/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ /** * @author Christian * @date 2015 * Type analyzer and checker. */ #include #include #include #include #include #include #include #include #include using namespace std; using namespace dev; using namespace dev::solidity; namespace { bool typeSupportedByOldABIEncoder(Type const& _type) { if (_type.dataStoredIn(DataLocation::Storage)) return true; else if (_type.category() == Type::Category::Struct) return false; else if (_type.category() == Type::Category::Array) { auto const& arrayType = dynamic_cast(_type); auto base = arrayType.baseType(); if (!typeSupportedByOldABIEncoder(*base)) return false; else if (base->category() == Type::Category::Array && base->isDynamicallySized()) return false; } return true; } } bool TypeChecker::checkTypeRequirements(ASTNode const& _contract) { _contract.accept(*this); return Error::containsOnlyWarnings(m_errorReporter.errors()); } TypePointer const& TypeChecker::type(Expression const& _expression) const { solAssert(!!_expression.annotation().type, "Type requested but not present."); return _expression.annotation().type; } TypePointer const& TypeChecker::type(VariableDeclaration const& _variable) const { solAssert(!!_variable.annotation().type, "Type requested but not present."); return _variable.annotation().type; } bool TypeChecker::visit(ContractDefinition const& _contract) { m_scope = &_contract; // We force our own visiting order here. The structs have to be excluded below. set visited; for (auto const& s: _contract.definedStructs()) visited.insert(s); ASTNode::listAccept(_contract.definedStructs(), *this); ASTNode::listAccept(_contract.baseContracts(), *this); checkContractDuplicateFunctions(_contract); checkContractDuplicateEvents(_contract); checkContractIllegalOverrides(_contract); checkContractAbstractFunctions(_contract); checkContractBaseConstructorArguments(_contract); FunctionDefinition const* function = _contract.constructor(); if (function) { if (!function->returnParameters().empty()) m_errorReporter.typeError(function->returnParameterList()->location(), "Non-empty \"returns\" directive for constructor."); if (function->stateMutability() != StateMutability::NonPayable && function->stateMutability() != StateMutability::Payable) m_errorReporter.typeError( function->location(), "Constructor must be payable or non-payable, but is \"" + stateMutabilityToString(function->stateMutability()) + "\"." ); if (function->visibility() != FunctionDefinition::Visibility::Public && function->visibility() != FunctionDefinition::Visibility::Internal) m_errorReporter.typeError(function->location(), "Constructor must be public or internal."); } for (FunctionDefinition const* function: _contract.definedFunctions()) if (function->isFallback()) { if (_contract.isLibrary()) m_errorReporter.typeError(function->location(), "Libraries cannot have fallback functions."); if (function->stateMutability() != StateMutability::NonPayable && function->stateMutability() != StateMutability::Payable) m_errorReporter.typeError( function->location(), "Fallback function must be payable or non-payable, but is \"" + stateMutabilityToString(function->stateMutability()) + "\"." ); if (!function->parameters().empty()) m_errorReporter.typeError(function->parameterList().location(), "Fallback function cannot take parameters."); if (!function->returnParameters().empty()) m_errorReporter.typeError(function->returnParameterList()->location(), "Fallback function cannot return values."); if ( _contract.sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::V050) && function->visibility() != FunctionDefinition::Visibility::External ) m_errorReporter.typeError(function->location(), "Fallback function must be defined as \"external\"."); } for (auto const& n: _contract.subNodes()) if (!visited.count(n.get())) n->accept(*this); checkContractExternalTypeClashes(_contract); // check for hash collisions in function signatures set> hashes; for (auto const& it: _contract.interfaceFunctionList()) { FixedHash<4> const& hash = it.first; if (hashes.count(hash)) m_errorReporter.typeError( _contract.location(), string("Function signature hash collision for ") + it.second->externalSignature() ); hashes.insert(hash); } if (_contract.isLibrary()) checkLibraryRequirements(_contract); return false; } void TypeChecker::checkContractDuplicateFunctions(ContractDefinition const& _contract) { /// Checks that two functions with the same name defined in this contract have different /// argument types and that there is at most one constructor. map> functions; FunctionDefinition const* constructor = nullptr; FunctionDefinition const* fallback = nullptr; for (FunctionDefinition const* function: _contract.definedFunctions()) if (function->isConstructor()) { if (constructor) m_errorReporter.declarationError( function->location(), SecondarySourceLocation().append("Another declaration is here:", constructor->location()), "More than one constructor defined." ); constructor = function; } else if (function->isFallback()) { if (fallback) m_errorReporter.declarationError( function->location(), SecondarySourceLocation().append("Another declaration is here:", fallback->location()), "Only one fallback function is allowed." ); fallback = function; } else { solAssert(!function->name().empty(), ""); functions[function->name()].push_back(function); } findDuplicateDefinitions(functions, "Function with same name and arguments defined twice."); } void TypeChecker::checkContractDuplicateEvents(ContractDefinition const& _contract) { /// Checks that two events with the same name defined in this contract have different /// argument types map> events; for (EventDefinition const* event: _contract.events()) events[event->name()].push_back(event); findDuplicateDefinitions(events, "Event with same name and arguments defined twice."); } template void TypeChecker::findDuplicateDefinitions(map> const& _definitions, string _message) { for (auto const& it: _definitions) { vector const& overloads = it.second; set reported; for (size_t i = 0; i < overloads.size() && !reported.count(i); ++i) { SecondarySourceLocation ssl; for (size_t j = i + 1; j < overloads.size(); ++j) if (FunctionType(*overloads[i]).hasEqualArgumentTypes(FunctionType(*overloads[j]))) { ssl.append("Other declaration is here:", overloads[j]->location()); reported.insert(j); } if (ssl.infos.size() > 0) { ssl.limitSize(_message); m_errorReporter.declarationError( overloads[i]->location(), ssl, _message ); } } } } void TypeChecker::checkContractAbstractFunctions(ContractDefinition const& _contract) { // Mapping from name to function definition (exactly one per argument type equality class) and // flag to indicate whether it is fully implemented. using FunTypeAndFlag = std::pair; map> functions; // Search from base to derived for (ContractDefinition const* contract: boost::adaptors::reverse(_contract.annotation().linearizedBaseContracts)) for (FunctionDefinition const* function: contract->definedFunctions()) { // Take constructors out of overload hierarchy if (function->isConstructor()) continue; auto& overloads = functions[function->name()]; FunctionTypePointer funType = make_shared(*function); auto it = find_if(overloads.begin(), overloads.end(), [&](FunTypeAndFlag const& _funAndFlag) { return funType->hasEqualArgumentTypes(*_funAndFlag.first); }); if (it == overloads.end()) overloads.push_back(make_pair(funType, function->isImplemented())); else if (it->second) { if (!function->isImplemented()) m_errorReporter.typeError(function->location(), "Redeclaring an already implemented function as abstract"); } else if (function->isImplemented()) it->second = true; } // Set to not fully implemented if at least one flag is false. for (auto const& it: functions) for (auto const& funAndFlag: it.second) if (!funAndFlag.second) { FunctionDefinition const* function = dynamic_cast(&funAndFlag.first->declaration()); solAssert(function, ""); _contract.annotation().unimplementedFunctions.push_back(function); break; } } void TypeChecker::checkContractBaseConstructorArguments(ContractDefinition const& _contract) { bool const v050 = _contract.sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::V050); vector const& bases = _contract.annotation().linearizedBaseContracts; // Determine the arguments that are used for the base constructors. for (ContractDefinition const* contract: bases) { if (FunctionDefinition const* constructor = contract->constructor()) for (auto const& modifier: constructor->modifiers()) { auto baseContract = dynamic_cast(&dereference(*modifier->name())); if (modifier->arguments()) { if (baseContract && baseContract->constructor()) annotateBaseConstructorArguments(_contract, baseContract->constructor(), modifier.get()); } else { if (v050) m_errorReporter.declarationError( modifier->location(), "Modifier-style base constructor call without arguments." ); else m_errorReporter.warning( modifier->location(), "Modifier-style base constructor call without arguments." ); } } for (ASTPointer const& base: contract->baseContracts()) { auto baseContract = dynamic_cast(&dereference(base->name())); solAssert(baseContract, ""); if (baseContract->constructor() && base->arguments() && !base->arguments()->empty()) annotateBaseConstructorArguments(_contract, baseContract->constructor(), base.get()); } } // check that we get arguments for all base constructors that need it. // If not mark the contract as abstract (not fully implemented) for (ContractDefinition const* contract: bases) if (FunctionDefinition const* constructor = contract->constructor()) if (contract != &_contract && !constructor->parameters().empty()) if (!_contract.annotation().baseConstructorArguments.count(constructor)) _contract.annotation().unimplementedFunctions.push_back(constructor); } void TypeChecker::annotateBaseConstructorArguments( ContractDefinition const& _currentContract, FunctionDefinition const* _baseConstructor, ASTNode const* _argumentNode ) { bool const v050 = _currentContract.sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::V050); solAssert(_baseConstructor, ""); solAssert(_argumentNode, ""); auto insertionResult = _currentContract.annotation().baseConstructorArguments.insert( std::make_pair(_baseConstructor, _argumentNode) ); if (!insertionResult.second) { ASTNode const* previousNode = insertionResult.first->second; SourceLocation const* mainLocation = nullptr; SecondarySourceLocation ssl; if ( _currentContract.location().contains(previousNode->location()) || _currentContract.location().contains(_argumentNode->location()) ) { mainLocation = &previousNode->location(); ssl.append("Second constructor call is here:", _argumentNode->location()); } else { mainLocation = &_currentContract.location(); ssl.append("First constructor call is here: ", _argumentNode->location()); ssl.append("Second constructor call is here: ", previousNode->location()); } if (v050) m_errorReporter.declarationError( *mainLocation, ssl, "Base constructor arguments given twice." ); else m_errorReporter.warning( *mainLocation, "Base constructor arguments given twice.", ssl ); } } void TypeChecker::checkContractIllegalOverrides(ContractDefinition const& _contract) { // TODO unify this at a later point. for this we need to put the constness and the access specifier // into the types map> functions; map modifiers; // We search from derived to base, so the stored item causes the error. for (ContractDefinition const* contract: _contract.annotation().linearizedBaseContracts) { for (FunctionDefinition const* function: contract->definedFunctions()) { if (function->isConstructor()) continue; // constructors can neither be overridden nor override anything string const& name = function->name(); if (modifiers.count(name)) m_errorReporter.typeError(modifiers[name]->location(), "Override changes function to modifier."); for (FunctionDefinition const* overriding: functions[name]) checkFunctionOverride(*overriding, *function); functions[name].push_back(function); } for (ModifierDefinition const* modifier: contract->functionModifiers()) { string const& name = modifier->name(); ModifierDefinition const*& override = modifiers[name]; if (!override) override = modifier; else if (ModifierType(*override) != ModifierType(*modifier)) m_errorReporter.typeError(override->location(), "Override changes modifier signature."); if (!functions[name].empty()) m_errorReporter.typeError(override->location(), "Override changes modifier to function."); } } } void TypeChecker::checkFunctionOverride(FunctionDefinition const& function, FunctionDefinition const& super) { FunctionType functionType(function); FunctionType superType(super); if (!functionType.hasEqualArgumentTypes(superType)) return; if (!function.annotation().superFunction) function.annotation().superFunction = &super; if (function.visibility() != super.visibility()) { // visibility is enforced to be external in interfaces, but a contract can override that with public if ( super.inContractKind() == ContractDefinition::ContractKind::Interface && function.inContractKind() != ContractDefinition::ContractKind::Interface && function.visibility() == FunctionDefinition::Visibility::Public ) return; overrideError(function, super, "Overriding function visibility differs."); } else if (function.stateMutability() != super.stateMutability()) overrideError( function, super, "Overriding function changes state mutability from \"" + stateMutabilityToString(super.stateMutability()) + "\" to \"" + stateMutabilityToString(function.stateMutability()) + "\"." ); else if (functionType != superType) overrideError(function, super, "Overriding function return types differ."); } void TypeChecker::overrideError(FunctionDefinition const& function, FunctionDefinition const& super, string message) { m_errorReporter.typeError( function.location(), SecondarySourceLocation().append("Overriden function is here:", super.location()), message ); } void TypeChecker::checkContractExternalTypeClashes(ContractDefinition const& _contract) { map>> externalDeclarations; for (ContractDefinition const* contract: _contract.annotation().linearizedBaseContracts) { for (FunctionDefinition const* f: contract->definedFunctions()) if (f->isPartOfExternalInterface()) { auto functionType = make_shared(*f); // under non error circumstances this should be true if (functionType->interfaceFunctionType()) externalDeclarations[functionType->externalSignature()].push_back( make_pair(f, functionType) ); } for (VariableDeclaration const* v: contract->stateVariables()) if (v->isPartOfExternalInterface()) { auto functionType = make_shared(*v); // under non error circumstances this should be true if (functionType->interfaceFunctionType()) externalDeclarations[functionType->externalSignature()].push_back( make_pair(v, functionType) ); } } for (auto const& it: externalDeclarations) for (size_t i = 0; i < it.second.size(); ++i) for (size_t j = i + 1; j < it.second.size(); ++j) if (!it.second[i].second->hasEqualArgumentTypes(*it.second[j].second)) m_errorReporter.typeError( it.second[j].first->location(), "Function overload clash during conversion to external types for arguments." ); } void TypeChecker::checkLibraryRequirements(ContractDefinition const& _contract) { solAssert(_contract.isLibrary(), ""); if (!_contract.baseContracts().empty()) m_errorReporter.typeError(_contract.location(), "Library is not allowed to inherit."); for (auto const& var: _contract.stateVariables()) if (!var->isConstant()) m_errorReporter.typeError(var->location(), "Library cannot have non-constant state variables"); } void TypeChecker::checkDoubleStorageAssignment(Assignment const& _assignment) { TupleType const& lhs = dynamic_cast(*type(_assignment.leftHandSide())); TupleType const& rhs = dynamic_cast(*type(_assignment.rightHandSide())); bool fillRight = !lhs.components().empty() && (!lhs.components().back() || lhs.components().front()); size_t storageToStorageCopies = 0; size_t toStorageCopies = 0; for (size_t i = 0; i < lhs.components().size(); ++i) { ReferenceType const* ref = dynamic_cast(lhs.components()[i].get()); if (!ref || !ref->dataStoredIn(DataLocation::Storage) || ref->isPointer()) continue; size_t rhsPos = fillRight ? i : rhs.components().size() - (lhs.components().size() - i); solAssert(rhsPos < rhs.components().size(), ""); toStorageCopies++; if (rhs.components()[rhsPos]->dataStoredIn(DataLocation::Storage)) storageToStorageCopies++; } if (storageToStorageCopies >= 1 && toStorageCopies >= 2) m_errorReporter.warning( _assignment.location(), "This assignment performs two copies to storage. Since storage copies do not first " "copy to a temporary location, one of them might be overwritten before the second " "is executed and thus may have unexpected effects. It is safer to perform the copies " "separately or assign to storage pointers first." ); } void TypeChecker::endVisit(InheritanceSpecifier const& _inheritance) { auto base = dynamic_cast(&dereference(_inheritance.name())); solAssert(base, "Base contract not available."); if (m_scope->contractKind() == ContractDefinition::ContractKind::Interface) m_errorReporter.typeError(_inheritance.location(), "Interfaces cannot inherit."); if (base->isLibrary()) m_errorReporter.typeError(_inheritance.location(), "Libraries cannot be inherited from."); auto const& arguments = _inheritance.arguments(); TypePointers parameterTypes; if (base->contractKind() != ContractDefinition::ContractKind::Interface) // Interfaces do not have constructors, so there are zero parameters. parameterTypes = ContractType(*base).newExpressionType()->parameterTypes(); if (arguments) { bool v050 = m_scope->sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::V050); if (parameterTypes.size() != arguments->size()) { if (arguments->size() == 0 && !v050) m_errorReporter.warning( _inheritance.location(), "Wrong argument count for constructor call: " + toString(arguments->size()) + " arguments given but expected " + toString(parameterTypes.size()) + "." ); else { m_errorReporter.typeError( _inheritance.location(), "Wrong argument count for constructor call: " + toString(arguments->size()) + " arguments given but expected " + toString(parameterTypes.size()) + "." ); return; } } for (size_t i = 0; i < arguments->size(); ++i) if (!type(*(*arguments)[i])->isImplicitlyConvertibleTo(*parameterTypes[i])) m_errorReporter.typeError( (*arguments)[i]->location(), "Invalid type for argument in constructor call. " "Invalid implicit conversion from " + type(*(*arguments)[i])->toString() + " to " + parameterTypes[i]->toString() + " requested." ); } } void TypeChecker::endVisit(UsingForDirective const& _usingFor) { ContractDefinition const* library = dynamic_cast( _usingFor.libraryName().annotation().referencedDeclaration ); if (!library || !library->isLibrary()) m_errorReporter.fatalTypeError(_usingFor.libraryName().location(), "Library name expected."); } bool TypeChecker::visit(StructDefinition const& _struct) { if (m_scope->contractKind() == ContractDefinition::ContractKind::Interface) m_errorReporter.typeError(_struct.location(), "Structs cannot be defined in interfaces."); for (ASTPointer const& member: _struct.members()) if (!type(*member)->canBeStored()) m_errorReporter.typeError(member->location(), "Type cannot be used in struct."); // Check recursion, fatal error if detected. using StructPointer = StructDefinition const*; using StructPointersSet = set; function check = [&](StructPointer _struct, StructPointersSet const& _parents) { if (_parents.count(_struct)) m_errorReporter.fatalTypeError(_struct->location(), "Recursive struct definition."); StructPointersSet parents = _parents; parents.insert(_struct); for (ASTPointer const& member: _struct->members()) if (type(*member)->category() == Type::Category::Struct) { auto const& typeName = dynamic_cast(*member->typeName()); check(&dynamic_cast(*typeName.annotation().referencedDeclaration), parents); } }; check(&_struct, StructPointersSet{}); ASTNode::listAccept(_struct.members(), *this); return false; } bool TypeChecker::visit(FunctionDefinition const& _function) { bool isLibraryFunction = dynamic_cast(_function.scope()) && dynamic_cast(_function.scope())->isLibrary(); if (_function.isPayable()) { if (isLibraryFunction) m_errorReporter.typeError(_function.location(), "Library functions cannot be payable."); if (!_function.isConstructor() && !_function.isFallback() && !_function.isPartOfExternalInterface()) m_errorReporter.typeError(_function.location(), "Internal functions cannot be payable."); } for (ASTPointer const& var: _function.parameters() + _function.returnParameters()) { if (!type(*var)->canLiveOutsideStorage()) m_errorReporter.typeError(var->location(), "Type is required to live outside storage."); if (_function.visibility() >= FunctionDefinition::Visibility::Public && !(type(*var)->interfaceType(isLibraryFunction))) m_errorReporter.fatalTypeError(var->location(), "Internal or recursive type is not allowed for public or external functions."); if ( _function.visibility() > FunctionDefinition::Visibility::Internal && !_function.sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::ABIEncoderV2) && !typeSupportedByOldABIEncoder(*type(*var)) ) m_errorReporter.typeError( var->location(), "This type is only supported in the new experimental ABI encoder. " "Use \"pragma experimental ABIEncoderV2;\" to enable the feature." ); var->accept(*this); } set modifiers; for (ASTPointer const& modifier: _function.modifiers()) { visitManually( *modifier, _function.isConstructor() ? dynamic_cast(*_function.scope()).annotation().linearizedBaseContracts : vector() ); Declaration const* decl = &dereference(*modifier->name()); if (modifiers.count(decl)) { if (dynamic_cast(decl)) m_errorReporter.declarationError(modifier->location(), "Base constructor already provided."); } else modifiers.insert(decl); } if (m_scope->contractKind() == ContractDefinition::ContractKind::Interface) { if (_function.isImplemented()) m_errorReporter.typeError(_function.location(), "Functions in interfaces cannot have an implementation."); if (_function.sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::V050)) { if (_function.visibility() != FunctionDefinition::Visibility::External) m_errorReporter.typeError(_function.location(), "Functions in interfaces must be declared external."); } else { if (_function.visibility() < FunctionDefinition::Visibility::Public) m_errorReporter.typeError(_function.location(), "Functions in interfaces cannot be internal or private."); else if (_function.visibility() != FunctionDefinition::Visibility::External) m_errorReporter.warning(_function.location(), "Functions in interfaces should be declared external."); } if (_function.isConstructor()) m_errorReporter.typeError(_function.location(), "Constructor cannot be defined in interfaces."); } else if (m_scope->contractKind() == ContractDefinition::ContractKind::Library) if (_function.isConstructor()) m_errorReporter.typeError(_function.location(), "Constructor cannot be defined in libraries."); if (_function.isImplemented()) _function.body().accept(*this); else if (_function.isConstructor()) m_errorReporter.typeError(_function.location(), "Constructor must be implemented if declared."); else if (isLibraryFunction && _function.visibility() <= FunctionDefinition::Visibility::Internal) m_errorReporter.typeError(_function.location(), "Internal library function must be implemented if declared."); return false; } bool TypeChecker::visit(VariableDeclaration const& _variable) { // Forbid any variable declarations inside interfaces unless they are part of // a function's input/output parameters. if ( m_scope->contractKind() == ContractDefinition::ContractKind::Interface && !_variable.isCallableParameter() ) m_errorReporter.typeError(_variable.location(), "Variables cannot be declared in interfaces."); // Variables can be declared without type (with "var"), in which case the first assignment // sets the type. // Note that assignments before the first declaration are legal because of the special scoping // rules inherited from JavaScript. // type is filled either by ReferencesResolver directly from the type name or by // TypeChecker at the VariableDeclarationStatement level. TypePointer varType = _variable.annotation().type; solAssert(!!varType, "Failed to infer variable type."); if (_variable.value()) expectType(*_variable.value(), *varType); if (_variable.isConstant()) { if (!_variable.isStateVariable()) m_errorReporter.typeError(_variable.location(), "Illegal use of \"constant\" specifier."); if (!_variable.type()->isValueType()) { bool allowed = false; if (auto arrayType = dynamic_cast(_variable.type().get())) allowed = arrayType->isByteArray(); if (!allowed) m_errorReporter.typeError(_variable.location(), "Constants of non-value type not yet implemented."); } if (!_variable.value()) m_errorReporter.typeError(_variable.location(), "Uninitialized \"constant\" variable."); else if (!_variable.value()->annotation().isPure) { if (_variable.sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::V050)) m_errorReporter.typeError( _variable.value()->location(), "Initial value for constant variable has to be compile-time constant." ); else m_errorReporter.warning( _variable.value()->location(), "Initial value for constant variable has to be compile-time constant. " "This will fail to compile with the next breaking version change." ); } } if (!_variable.isStateVariable()) { if (varType->dataStoredIn(DataLocation::Memory) || varType->dataStoredIn(DataLocation::CallData)) if (!varType->canLiveOutsideStorage()) m_errorReporter.typeError(_variable.location(), "Type " + varType->toString() + " is only valid in storage."); } else if ( _variable.visibility() >= VariableDeclaration::Visibility::Public && !FunctionType(_variable).interfaceFunctionType() ) m_errorReporter.typeError(_variable.location(), "Internal or recursive type is not allowed for public state variables."); if (varType->category() == Type::Category::Array) if (auto arrayType = dynamic_cast(varType.get())) if ( ((arrayType->location() == DataLocation::Memory) || (arrayType->location() == DataLocation::CallData)) && !arrayType->validForCalldata() ) m_errorReporter.typeError(_variable.location(), "Array is too large to be encoded."); return false; } bool TypeChecker::visit(EnumDefinition const& _enum) { if (m_scope->contractKind() == ContractDefinition::ContractKind::Interface) m_errorReporter.typeError(_enum.location(), "Enumerable cannot be declared in interfaces."); return false; } void TypeChecker::visitManually( ModifierInvocation const& _modifier, vector const& _bases ) { std::vector> const& arguments = _modifier.arguments() ? *_modifier.arguments() : std::vector>(); for (ASTPointer const& argument: arguments) argument->accept(*this); _modifier.name()->accept(*this); auto const* declaration = &dereference(*_modifier.name()); vector> emptyParameterList; vector> const* parameters = nullptr; if (auto modifierDecl = dynamic_cast(declaration)) parameters = &modifierDecl->parameters(); else // check parameters for Base constructors for (ContractDefinition const* base: _bases) if (declaration == base) { if (auto referencedConstructor = base->constructor()) parameters = &referencedConstructor->parameters(); else parameters = &emptyParameterList; break; } if (!parameters) { m_errorReporter.typeError(_modifier.location(), "Referenced declaration is neither modifier nor base class."); return; } if (parameters->size() != arguments.size()) { m_errorReporter.typeError( _modifier.location(), "Wrong argument count for modifier invocation: " + toString(arguments.size()) + " arguments given but expected " + toString(parameters->size()) + "." ); return; } for (size_t i = 0; i < arguments.size(); ++i) if (!type(*arguments[i])->isImplicitlyConvertibleTo(*type(*(*parameters)[i]))) m_errorReporter.typeError( arguments[i]->location(), "Invalid type for argument in modifier invocation. " "Invalid implicit conversion from " + type(*arguments[i])->toString() + " to " + type(*(*parameters)[i])->toString() + " requested." ); } bool TypeChecker::visit(EventDefinition const& _eventDef) { unsigned numIndexed = 0; for (ASTPointer const& var: _eventDef.parameters()) { if (var->isIndexed()) numIndexed++; if (!type(*var)->canLiveOutsideStorage()) m_errorReporter.typeError(var->location(), "Type is required to live outside storage."); if (!type(*var)->interfaceType(false)) m_errorReporter.typeError(var->location(), "Internal or recursive type is not allowed as event parameter type."); } if (_eventDef.isAnonymous() && numIndexed > 4) m_errorReporter.typeError(_eventDef.location(), "More than 4 indexed arguments for anonymous event."); else if (!_eventDef.isAnonymous() && numIndexed > 3) m_errorReporter.typeError(_eventDef.location(), "More than 3 indexed arguments for event."); return false; } void TypeChecker::endVisit(FunctionTypeName const& _funType) { FunctionType const& fun = dynamic_cast(*_funType.annotation().type); if (fun.kind() == FunctionType::Kind::External) if (!fun.canBeUsedExternally(false)) m_errorReporter.typeError(_funType.location(), "External function type uses internal types."); } bool TypeChecker::visit(InlineAssembly const& _inlineAssembly) { // External references have already been resolved in a prior stage and stored in the annotation. // We run the resolve step again regardless. julia::ExternalIdentifierAccess::Resolver identifierAccess = [&]( assembly::Identifier const& _identifier, julia::IdentifierContext _context, bool ) { auto ref = _inlineAssembly.annotation().externalReferences.find(&_identifier); if (ref == _inlineAssembly.annotation().externalReferences.end()) return size_t(-1); Declaration const* declaration = ref->second.declaration; solAssert(!!declaration, ""); if (auto var = dynamic_cast(declaration)) { if (var->isConstant()) { m_errorReporter.typeError(_identifier.location, "Constant variables not supported by inline assembly."); return size_t(-1); } else if (ref->second.isSlot || ref->second.isOffset) { if (!var->isStateVariable() && !var->type()->dataStoredIn(DataLocation::Storage)) { m_errorReporter.typeError(_identifier.location, "The suffixes _offset and _slot can only be used on storage variables."); return size_t(-1); } else if (_context != julia::IdentifierContext::RValue) { m_errorReporter.typeError(_identifier.location, "Storage variables cannot be assigned to."); return size_t(-1); } } else if (!var->isLocalVariable()) { m_errorReporter.typeError(_identifier.location, "Only local variables are supported. To access storage variables, use the _slot and _offset suffixes."); return size_t(-1); } else if (var->type()->dataStoredIn(DataLocation::Storage)) { m_errorReporter.typeError(_identifier.location, "You have to use the _slot or _offset prefix to access storage reference variables."); return size_t(-1); } else if (var->type()->sizeOnStack() != 1) { if (var->type()->dataStoredIn(DataLocation::CallData)) m_errorReporter.typeError(_identifier.location, "Call data elements cannot be accessed directly. Copy to a local variable first or use \"calldataload\" or \"calldatacopy\" with manually determined offsets and sizes."); else m_errorReporter.typeError(_identifier.location, "Only types that use one stack slot are supported."); return size_t(-1); } } else if (_context == julia::IdentifierContext::LValue) { m_errorReporter.typeError(_identifier.location, "Only local variables can be assigned to in inline assembly."); return size_t(-1); } if (_context == julia::IdentifierContext::RValue) { solAssert(!!declaration->type(), "Type of declaration required but not yet determined."); if (dynamic_cast(declaration)) { } else if (dynamic_cast(declaration)) { } else if (auto contract = dynamic_cast(declaration)) { if (!contract->isLibrary()) { m_errorReporter.typeError(_identifier.location, "Expected a library."); return size_t(-1); } } else return size_t(-1); } ref->second.valueSize = 1; return size_t(1); }; solAssert(!_inlineAssembly.annotation().analysisInfo, ""); _inlineAssembly.annotation().analysisInfo = make_shared(); boost::optional errorTypeForLoose = m_scope->sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::V050) ? Error::Type::SyntaxError : Error::Type::Warning; assembly::AsmAnalyzer analyzer( *_inlineAssembly.annotation().analysisInfo, m_errorReporter, m_evmVersion, errorTypeForLoose, assembly::AsmFlavour::Loose, identifierAccess ); if (!analyzer.analyze(_inlineAssembly.operations())) return false; return true; } bool TypeChecker::visit(IfStatement const& _ifStatement) { expectType(_ifStatement.condition(), BoolType()); _ifStatement.trueStatement().accept(*this); if (_ifStatement.falseStatement()) _ifStatement.falseStatement()->accept(*this); return false; } bool TypeChecker::visit(WhileStatement const& _whileStatement) { expectType(_whileStatement.condition(), BoolType()); _whileStatement.body().accept(*this); return false; } bool TypeChecker::visit(ForStatement const& _forStatement) { if (_forStatement.initializationExpression()) _forStatement.initializationExpression()->accept(*this); if (_forStatement.condition()) expectType(*_forStatement.condition(), BoolType()); if (_forStatement.loopExpression()) _forStatement.loopExpression()->accept(*this); _forStatement.body().accept(*this); return false; } void TypeChecker::endVisit(Return const& _return) { if (!_return.expression()) return; ParameterList const* params = _return.annotation().functionReturnParameters; if (!params) { m_errorReporter.typeError(_return.location(), "Return arguments not allowed."); return; } TypePointers returnTypes; for (auto const& var: params->parameters()) returnTypes.push_back(type(*var)); if (auto tupleType = dynamic_cast(type(*_return.expression()).get())) { if (tupleType->components().size() != params->parameters().size()) m_errorReporter.typeError(_return.location(), "Different number of arguments in return statement than in returns declaration."); else if (!tupleType->isImplicitlyConvertibleTo(TupleType(returnTypes))) m_errorReporter.typeError( _return.expression()->location(), "Return argument type " + type(*_return.expression())->toString() + " is not implicitly convertible to expected type " + TupleType(returnTypes).toString(false) + "." ); } else if (params->parameters().size() != 1) m_errorReporter.typeError(_return.location(), "Different number of arguments in return statement than in returns declaration."); else { TypePointer const& expected = type(*params->parameters().front()); if (!type(*_return.expression())->isImplicitlyConvertibleTo(*expected)) m_errorReporter.typeError( _return.expression()->location(), "Return argument type " + type(*_return.expression())->toString() + " is not implicitly convertible to expected type (type of first return variable) " + expected->toString() + "." ); } } void TypeChecker::endVisit(EmitStatement const& _emit) { if ( _emit.eventCall().annotation().kind != FunctionCallKind::FunctionCall || dynamic_cast(*type(_emit.eventCall().expression())).kind() != FunctionType::Kind::Event ) m_errorReporter.typeError(_emit.eventCall().expression().location(), "Expression has to be an event invocation."); m_insideEmitStatement = false; } bool TypeChecker::visit(VariableDeclarationStatement const& _statement) { if (!_statement.initialValue()) { // No initial value is only permitted for single variables with specified type. if (_statement.declarations().size() != 1 || !_statement.declarations().front()) m_errorReporter.fatalTypeError(_statement.location(), "Assignment necessary for type detection."); VariableDeclaration const& varDecl = *_statement.declarations().front(); if (!varDecl.annotation().type) m_errorReporter.fatalTypeError(_statement.location(), "Assignment necessary for type detection."); if (auto ref = dynamic_cast(type(varDecl).get())) { if (ref->dataStoredIn(DataLocation::Storage)) { string errorText{"Uninitialized storage pointer."}; if (varDecl.referenceLocation() == VariableDeclaration::Location::Default) errorText += " Did you mean ' memory " + varDecl.name() + "'?"; solAssert(m_scope, ""); if (m_scope->sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::V050)) m_errorReporter.declarationError(varDecl.location(), errorText); else m_errorReporter.warning(varDecl.location(), errorText); } } else if (dynamic_cast(type(varDecl).get())) m_errorReporter.typeError( varDecl.location(), "Uninitialized mapping. Mappings cannot be created dynamically, you have to assign them from a state variable." ); varDecl.accept(*this); return false; } // Here we have an initial value and might have to derive some types before we can visit // the variable declaration(s). _statement.initialValue()->accept(*this); TypePointers valueTypes; if (auto tupleType = dynamic_cast(type(*_statement.initialValue()).get())) valueTypes = tupleType->components(); else valueTypes = TypePointers{type(*_statement.initialValue())}; // Determine which component is assigned to which variable. // If numbers do not match, fill up if variables begin or end empty (not both). vector& assignments = _statement.annotation().assignments; assignments.resize(valueTypes.size(), nullptr); vector> const& variables = _statement.declarations(); if (variables.empty()) { if (!valueTypes.empty()) m_errorReporter.fatalTypeError( _statement.location(), "Too many components (" + toString(valueTypes.size()) + ") in value for variable assignment (0) needed" ); } else if (valueTypes.size() != variables.size() && !variables.front() && !variables.back()) m_errorReporter.fatalTypeError( _statement.location(), "Wildcard both at beginning and end of variable declaration list is only allowed " "if the number of components is equal." ); size_t minNumValues = variables.size(); if (!variables.empty() && (!variables.back() || !variables.front())) --minNumValues; if (valueTypes.size() < minNumValues) m_errorReporter.fatalTypeError( _statement.location(), "Not enough components (" + toString(valueTypes.size()) + ") in value to assign all variables (" + toString(minNumValues) + ")." ); if (valueTypes.size() > variables.size() && variables.front() && variables.back()) m_errorReporter.fatalTypeError( _statement.location(), "Too many components (" + toString(valueTypes.size()) + ") in value for variable assignment (" + toString(minNumValues) + " needed)." ); bool fillRight = !variables.empty() && (!variables.back() || variables.front()); for (size_t i = 0; i < min(variables.size(), valueTypes.size()); ++i) if (fillRight) assignments[i] = variables[i].get(); else assignments[assignments.size() - i - 1] = variables[variables.size() - i - 1].get(); for (size_t i = 0; i < assignments.size(); ++i) { if (!assignments[i]) continue; VariableDeclaration const& var = *assignments[i]; solAssert(!var.value(), "Value has to be tied to statement."); TypePointer const& valueComponentType = valueTypes[i]; solAssert(!!valueComponentType, ""); if (!var.annotation().type) { // Infer type from value. solAssert(!var.typeName(), ""); var.annotation().type = valueComponentType->mobileType(); if (!var.annotation().type) { if (valueComponentType->category() == Type::Category::RationalNumber) m_errorReporter.fatalTypeError( _statement.initialValue()->location(), "Invalid rational " + valueComponentType->toString() + " (absolute value too large or division by zero)." ); else solAssert(false, ""); } else if (*var.annotation().type == TupleType()) m_errorReporter.typeError( var.location(), "Cannot declare variable with void (empty tuple) type." ); else if (valueComponentType->category() == Type::Category::RationalNumber) { string typeName = var.annotation().type->toString(true); string extension; if (auto type = dynamic_cast(var.annotation().type.get())) { int numBits = type->numBits(); bool isSigned = type->isSigned(); string minValue; string maxValue; if (isSigned) { numBits--; minValue = "-" + bigint(bigint(1) << numBits).str(); } else minValue = "0"; maxValue = bigint((bigint(1) << numBits) - 1).str(); extension = ", which can hold values between " + minValue + " and " + maxValue; } else solAssert(dynamic_cast(var.annotation().type.get()), "Unknown type."); m_errorReporter.warning( _statement.location(), "The type of this variable was inferred as " + typeName + extension + ". This is probably not desired. Use an explicit type to silence this warning." ); } var.accept(*this); } else { var.accept(*this); if (!valueComponentType->isImplicitlyConvertibleTo(*var.annotation().type)) { if ( valueComponentType->category() == Type::Category::RationalNumber && dynamic_cast(*valueComponentType).isFractional() && valueComponentType->mobileType() ) m_errorReporter.typeError( _statement.location(), "Type " + valueComponentType->toString() + " is not implicitly convertible to expected type " + var.annotation().type->toString() + ". Try converting to type " + valueComponentType->mobileType()->toString() + " or use an explicit conversion." ); else m_errorReporter.typeError( _statement.location(), "Type " + valueComponentType->toString() + " is not implicitly convertible to expected type " + var.annotation().type->toString() + "." ); } } } return false; } void TypeChecker::endVisit(ExpressionStatement const& _statement) { if (type(_statement.expression())->category() == Type::Category::RationalNumber) if (!dynamic_cast(*type(_statement.expression())).mobileType()) m_errorReporter.typeError(_statement.expression().location(), "Invalid rational number."); if (auto call = dynamic_cast(&_statement.expression())) { if (auto callType = dynamic_cast(type(call->expression()).get())) { auto kind = callType->kind(); if ( kind == FunctionType::Kind::BareCall || kind == FunctionType::Kind::BareCallCode || kind == FunctionType::Kind::BareDelegateCall ) m_errorReporter.warning(_statement.location(), "Return value of low-level calls not used."); else if (kind == FunctionType::Kind::Send) m_errorReporter.warning(_statement.location(), "Failure condition of 'send' ignored. Consider using 'transfer' instead."); } } } bool TypeChecker::visit(Conditional const& _conditional) { expectType(_conditional.condition(), BoolType()); _conditional.trueExpression().accept(*this); _conditional.falseExpression().accept(*this); TypePointer trueType = type(_conditional.trueExpression())->mobileType(); TypePointer falseType = type(_conditional.falseExpression())->mobileType(); if (!trueType) m_errorReporter.fatalTypeError(_conditional.trueExpression().location(), "Invalid mobile type."); if (!falseType) m_errorReporter.fatalTypeError(_conditional.falseExpression().location(), "Invalid mobile type."); TypePointer commonType = Type::commonType(trueType, falseType); if (!commonType) { m_errorReporter.typeError( _conditional.location(), "True expression's type " + trueType->toString() + " doesn't match false expression's type " + falseType->toString() + "." ); // even we can't find a common type, we have to set a type here, // otherwise the upper statement will not be able to check the type. commonType = trueType; } _conditional.annotation().type = commonType; _conditional.annotation().isPure = _conditional.condition().annotation().isPure && _conditional.trueExpression().annotation().isPure && _conditional.falseExpression().annotation().isPure; if (_conditional.annotation().lValueRequested) m_errorReporter.typeError( _conditional.location(), "Conditional expression as left value is not supported yet." ); return false; } bool TypeChecker::visit(Assignment const& _assignment) { requireLValue(_assignment.leftHandSide()); TypePointer t = type(_assignment.leftHandSide()); _assignment.annotation().type = t; if (TupleType const* tupleType = dynamic_cast(t.get())) { if (_assignment.assignmentOperator() != Token::Assign) m_errorReporter.typeError( _assignment.location(), "Compound assignment is not allowed for tuple types." ); // Sequenced assignments of tuples is not valid, make the result a "void" type. _assignment.annotation().type = make_shared(); expectType(_assignment.rightHandSide(), *tupleType); // expectType does not cause fatal errors, so we have to check again here. if (dynamic_cast(type(_assignment.rightHandSide()).get())) checkDoubleStorageAssignment(_assignment); } else if (t->category() == Type::Category::Mapping) { m_errorReporter.typeError(_assignment.location(), "Mappings cannot be assigned to."); _assignment.rightHandSide().accept(*this); } else if (_assignment.assignmentOperator() == Token::Assign) expectType(_assignment.rightHandSide(), *t); else { // compound assignment _assignment.rightHandSide().accept(*this); TypePointer resultType = t->binaryOperatorResult( Token::AssignmentToBinaryOp(_assignment.assignmentOperator()), type(_assignment.rightHandSide()) ); if (!resultType || *resultType != *t) m_errorReporter.typeError( _assignment.location(), "Operator " + string(Token::toString(_assignment.assignmentOperator())) + " not compatible with types " + t->toString() + " and " + type(_assignment.rightHandSide())->toString() ); } return false; } bool TypeChecker::visit(TupleExpression const& _tuple) { vector> const& components = _tuple.components(); TypePointers types; if (_tuple.annotation().lValueRequested) { if (_tuple.isInlineArray()) m_errorReporter.fatalTypeError(_tuple.location(), "Inline array type cannot be declared as LValue."); for (auto const& component: components) if (component) { requireLValue(*component); types.push_back(type(*component)); } else types.push_back(TypePointer()); if (components.size() == 1) _tuple.annotation().type = type(*components[0]); else _tuple.annotation().type = make_shared(types); // If some of the components are not LValues, the error is reported above. _tuple.annotation().isLValue = true; } else { bool isPure = true; TypePointer inlineArrayType; for (size_t i = 0; i < components.size(); ++i) { // Outside of an lvalue-context, the only situation where a component can be empty is (x,). if (!components[i] && !(i == 1 && components.size() == 2)) m_errorReporter.fatalTypeError(_tuple.location(), "Tuple component cannot be empty."); else if (components[i]) { components[i]->accept(*this); types.push_back(type(*components[i])); // Note: code generation will visit each of the expression even if they are not assigned from. if (types[i]->category() == Type::Category::RationalNumber && components.size() > 1) if (!dynamic_cast(*types[i]).mobileType()) m_errorReporter.fatalTypeError(components[i]->location(), "Invalid rational number."); if (_tuple.isInlineArray()) solAssert(!!types[i], "Inline array cannot have empty components"); if (_tuple.isInlineArray()) { if ((i == 0 || inlineArrayType) && !types[i]->mobileType()) m_errorReporter.fatalTypeError(components[i]->location(), "Invalid mobile type."); if (i == 0) inlineArrayType = types[i]->mobileType(); else if (inlineArrayType) inlineArrayType = Type::commonType(inlineArrayType, types[i]); } if (!components[i]->annotation().isPure) isPure = false; } else types.push_back(TypePointer()); } _tuple.annotation().isPure = isPure; if (_tuple.isInlineArray()) { if (!inlineArrayType) m_errorReporter.fatalTypeError(_tuple.location(), "Unable to deduce common type for array elements."); _tuple.annotation().type = make_shared(DataLocation::Memory, inlineArrayType, types.size()); } else { if (components.size() == 1) _tuple.annotation().type = type(*components[0]); else { if (components.size() == 2 && !components[1]) types.pop_back(); _tuple.annotation().type = make_shared(types); } } } return false; } bool TypeChecker::visit(UnaryOperation const& _operation) { // Inc, Dec, Add, Sub, Not, BitNot, Delete Token::Value op = _operation.getOperator(); bool const modifying = (op == Token::Value::Inc || op == Token::Value::Dec || op == Token::Value::Delete); if (modifying) requireLValue(_operation.subExpression()); else _operation.subExpression().accept(*this); TypePointer const& subExprType = type(_operation.subExpression()); TypePointer t = type(_operation.subExpression())->unaryOperatorResult(op); if (!t) { m_errorReporter.typeError( _operation.location(), "Unary operator " + string(Token::toString(op)) + " cannot be applied to type " + subExprType->toString() ); t = subExprType; } _operation.annotation().type = t; _operation.annotation().isPure = !modifying && _operation.subExpression().annotation().isPure; return false; } void TypeChecker::endVisit(BinaryOperation const& _operation) { TypePointer const& leftType = type(_operation.leftExpression()); TypePointer const& rightType = type(_operation.rightExpression()); TypePointer commonType = leftType->binaryOperatorResult(_operation.getOperator(), rightType); if (!commonType) { m_errorReporter.typeError( _operation.location(), "Operator " + string(Token::toString(_operation.getOperator())) + " not compatible with types " + leftType->toString() + " and " + rightType->toString() ); commonType = leftType; } _operation.annotation().commonType = commonType; _operation.annotation().type = Token::isCompareOp(_operation.getOperator()) ? make_shared() : commonType; _operation.annotation().isPure = _operation.leftExpression().annotation().isPure && _operation.rightExpression().annotation().isPure; if (_operation.getOperator() == Token::Exp || _operation.getOperator() == Token::SHL) { string operation = _operation.getOperator() == Token::Exp ? "exponentiation" : "shift"; if ( leftType->category() == Type::Category::RationalNumber && rightType->category() != Type::Category::RationalNumber ) if (( commonType->category() == Type::Category::Integer && dynamic_cast(*commonType).numBits() != 256 ) || ( commonType->category() == Type::Category::FixedPoint && dynamic_cast(*commonType).numBits() != 256 )) m_errorReporter.warning( _operation.location(), "Result of " + operation + " has type " + commonType->toString() + " and thus " "might overflow. Silence this warning by converting the literal to the " "expected type." ); } } bool TypeChecker::visit(FunctionCall const& _functionCall) { bool isPositionalCall = _functionCall.names().empty(); vector> arguments = _functionCall.arguments(); vector> const& argumentNames = _functionCall.names(); bool isPure = true; // We need to check arguments' type first as they will be needed for overload resolution. shared_ptr argumentTypes; if (isPositionalCall) argumentTypes = make_shared(); for (ASTPointer const& argument: arguments) { argument->accept(*this); if (!argument->annotation().isPure) isPure = false; // only store them for positional calls if (isPositionalCall) argumentTypes->push_back(type(*argument)); } if (isPositionalCall) _functionCall.expression().annotation().argumentTypes = move(argumentTypes); _functionCall.expression().accept(*this); TypePointer expressionType = type(_functionCall.expression()); if (auto const* typeType = dynamic_cast(expressionType.get())) { if (typeType->actualType()->category() == Type::Category::Struct) _functionCall.annotation().kind = FunctionCallKind::StructConstructorCall; else _functionCall.annotation().kind = FunctionCallKind::TypeConversion; } else _functionCall.annotation().kind = FunctionCallKind::FunctionCall; solAssert(_functionCall.annotation().kind != FunctionCallKind::Unset, ""); if (_functionCall.annotation().kind == FunctionCallKind::TypeConversion) { TypeType const& t = dynamic_cast(*expressionType); TypePointer resultType = t.actualType(); if (arguments.size() != 1) m_errorReporter.typeError(_functionCall.location(), "Exactly one argument expected for explicit type conversion."); else if (!isPositionalCall) m_errorReporter.typeError(_functionCall.location(), "Type conversion cannot allow named arguments."); else { TypePointer const& argType = type(*arguments.front()); if (auto argRefType = dynamic_cast(argType.get())) // do not change the data location when converting // (data location cannot yet be specified for type conversions) resultType = ReferenceType::copyForLocationIfReference(argRefType->location(), resultType); if (!argType->isExplicitlyConvertibleTo(*resultType)) m_errorReporter.typeError( _functionCall.location(), "Explicit type conversion not allowed from \"" + argType->toString() + "\" to \"" + resultType->toString() + "\"." ); } _functionCall.annotation().type = resultType; _functionCall.annotation().isPure = isPure; return false; } // Actual function call or struct constructor call. FunctionTypePointer functionType; /// For error message: Struct members that were removed during conversion to memory. set membersRemovedForStructConstructor; if (_functionCall.annotation().kind == FunctionCallKind::StructConstructorCall) { TypeType const& t = dynamic_cast(*expressionType); auto const& structType = dynamic_cast(*t.actualType()); functionType = structType.constructorType(); membersRemovedForStructConstructor = structType.membersMissingInMemory(); _functionCall.annotation().isPure = isPure; } else if ((functionType = dynamic_pointer_cast(expressionType))) _functionCall.annotation().isPure = isPure && _functionCall.expression().annotation().isPure && functionType->isPure(); bool allowDynamicTypes = m_evmVersion.supportsReturndata(); if (!functionType) { m_errorReporter.typeError(_functionCall.location(), "Type is not callable"); _functionCall.annotation().type = make_shared(); return false; } auto returnTypes = allowDynamicTypes ? functionType->returnParameterTypes() : functionType->returnParameterTypesWithoutDynamicTypes(); if (returnTypes.size() == 1) _functionCall.annotation().type = returnTypes.front(); else _functionCall.annotation().type = make_shared(returnTypes); bool const v050 = m_scope->sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::V050); if (auto functionName = dynamic_cast(&_functionCall.expression())) { string msg; if (functionName->name() == "sha3" && functionType->kind() == FunctionType::Kind::SHA3) msg = "\"sha3\" has been deprecated in favour of \"keccak256\""; else if (functionName->name() == "suicide" && functionType->kind() == FunctionType::Kind::Selfdestruct) msg = "\"suicide\" has been deprecated in favour of \"selfdestruct\""; if (!msg.empty()) { if (v050) m_errorReporter.typeError(_functionCall.location(), msg); else m_errorReporter.warning(_functionCall.location(), msg); } } if (!m_insideEmitStatement && functionType->kind() == FunctionType::Kind::Event) { if (m_scope->sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::V050)) m_errorReporter.typeError(_functionCall.location(), "Event invocations have to be prefixed by \"emit\"."); else m_errorReporter.warning(_functionCall.location(), "Invoking events without \"emit\" prefix is deprecated."); } TypePointers parameterTypes = functionType->parameterTypes(); if (!functionType->padArguments()) { for (size_t i = 0; i < arguments.size(); ++i) { auto const& argType = type(*arguments[i]); if (auto literal = dynamic_cast(argType.get())) { /* If no mobile type is available an error will be raised elsewhere. */ if (literal->mobileType()) { if (v050) m_errorReporter.typeError( arguments[i]->location(), "Cannot perform packed encoding for a literal. Please convert it to an explicit type first." ); else m_errorReporter.warning( arguments[i]->location(), "The type of \"" + argType->toString() + "\" was inferred as " + literal->mobileType()->toString() + ". This is probably not desired. Use an explicit type to silence this warning." ); } } } } if (functionType->takesArbitraryParameters() && arguments.size() < parameterTypes.size()) { solAssert(_functionCall.annotation().kind == FunctionCallKind::FunctionCall, ""); m_errorReporter.typeError( _functionCall.location(), "Need at least " + toString(parameterTypes.size()) + " arguments for function call, but provided only " + toString(arguments.size()) + "." ); } else if (!functionType->takesArbitraryParameters() && parameterTypes.size() != arguments.size()) { bool isStructConstructorCall = _functionCall.annotation().kind == FunctionCallKind::StructConstructorCall; string msg = "Wrong argument count for " + string(isStructConstructorCall ? "struct constructor" : "function call") + ": " + toString(arguments.size()) + " arguments given but expected " + toString(parameterTypes.size()) + "."; // Extend error message in case we try to construct a struct with mapping member. if (_functionCall.annotation().kind == FunctionCallKind::StructConstructorCall && !membersRemovedForStructConstructor.empty()) { msg += " Members that have to be skipped in memory:"; for (auto const& member: membersRemovedForStructConstructor) msg += " " + member; } m_errorReporter.typeError(_functionCall.location(), msg); } else if (isPositionalCall) { bool const abiEncodeV2 = m_scope->sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::ABIEncoderV2); for (size_t i = 0; i < arguments.size(); ++i) { auto const& argType = type(*arguments[i]); if (functionType->takesArbitraryParameters() && i >= parameterTypes.size()) { bool errored = false; if (auto t = dynamic_cast(argType.get())) if (!t->mobileType()) { m_errorReporter.typeError(arguments[i]->location(), "Invalid rational number (too large or division by zero)."); errored = true; } if (!errored) { TypePointer encodingType; if ( argType->mobileType() && argType->mobileType()->interfaceType(false) && argType->mobileType()->interfaceType(false)->encodingType() ) encodingType = argType->mobileType()->interfaceType(false)->encodingType(); // Structs are fine as long as ABIV2 is activated and we do not do packed encoding. if (!encodingType || ( dynamic_cast(encodingType.get()) && !(abiEncodeV2 && functionType->padArguments()) )) m_errorReporter.typeError(arguments[i]->location(), "This type cannot be encoded."); } } else if (!type(*arguments[i])->isImplicitlyConvertibleTo(*parameterTypes[i])) m_errorReporter.typeError( arguments[i]->location(), "Invalid type for argument in function call. " "Invalid implicit conversion from " + type(*arguments[i])->toString() + " to " + parameterTypes[i]->toString() + " requested." ); } } else { // call by named arguments auto const& parameterNames = functionType->parameterNames(); if (functionType->takesArbitraryParameters()) m_errorReporter.typeError( _functionCall.location(), "Named arguments cannnot be used for functions that take arbitrary parameters." ); else if (parameterNames.size() > argumentNames.size()) m_errorReporter.typeError(_functionCall.location(), "Some argument names are missing."); else if (parameterNames.size() < argumentNames.size()) m_errorReporter.typeError(_functionCall.location(), "Too many arguments."); else { // check duplicate names bool duplication = false; for (size_t i = 0; i < argumentNames.size(); i++) for (size_t j = i + 1; j < argumentNames.size(); j++) if (*argumentNames[i] == *argumentNames[j]) { duplication = true; m_errorReporter.typeError(arguments[i]->location(), "Duplicate named argument."); } // check actual types if (!duplication) for (size_t i = 0; i < argumentNames.size(); i++) { bool found = false; for (size_t j = 0; j < parameterNames.size(); j++) if (parameterNames[j] == *argumentNames[i]) { found = true; // check type convertible if (!type(*arguments[i])->isImplicitlyConvertibleTo(*parameterTypes[j])) m_errorReporter.typeError( arguments[i]->location(), "Invalid type for argument in function call. " "Invalid implicit conversion from " + type(*arguments[i])->toString() + " to " + parameterTypes[i]->toString() + " requested." ); break; } if (!found) m_errorReporter.typeError( _functionCall.location(), "Named argument does not match function declaration." ); } } } return false; } void TypeChecker::endVisit(NewExpression const& _newExpression) { TypePointer type = _newExpression.typeName().annotation().type; solAssert(!!type, "Type name not resolved."); if (auto contractName = dynamic_cast(&_newExpression.typeName())) { auto contract = dynamic_cast(&dereference(*contractName)); if (!contract) m_errorReporter.fatalTypeError(_newExpression.location(), "Identifier is not a contract."); if (contract->contractKind() == ContractDefinition::ContractKind::Interface) m_errorReporter.fatalTypeError(_newExpression.location(), "Cannot instantiate an interface."); if (!contract->annotation().unimplementedFunctions.empty()) { SecondarySourceLocation ssl; for (auto function: contract->annotation().unimplementedFunctions) ssl.append("Missing implementation:", function->location()); string msg = "Trying to create an instance of an abstract contract."; ssl.limitSize(msg); m_errorReporter.typeError( _newExpression.location(), ssl, msg ); } if (!contract->constructorIsPublic()) m_errorReporter.typeError(_newExpression.location(), "Contract with internal constructor cannot be created directly."); solAssert(!!m_scope, ""); m_scope->annotation().contractDependencies.insert(contract); solAssert( !contract->annotation().linearizedBaseContracts.empty(), "Linearized base contracts not yet available." ); if (contractDependenciesAreCyclic(*m_scope)) m_errorReporter.typeError( _newExpression.location(), "Circular reference for contract creation (cannot create instance of derived or same contract)." ); _newExpression.annotation().type = FunctionType::newExpressionType(*contract); } else if (type->category() == Type::Category::Array) { if (!type->canLiveOutsideStorage()) m_errorReporter.fatalTypeError( _newExpression.typeName().location(), "Type cannot live outside storage." ); if (!type->isDynamicallySized()) m_errorReporter.typeError( _newExpression.typeName().location(), "Length has to be placed in parentheses after the array type for new expression." ); type = ReferenceType::copyForLocationIfReference(DataLocation::Memory, type); _newExpression.annotation().type = make_shared( TypePointers{make_shared(256)}, TypePointers{type}, strings(), strings(), FunctionType::Kind::ObjectCreation, false, StateMutability::Pure ); _newExpression.annotation().isPure = true; } else m_errorReporter.fatalTypeError(_newExpression.location(), "Contract or array type expected."); } bool TypeChecker::visit(MemberAccess const& _memberAccess) { _memberAccess.expression().accept(*this); TypePointer exprType = type(_memberAccess.expression()); ASTString const& memberName = _memberAccess.memberName(); // Retrieve the types of the arguments if this is used to call a function. auto const& argumentTypes = _memberAccess.annotation().argumentTypes; MemberList::MemberMap possibleMembers = exprType->members(m_scope).membersByName(memberName); size_t const initialMemberCount = possibleMembers.size(); if (initialMemberCount > 1 && argumentTypes) { // do overload resolution for (auto it = possibleMembers.begin(); it != possibleMembers.end();) if ( it->type->category() == Type::Category::Function && !dynamic_cast(*it->type).canTakeArguments(*argumentTypes, exprType) ) it = possibleMembers.erase(it); else ++it; } if (possibleMembers.size() == 0) { if (initialMemberCount == 0) { // Try to see if the member was removed because it is only available for storage types. auto storageType = ReferenceType::copyForLocationIfReference( DataLocation::Storage, exprType ); if (!storageType->members(m_scope).membersByName(memberName).empty()) m_errorReporter.fatalTypeError( _memberAccess.location(), "Member \"" + memberName + "\" is not available in " + exprType->toString() + " outside of storage." ); } m_errorReporter.fatalTypeError( _memberAccess.location(), "Member \"" + memberName + "\" not found or not visible " "after argument-dependent lookup in " + exprType->toString() + (memberName == "value" ? " - did you forget the \"payable\" modifier?" : "") ); } else if (possibleMembers.size() > 1) m_errorReporter.fatalTypeError( _memberAccess.location(), "Member \"" + memberName + "\" not unique " "after argument-dependent lookup in " + exprType->toString() + (memberName == "value" ? " - did you forget the \"payable\" modifier?" : "") ); auto& annotation = _memberAccess.annotation(); annotation.referencedDeclaration = possibleMembers.front().declaration; annotation.type = possibleMembers.front().type; if (auto funType = dynamic_cast(annotation.type.get())) if (funType->bound() && !exprType->isImplicitlyConvertibleTo(*funType->selfType())) m_errorReporter.typeError( _memberAccess.location(), "Function \"" + memberName + "\" cannot be called on an object of type " + exprType->toString() + " (expected " + funType->selfType()->toString() + ")" ); if (exprType->category() == Type::Category::Struct) annotation.isLValue = true; else if (exprType->category() == Type::Category::Array) { auto const& arrayType(dynamic_cast(*exprType)); annotation.isLValue = ( memberName == "length" && arrayType.location() == DataLocation::Storage && arrayType.isDynamicallySized() ); } else if (exprType->category() == Type::Category::FixedBytes) annotation.isLValue = false; else if (TypeType const* typeType = dynamic_cast(exprType.get())) { if (ContractType const* contractType = dynamic_cast(typeType->actualType().get())) annotation.isLValue = annotation.referencedDeclaration->isLValue(); } if (exprType->category() == Type::Category::Contract) { // Warn about using address members on contracts bool v050 = m_scope->sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::V050); for (auto const& addressMember: IntegerType(160, IntegerType::Modifier::Address).nativeMembers(nullptr)) if (addressMember.name == memberName && *annotation.type == *addressMember.type) { solAssert(!v050, "Address member still present on contract in v0.5.0."); m_errorReporter.warning( _memberAccess.location(), "Using contract member \"" + memberName +"\" inherited from the address type is deprecated." + " Convert the contract to \"address\" type to access the member," " for example use \"address(contract)." + memberName + "\" instead." ); } // Warn about using send or transfer with a non-payable fallback function. if (auto callType = dynamic_cast(type(_memberAccess).get())) { auto kind = callType->kind(); auto contractType = dynamic_cast(exprType.get()); solAssert(!!contractType, "Should be contract type."); if ( (kind == FunctionType::Kind::Send || kind == FunctionType::Kind::Transfer) && !contractType->isPayable() ) m_errorReporter.typeError( _memberAccess.location(), "Value transfer to a contract without a payable fallback function." ); } } // TODO some members might be pure, but for example `address(0x123).balance` is not pure // although every subexpression is, so leaving this limited for now. if (auto tt = dynamic_cast(exprType.get())) if (tt->actualType()->category() == Type::Category::Enum) annotation.isPure = true; return false; } bool TypeChecker::visit(IndexAccess const& _access) { _access.baseExpression().accept(*this); TypePointer baseType = type(_access.baseExpression()); TypePointer resultType; bool isLValue = false; bool isPure = _access.baseExpression().annotation().isPure; Expression const* index = _access.indexExpression(); switch (baseType->category()) { case Type::Category::Array: { ArrayType const& actualType = dynamic_cast(*baseType); if (!index) m_errorReporter.typeError(_access.location(), "Index expression cannot be omitted."); else if (actualType.isString()) { m_errorReporter.typeError(_access.location(), "Index access for string is not possible."); index->accept(*this); } else { expectType(*index, IntegerType(256)); if (auto numberType = dynamic_cast(type(*index).get())) { if (!numberType->isFractional()) // error is reported above if (!actualType.isDynamicallySized() && actualType.length() <= numberType->literalValue(nullptr)) m_errorReporter.typeError(_access.location(), "Out of bounds array access."); } } resultType = actualType.baseType(); isLValue = actualType.location() != DataLocation::CallData; break; } case Type::Category::Mapping: { MappingType const& actualType = dynamic_cast(*baseType); if (!index) m_errorReporter.typeError(_access.location(), "Index expression cannot be omitted."); else expectType(*index, *actualType.keyType()); resultType = actualType.valueType(); isLValue = true; break; } case Type::Category::TypeType: { TypeType const& typeType = dynamic_cast(*baseType); if (!index) resultType = make_shared(make_shared(DataLocation::Memory, typeType.actualType())); else { expectType(*index, IntegerType(256)); if (auto length = dynamic_cast(type(*index).get())) resultType = make_shared(make_shared( DataLocation::Memory, typeType.actualType(), length->literalValue(nullptr) )); else m_errorReporter.fatalTypeError(index->location(), "Integer constant expected."); } break; } case Type::Category::FixedBytes: { FixedBytesType const& bytesType = dynamic_cast(*baseType); if (!index) m_errorReporter.typeError(_access.location(), "Index expression cannot be omitted."); else { expectType(*index, IntegerType(256)); if (auto integerType = dynamic_cast(type(*index).get())) if (bytesType.numBytes() <= integerType->literalValue(nullptr)) m_errorReporter.typeError(_access.location(), "Out of bounds array access."); } resultType = make_shared(1); isLValue = false; // @todo this heavily depends on how it is embedded break; } default: m_errorReporter.fatalTypeError( _access.baseExpression().location(), "Indexed expression has to be a type, mapping or array (is " + baseType->toString() + ")" ); } _access.annotation().type = move(resultType); _access.annotation().isLValue = isLValue; if (index && !index->annotation().isPure) isPure = false; _access.annotation().isPure = isPure; return false; } bool TypeChecker::visit(Identifier const& _identifier) { IdentifierAnnotation& annotation = _identifier.annotation(); if (!annotation.referencedDeclaration) { if (!annotation.argumentTypes) { // The identifier should be a public state variable shadowing other functions vector candidates; for (Declaration const* declaration: annotation.overloadedDeclarations) { if (VariableDeclaration const* variableDeclaration = dynamic_cast(declaration)) candidates.push_back(declaration); } if (candidates.empty()) m_errorReporter.fatalTypeError(_identifier.location(), "No matching declaration found after variable lookup."); else if (candidates.size() == 1) annotation.referencedDeclaration = candidates.front(); else m_errorReporter.fatalTypeError(_identifier.location(), "No unique declaration found after variable lookup."); } else if (annotation.overloadedDeclarations.empty()) m_errorReporter.fatalTypeError(_identifier.location(), "No candidates for overload resolution found."); else if (annotation.overloadedDeclarations.size() == 1) annotation.referencedDeclaration = *annotation.overloadedDeclarations.begin(); else { vector candidates; for (Declaration const* declaration: annotation.overloadedDeclarations) { FunctionTypePointer functionType = declaration->functionType(true); solAssert(!!functionType, "Requested type not present."); if (functionType->canTakeArguments(*annotation.argumentTypes)) candidates.push_back(declaration); } if (candidates.empty()) m_errorReporter.fatalTypeError(_identifier.location(), "No matching declaration found after argument-dependent lookup."); else if (candidates.size() == 1) annotation.referencedDeclaration = candidates.front(); else m_errorReporter.fatalTypeError(_identifier.location(), "No unique declaration found after argument-dependent lookup."); } } solAssert( !!annotation.referencedDeclaration, "Referenced declaration is null after overload resolution." ); annotation.isLValue = annotation.referencedDeclaration->isLValue(); annotation.type = annotation.referencedDeclaration->type(); if (!annotation.type) m_errorReporter.fatalTypeError(_identifier.location(), "Declaration referenced before type could be determined."); if (auto variableDeclaration = dynamic_cast(annotation.referencedDeclaration)) annotation.isPure = annotation.isConstant = variableDeclaration->isConstant(); else if (dynamic_cast(annotation.referencedDeclaration)) if (dynamic_cast(annotation.type.get())) annotation.isPure = true; return false; } void TypeChecker::endVisit(ElementaryTypeNameExpression const& _expr) { _expr.annotation().type = make_shared(Type::fromElementaryTypeName(_expr.typeName())); _expr.annotation().isPure = true; } void TypeChecker::endVisit(Literal const& _literal) { bool const v050 = m_scope->sourceUnit().annotation().experimentalFeatures.count(ExperimentalFeature::V050); if (_literal.looksLikeAddress()) { if (_literal.passesAddressChecksum()) _literal.annotation().type = make_shared(160, IntegerType::Modifier::Address); else m_errorReporter.warning( _literal.location(), "This looks like an address but has an invalid checksum. " "If this is not used as an address, please prepend '00'. " + (!_literal.getChecksummedAddress().empty() ? "Correct checksummed address: '" + _literal.getChecksummedAddress() + "'. " : "") + "For more information please see https://solidity.readthedocs.io/en/develop/types.html#address-literals" ); } if (_literal.isHexNumber() && _literal.subDenomination() != Literal::SubDenomination::None) { if (v050) m_errorReporter.fatalTypeError( _literal.location(), "Hexadecimal numbers cannot be used with unit denominations. " "You can use an expression of the form \"0x1234 * 1 day\" instead." ); else m_errorReporter.warning( _literal.location(), "Hexadecimal numbers with unit denominations are deprecated. " "You can use an expression of the form \"0x1234 * 1 day\" instead." ); } if (!_literal.annotation().type) _literal.annotation().type = Type::forLiteral(_literal); if (!_literal.annotation().type) m_errorReporter.fatalTypeError(_literal.location(), "Invalid literal value."); _literal.annotation().isPure = true; } bool TypeChecker::contractDependenciesAreCyclic( ContractDefinition const& _contract, std::set const& _seenContracts ) const { // Naive depth-first search that remembers nodes already seen. if (_seenContracts.count(&_contract)) return true; set seen(_seenContracts); seen.insert(&_contract); for (auto const* c: _contract.annotation().contractDependencies) if (contractDependenciesAreCyclic(*c, seen)) return true; return false; } Declaration const& TypeChecker::dereference(Identifier const& _identifier) const { solAssert(!!_identifier.annotation().referencedDeclaration, "Declaration not stored."); return *_identifier.annotation().referencedDeclaration; } Declaration const& TypeChecker::dereference(UserDefinedTypeName const& _typeName) const { solAssert(!!_typeName.annotation().referencedDeclaration, "Declaration not stored."); return *_typeName.annotation().referencedDeclaration; } void TypeChecker::expectType(Expression const& _expression, Type const& _expectedType) { _expression.accept(*this); if (!type(_expression)->isImplicitlyConvertibleTo(_expectedType)) { if ( type(_expression)->category() == Type::Category::RationalNumber && dynamic_pointer_cast(type(_expression))->isFractional() && type(_expression)->mobileType() ) m_errorReporter.typeError( _expression.location(), "Type " + type(_expression)->toString() + " is not implicitly convertible to expected type " + _expectedType.toString() + ". Try converting to type " + type(_expression)->mobileType()->toString() + " or use an explicit conversion." ); else m_errorReporter.typeError( _expression.location(), "Type " + type(_expression)->toString() + " is not implicitly convertible to expected type " + _expectedType.toString() + "." ); } if ( type(_expression)->category() == Type::Category::RationalNumber && _expectedType.category() == Type::Category::FixedBytes ) { auto literal = dynamic_cast(&_expression); if (literal && !literal->isHexNumber()) m_errorReporter.warning( _expression.location(), "Decimal literal assigned to bytesXX variable will be left-aligned. " "Use an explicit conversion to silence this warning." ); } } void TypeChecker::requireLValue(Expression const& _expression) { _expression.annotation().lValueRequested = true; _expression.accept(*this); if (_expression.annotation().isConstant) m_errorReporter.typeError(_expression.location(), "Cannot assign to a constant variable."); else if (!_expression.annotation().isLValue) m_errorReporter.typeError(_expression.location(), "Expression has to be an lvalue."); }