYulVariable();
appendCode() << "let " << offset << " := " << "add(" << baseRef << ", " << std::to_string(structType.calldataOffsetOfMember(member)) << ")\n";
if (_memberAccess.annotation().type->isDynamicallyEncoded())
define(_memberAccess) <<
m_utils.accessCalldataTailFunction(*_memberAccess.annotation().type) <<
"(" <<
baseRef <<
", " <<
offset <<
")\n";
else if (
dynamic_cast<ArrayType const*>(_memberAccess.annotation().type) ||
dynamic_cast<StructType const*>(_memberAccess.annotation().type)
)
define(_memberAccess) << offset << "\n";
else
define(_memberAccess) <<
m_utils.readFromCalldata(*_memberAccess.annotation().type) <<
"(" <<
offset <<
")\n";
break;
}
default:
solAssert(false, "Illegal data location for struct.");
}
break;
}
case Type::Category::Enum:
{
EnumType const& type = dynamic_cast<EnumType const&>(*_memberAccess.expression().annotation().type);
define(_memberAccess) << std::to_string(type.memberValue(_memberAccess.memberName())) << "\n";
break;
}
case Type::Category::Array:
{
auto const& type = dynamic_cast<ArrayType const&>(*_memberAccess.expression().annotation().type);
if (member == "length")
{
// shortcut for <address>.code.length
if (
auto innerExpression = dynamic_cast<MemberAccess const*>(&_memberAccess.expression());
innerExpression &&
innerExpression->memberName() == "code" &&
innerExpression->expression().annotation().type->category() == Type::Category::Address
)
define(_memberAccess) <<
"extcodesize(" <<
expressionAsType(innerExpression->expression(), *TypeProvider::address()) <<
")\n";
else
define(_memberAccess) <<
m_utils.arrayLengthFunction(type) <<
"(" <<
IRVariable(_memberAccess.expression()).commaSeparatedList() <<
")\n";
}
else if (member == "pop" || member == "push")
{
solAssert(type.location() == DataLocation::Storage);
define(IRVariable{_memberAccess}.part("slot"), IRVariable{_memberAccess.expression()}.part("slot"));
}
else
solAssert(false, "Invalid array member access.");
break;
}
case Type::Category::FixedBytes:
{
auto const& type = dynamic_cast<FixedBytesType const&>(*_memberAccess.expression().annotation().type);
if (member == "length")
define(_memberAccess) << std::to_string(type.numBytes()) << "\n";
else
solAssert(false, "Illegal fixed bytes member.");
break;
}
case Type::Category::TypeType:
{
Type const& actualType = *dynamic_cast<TypeType const&>(
*_memberAccess.expression().annotation().type
).actualType();
if (actualType.category() == Type::Category::Contract)
{
ContractType const& contractType = dynamic_cast<ContractType const&>(actualType);
if (contractType.isSuper())
{
solAssert(!!_memberAccess.annotation().referencedDeclaration, "Referenced declaration not resolved.");
ContractDefinition const* super = contractType.contractDefinition().superContract(m_context.mostDerivedContract());
solAssert(super, "Super contract not available.");
FunctionDefinition const& resolvedFunctionDef =
dynamic_cast<FunctionDefinition const&>(
*_memberAccess.annotation().referencedDeclaration
).resolveVirtual(m_context.mostDerivedContract(), super);
solAssert(resolvedFunctionDef.functionType(true));
solAssert(resolvedFunctionDef.functionType(true)->kind() == FunctionType::Kind::Internal);
assignInternalFunctionIDIfNotCalledDirectly(_memberAccess, resolvedFunctionDef);
}
else if (auto const* variable = dynamic_cast<VariableDeclaration const*>(_memberAccess.annotation().referencedDeclaration))
handleVariableReference(*variable, _memberAccess);
else if (memberFunctionType)
{
switch (memberFunctionType->kind())
{
case FunctionType::Kind::Declaration:
break;
case FunctionType::Kind::Internal:
if (auto const* function = dynamic_cast<FunctionDefinition const*>(_memberAccess.annotation().referencedDeclaration))
assignInternalFunctionIDIfNotCalledDirectly(_memberAccess, *function);
else
solAssert(false, "Function not found in member access");
break;
case FunctionType::Kind::Event:
solAssert(
dynamic_cast<EventDefinition const*>(_memberAccess.annotation().referencedDeclaration),
"Event not found"
);
// the call will do the resolving
break;
case FunctionType::Kind::Error:
solAssert(
dynamic_cast<ErrorDefinition const*>(_memberAccess.annotation().referencedDeclaration),
"Error not found"
);
// The function call will resolve the selector.
break;
case FunctionType::Kind::DelegateCall:
define(IRVariable(_memberAccess).part("address"), _memberAccess.expression());
define(IRVariable(_memberAccess).part("functionSelector")) << formatNumber(memberFunctionType->externalIdentifier()) << "\n";
break;
case FunctionType::Kind::External:
case FunctionType::Kind::Creation:
case FunctionType::Kind::Send:
case FunctionType::Kind::BareCall:
case FunctionType::Kind::BareCallCode:
case FunctionType::Kind::BareDelegateCall:
case FunctionType::Kind::BareStaticCall:
case FunctionType::Kind::Transfer:
case FunctionType::Kind::ECRecover:
case FunctionType::Kind::SHA256:
case FunctionType::Kind::RIPEMD160:
default:
solAssert(false, "unsupported member function");
}
}
else if (dynamic_cast<TypeType const*>(_memberAccess.annotation().type))
{
// no-op
}
else
// The old code generator had a generic "else" case here
// without any specific code being generated,
// but it would still be better to have an exhaustive list.
solAssert(false);
}
else if (EnumType const* enumType = dynamic_cast<EnumType const*>(&actualType))
define(_memberAccess) << std::to_string(enumType->memberValue(_memberAccess.memberName())) << "\n";
else if (dynamic_cast<UserDefinedValueType const*>(&actualType))
solAssert(member == "wrap" || member == "unwrap");
else if (auto const* arrayType = dynamic_cast<ArrayType const*>(&actualType))
solAssert(arrayType->isByteArrayOrString() && member == "concat");
else
// The old code generator had a generic "else" case here
// without any specific code being generated,
// but it would still be better to have an exhaustive list.
solAssert(false);
break;
}
case Type::Category::Module:
{
Type::Category category = _memberAccess.annotation().type->category();
solAssert(
dynamic_cast<VariableDeclaration const*>(_memberAccess.annotation().referencedDeclaration) ||
dynamic_cast<FunctionDefinition const*>(_memberAccess.annotation().referencedDeclaration) ||
dynamic_cast<ErrorDefinition const*>(_memberAccess.annotation().referencedDeclaration) ||
category == Type::Category::TypeType ||
category == Type::Category::Module,
""
);
if (auto variable = dynamic_cast<VariableDeclaration const*>(_memberAccess.annotation().referencedDeclaration))
{
solAssert(variable->isConstant());
handleVariableReference(*variable, static_cast<Expression const&>(_memberAccess));
}
else if (auto const* function = dynamic_cast<FunctionDefinition const*>(_memberAccess.annotation().referencedDeclaration))
{
auto funType = dynamic_cast<FunctionType const*>(_memberAccess.annotation().type);
solAssert(function && function->isFree());
solAssert(function->functionType(true));
solAssert(function->functionType(true)->kind() == FunctionType::Kind::Internal);
solAssert(funType->kind() == FunctionType::Kind::Internal);
solAssert(*_memberAccess.annotation().requiredLookup == VirtualLookup::Static);
assignInternalFunctionIDIfNotCalledDirectly(_memberAccess, *function);
}
else if (auto const* contract = dynamic_cast<ContractDefinition const*>(_memberAccess.annotation().referencedDeclaration))
{
if (contract->isLibrary())
define(IRVariable(_memberAccess).part("address")) << linkerSymbol(*contract) << "\n";
}
break;
}
default:
solAssert(false, "Member access to unknown type.");
}
}
bool IRGeneratorForStatements::visit(InlineAssembly const& _inlineAsm)
{
setLocation(_inlineAsm);
if (*_inlineAsm.annotation().hasMemoryEffects && !_inlineAsm.annotation().markedMemorySafe)
m_context.setMemoryUnsafeInlineAssemblySeen();
CopyTranslate bodyCopier{_inlineAsm.dialect(), m_context, _inlineAsm.annotation().externalReferences};
yul::Statement modified = bodyCopier(_inlineAsm.operations());
solAssert(std::holds_alternative<yul::Block>(modified));
// Do not provide dialect so that we get the full type information.
appendCode() << yul::AsmPrinter()(std::get<yul::Block>(modified)) << "\n";
return false;
}
void IRGeneratorForStatements::endVisit(IndexAccess const& _indexAccess)
{
setLocation(_indexAccess);
Type const& baseType = *_indexAccess.baseExpression().annotation().type;
if (baseType.category() == Type::Category::Mapping)
{
solAssert(_indexAccess.indexExpression(), "Index expression expected.");
MappingType const& mappingType = dynamic_cast<MappingType const&>(baseType);
Type const& keyType = *_indexAccess.indexExpression()->annotation().type;
std::string slot = m_context.newYulVariable();
Whiskers templ("let <slot> := <indexAccess>(<base><?+key>,<key></+key>)\n");
templ("slot", slot);
templ("indexAccess", m_utils.mappingIndexAccessFunction(mappingType, keyType));
templ("base", IRVariable(_indexAccess.baseExpression()).commaSeparatedList());
templ("key", IRVariable(*_indexAccess.indexExpression()).commaSeparatedList());
appendCode() << templ.render();
setLValue(_indexAccess, IRLValue{
*_indexAccess.annotation().type,
IRLValue::Storage{
slot,
0u
}
});
}
else if (baseType.category() == Type::Category::Array || baseType.category() == Type::Category::ArraySlice)
{
ArrayType const& arrayType =
baseType.category() == Type::Category::Array ?
dynamic_cast<ArrayType const&>(baseType) :
dynamic_cast<ArraySliceType const&>(baseType).arrayType();
if (baseType.category() == Type::Category::ArraySlice)
solAssert(arrayType.dataStoredIn(DataLocation::CallData) && arrayType.isDynamicallySized());
solAssert(_indexAccess.indexExpression(), "Index expression expected.");
switch (arrayType.location())
{
case DataLocation::Storage:
{
std::string slot = m_context.newYulVariable();
std::string offset = m_context.newYulVariable();
appendCode() << Whiskers(R"(
let <slot>, <offset> := <indexFunc>(<array>, <index>)
)")
("slot", slot)
("offset", offset)
("indexFunc", m_utils.storageArrayIndexAccessFunction(arrayType))
("array", IRVariable(_indexAccess.baseExpression()).part("slot").name())
("index", IRVariable(*_indexAccess.indexExpression()).name())
.render();
setLValue(_indexAccess, IRLValue{
*_indexAccess.annotation().type,
IRLValue::Storage{slot, offset}
});
break;
}
case DataLocation::Memory:
{
std::string const indexAccessFunction = m_utils.memoryArrayIndexAccessFunction(arrayType);
std::string const baseRef = IRVariable(_indexAccess.baseExpression()).part("mpos").name();
std::string const indexExpression = expressionAsType(
*_indexAccess.indexExpression(),
*TypeProvider::uint256()
);
std::string const memAddress = indexAccessFunction + "(" + baseRef + ", " + indexExpression + ")";
setLValue(_indexAccess, IRLValue{
*arrayType.baseType(),
IRLValue::Memory{memAddress, arrayType.isByteArrayOrString()}
});
break;
}
case DataLocation::CallData:
{
std::string const indexAccessFunction = m_utils.calldataArrayIndexAccessFunction(arrayType);
std::string const baseRef = IRVariable(_indexAccess.baseExpression()).commaSeparatedList();
std::string const indexExpression = expressionAsType(
*_indexAccess.indexExpression(),
*TypeProvider::uint256()
);
std::string const calldataAddress = indexAccessFunction + "(" + baseRef + ", " + indexExpression + ")";
if (arrayType.isByteArrayOrString())
define(_indexAccess) <<
m_utils.cleanupFunction(*arrayType.baseType()) <<
"(calldataload(" <<
calldataAddress <<
"))\n";
else if (arrayType.baseType()->isValueType())
define(_indexAccess) <<
m_utils.readFromCalldata(*arrayType.baseType()) <<
"(" <<
calldataAddress <<
")\n";
else
define(_indexAccess) << calldataAddress << "\n";
break;
}
}
}
else if (baseType.category() == Type::Category::FixedBytes)
{
auto const& fixedBytesType = dynamic_cast<FixedBytesType const&>(baseType);
solAssert(_indexAccess.indexExpression(), "Index expression expected.");
IRVariable index{m_context.newYulVariable(), *TypeProvider::uint256()};
define(index, *_indexAccess.indexExpression());
appendCode() << Whiskers(R"(
if iszero(lt(<index>, <length>)) { <panic>() }
let <result> := <shl248>(byte(<index>, <array>))
)")
("index", index.name())
("length", std::to_string(fixedBytesType.numBytes()))
("panic", m_utils.panicFunction(PanicCode::ArrayOutOfBounds))
("array", IRVariable(_indexAccess.baseExpression()).name())
("shl248", m_utils.shiftLeftFunction(256 - 8))
("result", IRVariable(_indexAccess).name())
.render();
}
else if (baseType.category() == Type::Category::TypeType)
{
solAssert(baseType.sizeOnStack() == 0);
solAssert(_indexAccess.annotation().type->sizeOnStack() == 0);
// no-op - this seems to be a lone array type (`structType[];`)
}
else
solAssert(false, "Index access only allowed for mappings or arrays.");
}
void IRGeneratorForStatements::endVisit(IndexRangeAccess const& _indexRangeAccess)
{
setLocation(_indexRangeAccess);
Type const& baseType = *_indexRangeAccess.baseExpression().annotation().type;
solAssert(
baseType.category() == Type::Category::Array || baseType.category() == Type::Category::ArraySlice,
"Index range accesses is available only on arrays and array slices."
);
ArrayType const& arrayType =
baseType.category() == Type::Category::Array ?
dynamic_cast<ArrayType const &>(baseType) :
dynamic_cast<ArraySliceType const &>(baseType).arrayType();
switch (arrayType.location())
{
case DataLocation::CallData:
{
solAssert(baseType.isDynamicallySized());
IRVariable sliceStart{m_context.newYulVariable(), *TypeProvider::uint256()};
if (_indexRangeAccess.startExpression())
define(sliceStart, IRVariable{*_indexRangeAccess.startExpression()});
else
define(sliceStart) << u256(0) << "\n";
IRVariable sliceEnd{
m_context.newYulVariable(),
*TypeProvider::uint256()
};
if (_indexRangeAccess.endExpression())
define(sliceEnd, IRVariable{*_indexRangeAccess.endExpression()});
else
define(sliceEnd, IRVariable{_indexRangeAccess.baseExpression()}.part("length"));
IRVariable range{_indexRangeAccess};
define(range) <<
m_utils.calldataArrayIndexRangeAccess(arrayType) << "(" <<
IRVariable{_indexRangeAccess.baseExpression()}.commaSeparatedList() << ", " <<
sliceStart.name() << ", " <<
sliceEnd.name() << ")\n";
break;
}
default:
solUnimplemented("Index range accesses is implemented only on calldata arrays.");
}
}
void IRGeneratorForStatements::endVisit(Identifier const& _identifier)
{
setLocation(_identifier);
Declaration const* declaration = _identifier.annotation().referencedDeclaration;
if (MagicVariableDeclaration const* magicVar = dynamic_cast<MagicVariableDeclaration const*>(declaration))
{
switch (magicVar->type()->category())
{
case Type::Category::Contract:
solAssert(_identifier.name() == "this");
define(_identifier) << "address()\n";
break;
case Type::Category::Integer:
solAssert(_identifier.name() == "now");
define(_identifier) << "timestamp()\n";
break;
case Type::Category::TypeType:
{
auto typeType = dynamic_cast<TypeType const*>(magicVar->type());
if (auto contractType = dynamic_cast<ContractType const*>(typeType->actualType()))
solAssert(!contractType->isSuper() || _identifier.name() == "super");
break;
}
default:
break;
}
return;
}
else if (FunctionDefinition const* functionDef = dynamic_cast<FunctionDefinition const*>(declaration))
{
solAssert(*_identifier.annotation().requiredLookup == VirtualLookup::Virtual);
FunctionDefinition const& resolvedFunctionDef = functionDef->resolveVirtual(m_context.mostDerivedContract());
solAssert(resolvedFunctionDef.functionType(true));
solAssert(resolvedFunctionDef.functionType(true)->kind() == FunctionType::Kind::Internal);
assignInternalFunctionIDIfNotCalledDirectly(_identifier, resolvedFunctionDef);
}
else if (VariableDeclaration const* varDecl = dynamic_cast<VariableDeclaration const*>(declaration))
handleVariableReference(*varDecl, _identifier);
else if (auto const* contract = dynamic_cast<ContractDefinition const*>(declaration))
{
if (contract->isLibrary())
define(IRVariable(_identifier).part("address")) << linkerSymbol(*contract) << "\n";
}
else if (dynamic_cast<EventDefinition const*>(declaration))
{
// no-op
}
else if (dynamic_cast<ErrorDefinition const*>(declaration))
{
// no-op
}
else if (dynamic_cast<EnumDefinition const*>(declaration))
{
// no-op
}
else if (dynamic_cast<StructDefinition const*>(declaration))
{
// no-op
}
else if (dynamic_cast<ImportDirective const*>(declaration))
{
// no-op
}
else if (dynamic_cast<UserDefinedValueTypeDefinition const*>(declaration))
{
// no-op
}
else
{
solAssert(false, "Identifier type not expected in expression context.");
}
}
bool IRGeneratorForStatements::visit(Literal const& _literal)
{
setLocation(_literal);
Type const& literalType = type(_literal);
switch (literalType.category())
{
case Type::Category::RationalNumber:
case Type::Category::Bool:
case Type::Category::Address:
define(_literal) << toCompactHexWithPrefix(literalType.literalValue(&_literal)) << "\n";
break;
case Type::Category::StringLiteral:
break; // will be done during conversion
default:
solUnimplemented("Only integer, boolean and string literals implemented for now.");
}
return false;
}
void IRGeneratorForStatements::handleVariableReference(
VariableDeclaration const& _variable,
Expression const& _referencingExpression
)
{
if ((_variable.isStateVariable() || _variable.isFileLevelVariable()) && _variable.isConstant())
define(_referencingExpression) << constantValueFunction(_variable) << "()\n";
else if (_variable.isStateVariable() && _variable.immutable())
setLValue(_referencingExpression, IRLValue{
*_variable.annotation().type,
IRLValue::Immutable{&_variable}
});
else if (m_context.isLocalVariable(_variable))
setLValue(_referencingExpression, IRLValue{
*_variable.annotation().type,
IRLValue::Stack{m_context.localVariable(_variable)}
});
else if (m_context.isStateVariable(_variable))
setLValue(_referencingExpression, IRLValue{
*_variable.annotation().type,
IRLValue::Storage{
toCompactHexWithPrefix(m_context.storageLocationOfStateVariable(_variable).first),
m_context.storageLocationOfStateVariable(_variable).second
}
});
else
solAssert(false, "Invalid variable kind.");
}
void IRGeneratorForStatements::appendExternalFunctionCall(
FunctionCall const& _functionCall,
std::vector<ASTPointer<Expression const>> const& _arguments
)
{
FunctionType const& funType = dynamic_cast<FunctionType const&>(type(_functionCall.expression()));
solAssert(!funType.takesArbitraryParameters());
solAssert(_arguments.size() == funType.parameterTypes().size());
solAssert(!funType.isBareCall());
FunctionType::Kind const funKind = funType.kind();
solAssert(
funKind == FunctionType::Kind::External || funKind == FunctionType::Kind::DelegateCall,
"Can only be used for regular external calls."
);
bool const isDelegateCall = funKind == FunctionType::Kind::DelegateCall;
bool const useStaticCall = funType.stateMutability() <= StateMutability::View && m_context.evmVersion().hasStaticCall();
ReturnInfo const returnInfo{m_context.evmVersion(), funType};
TypePointers parameterTypes = funType.parameterTypes();
TypePointers argumentTypes;
std::vector<std::string> argumentStrings;
if (funType.hasBoundFirstArgument())
{
parameterTypes.insert(parameterTypes.begin(), funType.selfType());
argumentTypes.emplace_back(funType.selfType());
argumentStrings += IRVariable(_functionCall.expression()).part("self").stackSlots();
}
for (auto const& arg: _arguments)
{
argumentTypes.emplace_back(&type(*arg));
argumentStrings += IRVariable(*arg).stackSlots();
}
if (!m_context.evmVersion().canOverchargeGasForCall())
{
// Touch the end of the output area so that we do not pay for memory resize during the call
// (which we would have to subtract from the gas left)
// We could also just use MLOAD; POP right before the gas calculation, but the optimizer
// would remove that, so we use MSTORE here.
if (!funType.gasSet() && returnInfo.estimatedReturnSize > 0)
appendCode() << "mstore(add(" << m_utils.allocateUnboundedFunction() << "() , " << std::to_string(returnInfo.estimatedReturnSize) << "), 0)\n";
}
// NOTE: When the expected size of returndata is static, we pass that in to the call opcode and it gets copied automatically.
// When it's dynamic, we get zero from estimatedReturnSize() instead and then we need an explicit returndatacopy().
Whiskers templ(R"(
<?checkExtcodesize>
if iszero(extcodesize(<address>)) { <revertNoCode>() }
</checkExtcodesize>
// storage for arguments and returned data
let <pos> := <allocateUnbounded>()
mstore(<pos>, <shl28>(<funSel>))
let <end> := <encodeArgs>(add(<pos>, 4) <argumentString>)
let <success> := <call>(<gas>, <address>, <?hasValue> <value>, </hasValue> <pos>, sub(<end>, <pos>), <pos>, <staticReturndataSize>)
<?noTryCall>
if iszero(<success>) { <forwardingRevert>() }
</noTryCall>
<?+retVars> let <retVars> </+retVars>
if <success> {
<?isReturndataSizeDynamic>
let <returnDataSizeVar> := returndatasize()
returndatacopy(<pos>, 0, <returnDataSizeVar>)
<!isReturndataSizeDynamic>
let <returnDataSizeVar> := <staticReturndataSize>
<?supportsReturnData>
if gt(<returnDataSizeVar>, returndatasize()) {
<returnDataSizeVar> := returndatasize()
}
</supportsReturnData>
</isReturndataSizeDynamic>
// update freeMemoryPointer according to dynamic return size
<finalizeAllocation>(<pos>, <returnDataSizeVar>)
// decode return parameters from external try-call into retVars
<?+retVars> <retVars> := </+retVars> <abiDecode>(<pos>, add(<pos>, <returnDataSizeVar>))
}
)");
templ("revertNoCode", m_utils.revertReasonIfDebugFunction("Target contract does not contain code"));
// We do not need to check extcodesize if we expect return data: If there is no
// code, the call will return empty data and the ABI decoder will revert.
size_t encodedHeadSize = 0;
for (auto const& t: returnInfo.returnTypes)
encodedHeadSize += t->decodingType()->calldataHeadSize();
bool const checkExtcodesize =
encodedHeadSize == 0 ||
!m_context.evmVersion().supportsReturndata() ||
m_context.revertStrings() >= RevertStrings::Debug;
templ("checkExtcodesize", checkExtcodesize);
templ("pos", m_context.newYulVariable());
templ("end", m_context.newYulVariable());
if (_functionCall.annotation().tryCall)
templ("success", IRNames::trySuccessConditionVariable(_functionCall));
else
templ("success", m_context.newYulVariable());
templ("allocateUnbounded", m_utils.allocateUnboundedFunction());
templ("finalizeAllocation", m_utils.finalizeAllocationFunction());
templ("shl28", m_utils.shiftLeftFunction(8 * (32 - 4)));
templ("funSel", IRVariable(_functionCall.expression()).part("functionSelector").name());
templ("address", IRVariable(_functionCall.expression()).part("address").name());
if (returnInfo.dynamicReturnSize)
solAssert(m_context.evmVersion().supportsReturndata());
templ("returnDataSizeVar", m_context.newYulVariable());
templ("staticReturndataSize", std::to_string(returnInfo.estimatedReturnSize));
templ("supportsReturnData", m_context.evmVersion().supportsReturndata());
std::string const retVars = IRVariable(_functionCall).commaSeparatedList();
templ("retVars", retVars);
solAssert(retVars.empty() == returnInfo.returnTypes.empty());
templ("abiDecode", m_context.abiFunctions().tupleDecoder(returnInfo.returnTypes, true));
templ("isReturndataSizeDynamic", returnInfo.dynamicReturnSize);
templ("noTryCall", !_functionCall.annotation().tryCall);
bool encodeForLibraryCall = funKind == FunctionType::Kind::DelegateCall;
solAssert(funType.padArguments());
templ("encodeArgs", m_context.abiFunctions().tupleEncoder(argumentTypes, parameterTypes, encodeForLibraryCall));
templ("argumentString", joinHumanReadablePrefixed(argumentStrings));
solAssert(!isDelegateCall || !funType.valueSet(), "Value set for delegatecall");
solAssert(!useStaticCall || !funType.valueSet(), "Value set for staticcall");
templ("hasValue", !isDelegateCall && !useStaticCall);
templ("value", funType.valueSet() ? IRVariable(_functionCall.expression()).part("value").name() : "0");
if (funType.gasSet())
templ("gas", IRVariable(_functionCall.expression()).part("gas").name());
else if (m_context.evmVersion().canOverchargeGasForCall())
// Send all gas (requires tangerine whistle EVM)
templ("gas", "gas()");
else
{
// send all gas except the amount needed to execute "SUB" and "CALL"
// @todo this retains too much gas for now, needs to be fine-tuned.
u256 gasNeededByCaller = evmasm::GasCosts::callGas(m_context.evmVersion()) + 10;
if (funType.valueSet())
gasNeededByCaller += evmasm::GasCosts::callValueTransferGas;
if (!checkExtcodesize)
gasNeededByCaller += evmasm::GasCosts::callNewAccountGas; // we never know
templ("gas", "sub(gas(), " + formatNumber(gasNeededByCaller) + ")");
}
// Order is important here, STATICCALL might overlap with DELEGATECALL.
if (isDelegateCall)
templ("call", "delegatecall");
else if (useStaticCall)
templ("call", "staticcall");
else
templ("call", "call");
templ("forwardingRevert", m_utils.forwardingRevertFunction());
appendCode() << templ.render();
}
void IRGeneratorForStatements::appendBareCall(
FunctionCall const& _functionCall,
std::vector<ASTPointer<Expression const>> const& _arguments
)
{
FunctionType const& funType = dynamic_cast<FunctionType const&>(type(_functionCall.expression()));
solAssert(
!funType.hasBoundFirstArgument() &&
!funType.takesArbitraryParameters() &&
_arguments.size() == 1 &&
funType.parameterTypes().size() == 1, ""
);
FunctionType::Kind const funKind = funType.kind();
solAssert(funKind != FunctionType::Kind::BareStaticCall || m_context.evmVersion().hasStaticCall());
solAssert(funKind != FunctionType::Kind::BareCallCode, "Callcode has been removed.");
solAssert(
funKind == FunctionType::Kind::BareCall ||
funKind == FunctionType::Kind::BareDelegateCall ||
funKind == FunctionType::Kind::BareStaticCall, ""
);
solAssert(!_functionCall.annotation().tryCall);
Whiskers templ(R"(
<?needsEncoding>
let <pos> := <allocateUnbounded>()
let <length> := sub(<encode>(<pos> <?+arg>,</+arg> <arg>), <pos>)
<!needsEncoding>
let <pos> := add(<arg>, 0x20)
let <length> := mload(<arg>)
</needsEncoding>
let <success> := <call>(<gas>, <address>, <?+value> <value>, </+value> <pos>, <length>, 0, 0)
let <returndataVar> := <extractReturndataFunction>()
)");
templ("allocateUnbounded", m_utils.allocateUnboundedFunction());
templ("pos", m_context.newYulVariable());
templ("length", m_context.newYulVariable());
templ("arg", IRVariable(*_arguments.front()).commaSeparatedList());
Type const& argType = type(*_arguments.front());
if (argType == *TypeProvider::bytesMemory() || argType == *TypeProvider::stringMemory())
templ("needsEncoding", false);
else
{
templ("needsEncoding", true);
ABIFunctions abi(m_context.evmVersion(), m_context.revertStrings(), m_context.functionCollector());
templ("encode", abi.tupleEncoderPacked({&argType}, {TypeProvider::bytesMemory()}));
}
templ("success", IRVariable(_functionCall).tupleComponent(0).name());
templ("returndataVar", IRVariable(_functionCall).tupleComponent(1).commaSeparatedList());
templ("extractReturndataFunction", m_utils.extractReturndataFunction());
templ("address", IRVariable(_functionCall.expression()).part("address").name());
if (funKind == FunctionType::Kind::BareCall)
{
templ("value", funType.valueSet() ? IRVariable(_functionCall.expression()).part("value").name() : "0");
templ("call", "call");
}
else
{
solAssert(!funType.valueSet(), "Value set for delegatecall or staticcall.");
templ("value", "");
if (funKind == FunctionType::Kind::BareStaticCall)
templ("call", "staticcall");
else
templ("call", "delegatecall");
}
if (funType.gasSet())
templ("gas", IRVariable(_functionCall.expression()).part("gas").name());
else if (m_context.evmVersion().canOverchargeGasForCall())
// Send all gas (requires tangerine whistle EVM)
templ("gas", "gas()");
else
{
// send all gas except the amount needed to execute "SUB" and "CALL"
// @todo this retains too much gas for now, needs to be fine-tuned.
u256 gasNeededByCaller = evmasm::GasCosts::callGas(m_context.evmVersion()) + 10;
if (funType.valueSet())
gasNeededByCaller += evmasm::GasCosts::callValueTransferGas;
gasNeededByCaller += evmasm::GasCosts::callNewAccountGas; // we never know
templ("gas", "sub(gas(), " + formatNumber(gasNeededByCaller) + ")");
}
appendCode() << templ.render();
}
void IRGeneratorForStatements::assignInternalFunctionIDIfNotCalledDirectly(
Expression const& _expression,
FunctionDefinition const& _referencedFunction
)
{
solAssert(
dynamic_cast<MemberAccess const*>(&_expression) ||
dynamic_cast<Identifier const*>(&_expression),
""
);
if (_expression.annotation().calledDirectly)
return;
define(IRVariable(_expression).part("functionIdentifier")) <<
std::to_string(m_context.mostDerivedContract().annotation().internalFunctionIDs.at(&_referencedFunction)) <<
"\n";
m_context.addToInternalDispatch(_referencedFunction);
}
IRVariable IRGeneratorForStatements::convert(IRVariable const& _from, Type const& _to)
{
if (_from.type() == _to)
return _from;
else
{
IRVariable converted(m_context.newYulVariable(), _to);
define(converted, _from);
return converted;
}
}
IRVariable IRGeneratorForStatements::convertAndCleanup(IRVariable const& _from, Type const& _to)
{
IRVariable converted(m_context.newYulVariable(), _to);
defineAndCleanup(converted, _from);
return converted;
}
std::string IRGeneratorForStatements::expressionAsType(Expression const& _expression, Type const& _to)
{
IRVariable from(_expression);
if (from.type() == _to)
return from.commaSeparatedList();
else
return m_utils.conversionFunction(from.type(), _to) + "(" + from.commaSeparatedList() + ")";
}
std::string IRGeneratorForStatements::expressionAsCleanedType(Expression const& _expression, Type const& _to)
{
IRVariable from(_expression);
if (from.type() == _to)
return m_utils.cleanupFunction(_to) + "(" + expressionAsType(_expression, _to) + ")";
else
return expressionAsType(_expression, _to) ;
}
std::ostream& IRGeneratorForStatements::define(IRVariable const& _var)
{
if (_var.type().sizeOnStack() > 0)
appendCode() << "let " << _var.commaSeparatedList() << " := ";
return appendCode(false);
}
void IRGeneratorForStatements::declare(IRVariable const& _var)
{
if (_var.type().sizeOnStack() > 0)
appendCode() << "let " << _var.commaSeparatedList() << "\n";
}
void IRGeneratorForStatements::declareAssign(IRVariable const& _lhs, IRVariable const& _rhs, bool _declare, bool _forceCleanup)
{
std::string output;
if (_lhs.type() == _rhs.type() && !_forceCleanup)
for (auto const& [stackItemName, stackItemType]: _lhs.type().stackItems())
if (stackItemType)
declareAssign(_lhs.part(stackItemName), _rhs.part(stackItemName), _declare);
else
appendCode() << (_declare ? "let ": "") << _lhs.part(stackItemName).name() << " := " << _rhs.part(stackItemName).name() << "\n";
else
{
if (_lhs.type().sizeOnStack() > 0)
appendCode() <<
(_declare ? "let ": "") <<
_lhs.commaSeparatedList() <<
" := ";
appendCode() << m_context.utils().conversionFunction(_rhs.type(), _lhs.type()) <<
"(" <<
_rhs.commaSeparatedList() <<
")\n";
}
}
IRVariable IRGeneratorForStatements::zeroValue(Type const& _type, bool _splitFunctionTypes)
{
IRVariable irVar{IRNames::zeroValue(_type, m_context.newYulVariable()), _type};
define(irVar) << m_utils.zeroValueFunction(_type, _splitFunctionTypes) << "()\n";
return irVar;
}
void IRGeneratorForStatements::appendSimpleUnaryOperation(UnaryOperation const& _operation, Expression const& _expr)
{
std::string func;
if (_operation.getOperator() == Token::Not)
func = "iszero";
else if (_operation.getOperator() == Token::BitNot)
func = "not";
else
solAssert(false, "Invalid Token!");
define(_operation) <<
m_utils.cleanupFunction(type(_expr)) <<
"(" <<
func <<
"(" <<
IRVariable(_expr).commaSeparatedList() <<
")" <<
")\n";
}
std::string IRGeneratorForStatements::binaryOperation(
langutil::Token _operator,
Type const& _type,
std::string const& _left,
std::string const& _right
)
{
solAssert(
!TokenTraits::isShiftOp(_operator),
"Have to use specific shift operation function for shifts."
);
std::string fun;
if (TokenTraits::isBitOp(_operator))
{
solAssert(
_type.category() == Type::Category::Integer ||
_type.category() == Type::Category::FixedBytes,
""
);
switch (_operator)
{
case Token::BitOr: fun = "or"; break;
case Token::BitXor: fun = "xor"; break;
case Token::BitAnd: fun = "and"; break;
default: break;
}
}
else if (TokenTraits::isArithmeticOp(_operator))
{
solUnimplementedAssert(
_type.category() != Type::Category::FixedPoint,
"Not yet implemented - FixedPointType."
);
IntegerType const* type = dynamic_cast<IntegerType const*>(&_type);
solAssert(type);
bool checked = m_context.arithmetic() == Arithmetic::Checked;
switch (_operator)
{
case Token::Add:
fun = checked ? m_utils.overflowCheckedIntAddFunction(*type) : m_utils.wrappingIntAddFunction(*type);
break;
case Token::Sub:
fun = checked ? m_utils.overflowCheckedIntSubFunction(*type) : m_utils.wrappingIntSubFunction(*type);
break;
case Token::Mul:
fun = checked ? m_utils.overflowCheckedIntMulFunction(*type) : m_utils.wrappingIntMulFunction(*type);
break;
case Token::Div:
fun = checked ? m_utils.overflowCheckedIntDivFunction(*type) : m_utils.wrappingIntDivFunction(*type);
break;
case Token::Mod:
fun = m_utils.intModFunction(*type);
break;
default:
break;
}
}
solUnimplementedAssert(!fun.empty(), "Type: " + _type.toString());
return fun + "(" + _left + ", " + _right + ")\n";
}
std::string IRGeneratorForStatements::shiftOperation(
langutil::Token _operator,
IRVariable const& _value,
IRVariable const& _amountToShift
)
{
solUnimplementedAssert(
_amountToShift.type().category() != Type::Category::FixedPoint &&
_value.type().category() != Type::Category::FixedPoint,
"Not yet implemented - FixedPointType."
);
IntegerType const* amountType = dynamic_cast<IntegerType const*>(&_amountToShift.type());
solAssert(amountType);
solAssert(_operator == Token::SHL || _operator == Token::SAR);
return
Whiskers(R"(
<shift>(<value>, <amount>)
)")
("shift",
_operator == Token::SHL ?
m_utils.typedShiftLeftFunction(_value.type(), *amountType) :
m_utils.typedShiftRightFunction(_value.type(), *amountType)
)
("value", _value.name())
("amount", _amountToShift.name())
.render();
}
void IRGeneratorForStatements::appendAndOrOperatorCode(BinaryOperation const& _binOp)
{
langutil::Token const op = _binOp.getOperator();
solAssert(op == Token::Or || op == Token::And);
_binOp.leftExpression().accept(*this);
setLocation(_binOp);
IRVariable value(_binOp);
define(value, _binOp.leftExpression());
if (op == Token::Or)
appendCode() << "if iszero(" << value.name() << ") {\n";
else
appendCode() << "if " << value.name() << " {\n";
_binOp.rightExpression().accept(*this);
setLocation(_binOp);
assign(value, _binOp.rightExpression());
appendCode() << "}\n";
}
void IRGeneratorForStatements::writeToLValue(IRLValue const& _lvalue, IRVariable const& _value)
{
std::visit(
util::GenericVisitor{
[&](IRLValue::Storage const& _storage) {
std::string offsetArgument;
std::optional<unsigned> offsetStatic;
std::visit(GenericVisitor{
[&](unsigned _offset) { offsetStatic = _offset; },
[&](std::string const& _offset) { offsetArgument = ", " + _offset; }
}, _storage.offset);
appendCode() <<
m_utils.updateStorageValueFunction(_value.type(), _lvalue.type, offsetStatic) <<
"(" <<
_storage.slot <<
offsetArgument <<
_value.commaSeparatedListPrefixed() <<
")\n";
},
[&](IRLValue::Memory const& _memory) {
if (_lvalue.type.isValueType())
{
IRVariable prepared(m_context.newYulVariable(), _lvalue.type);
define(prepared, _value);
if (_memory.byteArrayElement)
{
solAssert(_lvalue.type == *TypeProvider::byte());
appendCode() << "mstore8(" + _memory.address + ", byte(0, " + prepared.commaSeparatedList() + "))\n";
}
else
appendCode() << m_utils.writeToMemoryFunction(_lvalue.type) <<
"(" <<
_memory.address <<
", " <<
prepared.commaSeparatedList() <<
")\n";
}
else if (auto const* literalType = dynamic_cast<StringLiteralType const*>(&_value.type()))
{
std::string writeUInt = m_utils.writeToMemoryFunction(*TypeProvider::uint256());
appendCode() <<
writeUInt <<
"(" <<
_memory.address <<
", " <<
m_utils.copyLiteralToMemoryFunction(literalType->value()) + "()" <<
")\n";
}
else
{
solAssert(_lvalue.type.sizeOnStack() == 1);
auto const* valueReferenceType = dynamic_cast<ReferenceType const*>(&_value.type());
solAssert(valueReferenceType);
if (valueReferenceType->dataStoredIn(DataLocation::Memory))
appendCode() << "mstore(" + _memory.address + ", " + _value.part("mpos").name() + ")\n";
else
appendCode() << "mstore(" + _memory.address + ", " + m_utils.conversionFunction(_value.type(), _lvalue.type) + "(" + _value.commaSeparatedList() + "))\n";
}
},
[&](IRLValue::Stack const& _stack) { assign(_stack.variable, _value); },
[&](IRLValue::Immutable const& _immutable)
{
solUnimplementedAssert(_lvalue.type.isValueType());
solUnimplementedAssert(_lvalue.type.sizeOnStack() == 1);
solAssert(_lvalue.type == *_immutable.variable->type());
size_t memOffset = m_context.immutableMemoryOffset(*_immutable.variable);
IRVariable prepared(m_context.newYulVariable(), _lvalue.type);
define(prepared, _value);
appendCode() << "mstore(" << std::to_string(memOffset) << ", " << prepared.commaSeparatedList() << ")\n";
},
[&](IRLValue::Tuple const& _tuple) {
auto components = std::move(_tuple.components);
for (size_t i = 0; i < components.size(); i++)
{
size_t idx = components.size() - i - 1;
if (components[idx])
writeToLValue(*components[idx], _value.tupleComponent(idx));
}
}
},
_lvalue.kind
);
}
IRVariable IRGeneratorForStatements::readFromLValue(IRLValue const& _lvalue)
{
IRVariable result{m_context.newYulVariable(), _lvalue.type};
std::visit(GenericVisitor{
[&](IRLValue::Storage const& _storage) {
if (!_lvalue.type.isValueType())
define(result) << _storage.slot << "\n";
else if (std::holds_alternative<std::string>(_storage.offset))
define(result) <<
m_utils.readFromStorageDynamic(_lvalue.type, true) <<
"(" <<
_storage.slot <<
", " <<
std::get<std::string>(_storage.offset) <<
")\n";
else
define(result) <<
m_utils.readFromStorage(_lvalue.type, std::get<unsigned>(_storage.offset), true) <<
"(" <<
_storage.slot <<
")\n";
},
[&](IRLValue::Memory const& _memory) {
if (_lvalue.type.isValueType())
define(result) <<
m_utils.readFromMemory(_lvalue.type) <<
"(" <<
_memory.address <<
")\n";
else
define(result) << "mload(" << _memory.address << ")\n";
},
[&](IRLValue::Stack const& _stack) {
define(result, _stack.variable);
},
[&](IRLValue::Immutable const& _immutable) {
solUnimplementedAssert(_lvalue.type.isValueType());
solUnimplementedAssert(_lvalue.type.sizeOnStack() == 1);
solAssert(_lvalue.type == *_immutable.variable->type());
if (m_context.executionContext() == IRGenerationContext::ExecutionContext::Creation)
{
std::string readFunction = m_utils.readFromMemory(*_immutable.variable->type());
define(result) <<
readFunction <<
"(" <<
std::to_string(m_context.immutableMemoryOffset(*_immutable.variable)) <<
")\n";
}
else
define(result) << "loadimmutable(\"" << std::to_string(_immutable.variable->id()) << "\")\n";
},
[&](IRLValue::Tuple const&) {
solAssert(false, "Attempted to read from tuple lvalue.");
}
}, _lvalue.kind);
return result;
}
void IRGeneratorForStatements::setLValue(Expression const& _expression, IRLValue _lvalue)
{
solAssert(!m_currentLValue);
if (_expression.annotation().willBeWrittenTo)
{
m_currentLValue.emplace(std::move(_lvalue));
if (_lvalue.type.dataStoredIn(DataLocation::CallData))
solAssert(std::holds_alternative<IRLValue::Stack>(_lvalue.kind));
}
else
// Only define the expression, if it will not be written to.
define(_expression, readFromLValue(_lvalue));
}
void IRGeneratorForStatements::generateLoop(
Statement const& _body,
Expression const* _conditionExpression,
Statement const* _initExpression,
ExpressionStatement const* _loopExpression,
bool _isDoWhile
)
{
std::string firstRun;
if (_isDoWhile)
{
solAssert(_conditionExpression, "Expected condition for doWhile");
firstRun = m_context.newYulVariable();
appendCode() << "let " << firstRun << " := 1\n";
}
appendCode() << "for {\n";
if (_initExpression)
_initExpression->accept(*this);
appendCode() << "} 1 {\n";
if (_loopExpression)
_loopExpression->accept(*this);
appendCode() << "}\n";
appendCode() << "{\n";
if (_conditionExpression)
{
if (_isDoWhile)
appendCode() << "if iszero(" << firstRun << ") {\n";
_conditionExpression->accept(*this);
appendCode() <<
"if iszero(" <<
expressionAsType(*_conditionExpression, *TypeProvider::boolean()) <<
") { break }\n";
if (_isDoWhile)
appendCode() << "}\n" << firstRun << " := 0\n";
}
_body.accept(*this);
appendCode() << "}\n";
}
Type const& IRGeneratorForStatements::type(Expression const& _expression)
{
solAssert(_expression.annotation().type, "Type of expression not set.");
return *_expression.annotation().type;
}
bool IRGeneratorForStatements::visit(TryStatement const& _tryStatement)
{
Expression const& externalCall = _tryStatement.externalCall();
externalCall.accept(*this);
setLocation(_tryStatement);
appendCode() << "switch iszero(" << IRNames::trySuccessConditionVariable(externalCall) << ")\n";
appendCode() << "case 0 { // success case\n";
TryCatchClause const& successClause = *_tryStatement.clauses().front();
if (successClause.parameters())
{
size_t i = 0;
for (ASTPointer<VariableDeclaration> const& varDecl: successClause.parameters()->parameters())
{
solAssert(varDecl);
define(m_context.addLocalVariable(*varDecl),
successClause.parameters()->parameters().size() == 1 ?
IRVariable(externalCall) :
IRVariable(externalCall).tupleComponent(i++)
);
}
}
successClause.block().accept(*this);
setLocation(_tryStatement);
appendCode() << "}\n";
appendCode() << "default { // failure case\n";
handleCatch(_tryStatement);
appendCode() << "}\n";
return false;
}
void IRGeneratorForStatements::handleCatch(TryStatement const& _tryStatement)
{
setLocation(_tryStatement);
std::string const runFallback = m_context.newYulVariable();
appendCode() << "let " << runFallback << " := 1\n";
// This function returns zero on "short returndata". We have to add a success flag
// once we implement custom error codes.
if (_tryStatement.errorClause() || _tryStatement.panicClause())
appendCode() << "switch " << m_utils.returnDataSelectorFunction() << "()\n";
if (TryCatchClause const* errorClause = _tryStatement.errorClause())
{
appendCode() << "case " << selectorFromSignatureU32("Error(string)") << " {\n";
setLocation(*errorClause);
std::string const dataVariable = m_context.newYulVariable();
appendCode() << "let " << dataVariable << " := " << m_utils.tryDecodeErrorMessageFunction() << "()\n";
appendCode() << "if " << dataVariable << " {\n";
appendCode() << runFallback << " := 0\n";
if (errorClause->parameters())
{
solAssert(errorClause->parameters()->parameters().size() == 1);
IRVariable const& var = m_context.addLocalVariable(*errorClause->parameters()->parameters().front());
define(var) << dataVariable << "\n";
}
errorClause->accept(*this);
setLocation(*errorClause);
appendCode() << "}\n";
setLocation(_tryStatement);
appendCode() << "}\n";
}
if (TryCatchClause const* panicClause = _tryStatement.panicClause())
{
appendCode() << "case " << selectorFromSignatureU32("Panic(uint256)") << " {\n";
setLocation(*panicClause);
std::string const success = m_context.newYulVariable();
std::string const code = m_context.newYulVariable();
appendCode() << "let " << success << ", " << code << " := " << m_utils.tryDecodePanicDataFunction() << "()\n";
appendCode() << "if " << success << " {\n";
appendCode() << runFallback << " := 0\n";
if (panicClause->parameters())
{
solAssert(panicClause->parameters()->parameters().size() == 1);
IRVariable const& var = m_context.addLocalVariable(*panicClause->parameters()->parameters().front());
define(var) << code << "\n";
}
panicClause->accept(*this);
setLocation(*panicClause);
appendCode() << "}\n";
setLocation(_tryStatement);
appendCode() << "}\n";
}
setLocation(_tryStatement);
appendCode() << "if " << runFallback << " {\n";
if (_tryStatement.fallbackClause())
handleCatchFallback(*_tryStatement.fallbackClause());
else
appendCode() << m_utils.forwardingRevertFunction() << "()\n";
setLocation(_tryStatement);
appendCode() << "}\n";
}
void IRGeneratorForStatements::handleCatchFallback(TryCatchClause const& _fallback)
{
setLocation(_fallback);
if (_fallback.parameters())
{
solAssert(m_context.evmVersion().supportsReturndata());
solAssert(
_fallback.parameters()->parameters().size() == 1 &&
_fallback.parameters()->parameters().front() &&
*_fallback.parameters()->parameters().front()->annotation().type == *TypeProvider::bytesMemory(),
""
);
VariableDeclaration const& paramDecl = *_fallback.parameters()->parameters().front();
define(m_context.addLocalVariable(paramDecl)) << m_utils.extractReturndataFunction() << "()\n";
}
_fallback.accept(*this);
}
void IRGeneratorForStatements::revertWithError(
std::string const& _signature,
std::vector<Type const*> const& _parameterTypes,
std::vector<ASTPointer<Expression const>> const& _errorArguments
)
{
Whiskers templ(R"({
let <pos> := <allocateUnbounded>()
mstore(<pos>, <hash>)
let <end> := <encode>(add(<pos>, 4) <argumentVars>)
revert(<pos>, sub(<end>, <pos>))
})");
templ("pos", m_context.newYulVariable());
templ("end", m_context.newYulVariable());
templ("hash", util::selectorFromSignatureU256(_signature).str());
templ("allocateUnbounded", m_utils.allocateUnboundedFunction());
std::vector<std::string> errorArgumentVars;
std::vector<Type const*> errorArgumentTypes;
for (ASTPointer<Expression const> const& arg: _errorArguments)
{
errorArgumentVars += IRVariable(*arg).stackSlots();
solAssert(arg->annotation().type);
errorArgumentTypes.push_back(arg->annotation().type);
}
templ("argumentVars", joinHumanReadablePrefixed(errorArgumentVars));
templ("encode", m_context.abiFunctions().tupleEncoder(errorArgumentTypes, _parameterTypes));
appendCode() << templ.render();
}
bool IRGeneratorForStatements::visit(TryCatchClause const& _clause)
{
_clause.block().accept(*this);
return false;
}
std::string IRGeneratorForStatements::linkerSymbol(ContractDefinition const& _library) const
{
solAssert(_library.isLibrary());
return "linkersymbol(" + util::escapeAndQuoteString(_library.fullyQualifiedName()) + ")";
}