/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ #include #include #include #include #include #include #include using namespace std; using namespace dev; using namespace langutil; using namespace dev::solidity; SMTChecker::SMTChecker(ErrorReporter& _errorReporter, map const& _smtlib2Responses): m_interface(make_shared(_smtlib2Responses)), m_errorReporterReference(_errorReporter), m_errorReporter(m_smtErrors) { #if defined (HAVE_Z3) || defined (HAVE_CVC4) if (!_smtlib2Responses.empty()) m_errorReporter.warning( "SMT-LIB2 query responses were given in the auxiliary input, " "but this Solidity binary uses an SMT solver (Z3/CVC4) directly." "These responses will be ignored." "Consider disabling Z3/CVC4 at compilation time in order to use SMT-LIB2 responses." ); #endif } void SMTChecker::analyze(SourceUnit const& _source, shared_ptr const& _scanner) { m_variableUsage = make_shared(_source); m_scanner = _scanner; if (_source.annotation().experimentalFeatures.count(ExperimentalFeature::SMTChecker)) _source.accept(*this); solAssert(m_interface->solvers() > 0, ""); // If this check is true, Z3 and CVC4 are not available // and the query answers were not provided, since SMTPortfolio // guarantees that SmtLib2Interface is the first solver. if (!m_interface->unhandledQueries().empty() && m_interface->solvers() == 1) { if (!m_noSolverWarning) { m_noSolverWarning = true; m_errorReporterReference.warning( SourceLocation(), "SMTChecker analysis was not possible since no integrated SMT solver (Z3 or CVC4) was found." ); } } else m_errorReporterReference.append(m_errorReporter.errors()); m_errorReporter.clear(); } bool SMTChecker::visit(ContractDefinition const& _contract) { for (auto _var : _contract.stateVariables()) createVariable(*_var); return true; } void SMTChecker::endVisit(ContractDefinition const&) { m_variables.clear(); } void SMTChecker::endVisit(VariableDeclaration const& _varDecl) { if (_varDecl.isLocalVariable() && _varDecl.type()->isValueType() &&_varDecl.value()) assignment(_varDecl, *_varDecl.value(), _varDecl.location()); } bool SMTChecker::visit(FunctionDefinition const& _function) { if (!_function.modifiers().empty() || _function.isConstructor()) m_errorReporter.warning( _function.location(), "Assertion checker does not yet support constructors and functions with modifiers." ); m_functionPath.push_back(&_function); // Not visited by a function call if (isRootFunction()) { m_interface->reset(); m_pathConditions.clear(); m_expressions.clear(); m_globalContext.clear(); m_uninterpretedTerms.clear(); m_overflowTargets.clear(); resetStateVariables(); initializeLocalVariables(_function); m_loopExecutionHappened = false; m_arrayAssignmentHappened = false; } return true; } void SMTChecker::endVisit(FunctionDefinition const&) { // If _function was visited from a function call we don't remove // the local variables just yet, since we might need them for // future calls. // Otherwise we remove any local variables from the context and // keep the state variables. if (isRootFunction()) { checkUnderOverflow(); removeLocalVariables(); } m_functionPath.pop_back(); } bool SMTChecker::visit(IfStatement const& _node) { _node.condition().accept(*this); // We ignore called functions here because they have // specific input values. if (isRootFunction()) checkBooleanNotConstant(_node.condition(), "Condition is always $VALUE."); auto indicesEndTrue = visitBranch(_node.trueStatement(), expr(_node.condition())); vector touchedVariables = m_variableUsage->touchedVariables(_node.trueStatement()); decltype(indicesEndTrue) indicesEndFalse; if (_node.falseStatement()) { indicesEndFalse = visitBranch(*_node.falseStatement(), !expr(_node.condition())); touchedVariables += m_variableUsage->touchedVariables(*_node.falseStatement()); } else indicesEndFalse = copyVariableIndices(); mergeVariables(touchedVariables, expr(_node.condition()), indicesEndTrue, indicesEndFalse); return false; } // Here we consider the execution of two branches: // Branch 1 assumes the loop condition to be true and executes the loop once, // after resetting touched variables. // Branch 2 assumes the loop condition to be false and skips the loop after // visiting the condition (it might contain side-effects, they need to be considered) // and does not erase knowledge. // If the loop is a do-while, condition side-effects are lost since the body, // executed once before the condition, might reassign variables. // Variables touched by the loop are merged with Branch 2. bool SMTChecker::visit(WhileStatement const& _node) { auto indicesBeforeLoop = copyVariableIndices(); auto touchedVariables = m_variableUsage->touchedVariables(_node); resetVariables(touchedVariables); decltype(indicesBeforeLoop) indicesAfterLoop; if (_node.isDoWhile()) { indicesAfterLoop = visitBranch(_node.body()); // TODO the assertions generated in the body should still be active in the condition _node.condition().accept(*this); if (isRootFunction()) checkBooleanNotConstant(_node.condition(), "Do-while loop condition is always $VALUE."); } else { _node.condition().accept(*this); if (isRootFunction()) checkBooleanNotConstant(_node.condition(), "While loop condition is always $VALUE."); indicesAfterLoop = visitBranch(_node.body(), expr(_node.condition())); } // We reset the execution to before the loop // and visit the condition in case it's not a do-while. // A do-while's body might have non-precise information // in its first run about variables that are touched. resetVariableIndices(indicesBeforeLoop); if (!_node.isDoWhile()) _node.condition().accept(*this); mergeVariables(touchedVariables, expr(_node.condition()), indicesAfterLoop, copyVariableIndices()); m_loopExecutionHappened = true; return false; } // Here we consider the execution of two branches similar to WhileStatement. bool SMTChecker::visit(ForStatement const& _node) { if (_node.initializationExpression()) _node.initializationExpression()->accept(*this); auto indicesBeforeLoop = copyVariableIndices(); // Do not reset the init expression part. auto touchedVariables = m_variableUsage->touchedVariables(_node.body()); if (_node.condition()) touchedVariables += m_variableUsage->touchedVariables(*_node.condition()); if (_node.loopExpression()) touchedVariables += m_variableUsage->touchedVariables(*_node.loopExpression()); // Remove duplicates std::sort(touchedVariables.begin(), touchedVariables.end()); touchedVariables.erase(std::unique(touchedVariables.begin(), touchedVariables.end()), touchedVariables.end()); resetVariables(touchedVariables); if (_node.condition()) { _node.condition()->accept(*this); if (isRootFunction()) checkBooleanNotConstant(*_node.condition(), "For loop condition is always $VALUE."); } m_interface->push(); if (_node.condition()) m_interface->addAssertion(expr(*_node.condition())); _node.body().accept(*this); if (_node.loopExpression()) _node.loopExpression()->accept(*this); m_interface->pop(); auto indicesAfterLoop = copyVariableIndices(); // We reset the execution to before the loop // and visit the condition. resetVariableIndices(indicesBeforeLoop); if (_node.condition()) _node.condition()->accept(*this); auto forCondition = _node.condition() ? expr(*_node.condition()) : smt::Expression(true); mergeVariables(touchedVariables, forCondition, indicesAfterLoop, copyVariableIndices()); m_loopExecutionHappened = true; return false; } void SMTChecker::endVisit(VariableDeclarationStatement const& _varDecl) { if (_varDecl.declarations().size() != 1) m_errorReporter.warning( _varDecl.location(), "Assertion checker does not yet support such variable declarations." ); else if (knownVariable(*_varDecl.declarations()[0])) { if (_varDecl.initialValue()) assignment(*_varDecl.declarations()[0], *_varDecl.initialValue(), _varDecl.location()); } else m_errorReporter.warning( _varDecl.location(), "Assertion checker does not yet implement such variable declarations." ); } void SMTChecker::endVisit(Assignment const& _assignment) { if (_assignment.assignmentOperator() != Token::Assign) m_errorReporter.warning( _assignment.location(), "Assertion checker does not yet implement compound assignment." ); else if (!isSupportedType(_assignment.annotation().type->category())) m_errorReporter.warning( _assignment.location(), "Assertion checker does not yet implement type " + _assignment.annotation().type->toString() ); else if (Identifier const* identifier = dynamic_cast(&_assignment.leftHandSide())) { VariableDeclaration const& decl = dynamic_cast(*identifier->annotation().referencedDeclaration); solAssert(knownVariable(decl), ""); assignment(decl, _assignment.rightHandSide(), _assignment.location()); defineExpr(_assignment, expr(_assignment.rightHandSide())); } else if (dynamic_cast(&_assignment.leftHandSide())) { arrayIndexAssignment(_assignment); defineExpr(_assignment, expr(_assignment.rightHandSide())); } else m_errorReporter.warning( _assignment.location(), "Assertion checker does not yet implement such assignments." ); } void SMTChecker::endVisit(TupleExpression const& _tuple) { if ( _tuple.isInlineArray() || _tuple.components().size() != 1 || !isSupportedType(_tuple.components()[0]->annotation().type->category()) ) m_errorReporter.warning( _tuple.location(), "Assertion checker does not yet implement tuples and inline arrays." ); else defineExpr(_tuple, expr(*_tuple.components()[0])); } void SMTChecker::addOverflowTarget( OverflowTarget::Type _type, TypePointer _intType, smt::Expression _value, SourceLocation const& _location ) { m_overflowTargets.emplace_back( _type, std::move(_intType), std::move(_value), currentPathConditions(), _location ); } void SMTChecker::checkUnderOverflow() { for (auto& target: m_overflowTargets) { if (target.type != OverflowTarget::Type::Overflow) checkUnderflow(target); if (target.type != OverflowTarget::Type::Underflow) checkOverflow(target); } } void SMTChecker::checkUnderflow(OverflowTarget& _target) { solAssert(_target.type != OverflowTarget::Type::Overflow, ""); auto intType = dynamic_cast(_target.intType.get()); checkCondition( _target.path && _target.value < minValue(*intType), _target.location, "Underflow (resulting value less than " + formatNumberReadable(intType->minValue()) + ")", "", &_target.value ); } void SMTChecker::checkOverflow(OverflowTarget& _target) { solAssert(_target.type != OverflowTarget::Type::Underflow, ""); auto intType = dynamic_cast(_target.intType.get()); checkCondition( _target.path && _target.value > maxValue(*intType), _target.location, "Overflow (resulting value larger than " + formatNumberReadable(intType->maxValue()) + ")", "", &_target.value ); } void SMTChecker::endVisit(UnaryOperation const& _op) { switch (_op.getOperator()) { case Token::Not: // ! { solAssert(isBool(_op.annotation().type->category()), ""); defineExpr(_op, !expr(_op.subExpression())); break; } case Token::Inc: // ++ (pre- or postfix) case Token::Dec: // -- (pre- or postfix) { solAssert(isInteger(_op.annotation().type->category()), ""); solAssert(_op.subExpression().annotation().lValueRequested, ""); if (Identifier const* identifier = dynamic_cast(&_op.subExpression())) { VariableDeclaration const& decl = dynamic_cast(*identifier->annotation().referencedDeclaration); if (knownVariable(decl)) { auto innerValue = currentValue(decl); auto newValue = _op.getOperator() == Token::Inc ? innerValue + 1 : innerValue - 1; assignment(decl, newValue, _op.location()); defineExpr(_op, _op.isPrefixOperation() ? newValue : innerValue); } else m_errorReporter.warning( _op.location(), "Assertion checker does not yet implement such assignments." ); } else m_errorReporter.warning( _op.location(), "Assertion checker does not yet implement such increments / decrements." ); break; } case Token::Sub: // - { defineExpr(_op, 0 - expr(_op.subExpression())); if (_op.annotation().type->category() == Type::Category::Integer) addOverflowTarget( OverflowTarget::Type::All, _op.annotation().type, expr(_op), _op.location() ); break; } default: m_errorReporter.warning( _op.location(), "Assertion checker does not yet implement this operator." ); } } void SMTChecker::endVisit(BinaryOperation const& _op) { if (TokenTraits::isArithmeticOp(_op.getOperator())) arithmeticOperation(_op); else if (TokenTraits::isCompareOp(_op.getOperator())) compareOperation(_op); else if (TokenTraits::isBooleanOp(_op.getOperator())) booleanOperation(_op); else m_errorReporter.warning( _op.location(), "Assertion checker does not yet implement this operator." ); } void SMTChecker::endVisit(FunctionCall const& _funCall) { solAssert(_funCall.annotation().kind != FunctionCallKind::Unset, ""); if (_funCall.annotation().kind == FunctionCallKind::StructConstructorCall) { m_errorReporter.warning( _funCall.location(), "Assertion checker does not yet implement this expression." ); return; } if (_funCall.annotation().kind == FunctionCallKind::TypeConversion) { visitTypeConversion(_funCall); return; } FunctionType const& funType = dynamic_cast(*_funCall.expression().annotation().type); std::vector> const args = _funCall.arguments(); switch (funType.kind()) { case FunctionType::Kind::Assert: visitAssert(_funCall); break; case FunctionType::Kind::Require: visitRequire(_funCall); break; case FunctionType::Kind::GasLeft: visitGasLeft(_funCall); break; case FunctionType::Kind::Internal: inlineFunctionCall(_funCall); break; case FunctionType::Kind::External: resetStateVariables(); resetStorageReferences(); break; case FunctionType::Kind::KECCAK256: case FunctionType::Kind::ECRecover: case FunctionType::Kind::SHA256: case FunctionType::Kind::RIPEMD160: case FunctionType::Kind::BlockHash: case FunctionType::Kind::AddMod: case FunctionType::Kind::MulMod: abstractFunctionCall(_funCall); break; default: m_errorReporter.warning( _funCall.location(), "Assertion checker does not yet implement this type of function call." ); } } void SMTChecker::visitAssert(FunctionCall const& _funCall) { auto const& args = _funCall.arguments(); solAssert(args.size() == 1, ""); solAssert(args[0]->annotation().type->category() == Type::Category::Bool, ""); checkCondition(!(expr(*args[0])), _funCall.location(), "Assertion violation"); addPathImpliedExpression(expr(*args[0])); } void SMTChecker::visitRequire(FunctionCall const& _funCall) { auto const& args = _funCall.arguments(); solAssert(args.size() == 1, ""); solAssert(args[0]->annotation().type->category() == Type::Category::Bool, ""); if (isRootFunction()) checkBooleanNotConstant(*args[0], "Condition is always $VALUE."); addPathImpliedExpression(expr(*args[0])); } void SMTChecker::visitGasLeft(FunctionCall const& _funCall) { string gasLeft = "gasleft()"; // We increase the variable index since gasleft changes // inside a tx. defineGlobalVariable(gasLeft, _funCall, true); auto const& symbolicVar = m_globalContext.at(gasLeft); unsigned index = symbolicVar->index(); // We set the current value to unknown anyway to add type constraints. setUnknownValue(*symbolicVar); if (index > 0) m_interface->addAssertion(symbolicVar->currentValue() <= symbolicVar->valueAtIndex(index - 1)); } void SMTChecker::eraseArrayKnowledge() { for (auto const& var: m_variables) if (var.first->annotation().type->category() == Type::Category::Mapping) newValue(*var.first); } void SMTChecker::inlineFunctionCall(FunctionCall const& _funCall) { FunctionDefinition const* _funDef = nullptr; Expression const* _calledExpr = &_funCall.expression(); if (TupleExpression const* _fun = dynamic_cast(&_funCall.expression())) { solAssert(_fun->components().size() == 1, ""); _calledExpr = _fun->components().at(0).get(); } if (Identifier const* _fun = dynamic_cast(_calledExpr)) _funDef = dynamic_cast(_fun->annotation().referencedDeclaration); else if (MemberAccess const* _fun = dynamic_cast(_calledExpr)) _funDef = dynamic_cast(_fun->annotation().referencedDeclaration); else { m_errorReporter.warning( _funCall.location(), "Assertion checker does not yet implement this type of function call." ); return; } solAssert(_funDef, ""); if (visitedFunction(_funDef)) m_errorReporter.warning( _funCall.location(), "Assertion checker does not support recursive function calls.", SecondarySourceLocation().append("Starting from function:", _funDef->location()) ); else if (_funDef && _funDef->isImplemented()) { vector funArgs; auto const& funType = dynamic_cast(_calledExpr->annotation().type.get()); solAssert(funType, ""); if (funType->bound()) { auto const& boundFunction = dynamic_cast(_calledExpr); solAssert(boundFunction, ""); funArgs.push_back(expr(boundFunction->expression())); } for (auto arg: _funCall.arguments()) funArgs.push_back(expr(*arg)); initializeFunctionCallParameters(*_funDef, funArgs); _funDef->accept(*this); auto const& returnParams = _funDef->returnParameters(); if (_funDef->returnParameters().size()) { if (returnParams.size() > 1) m_errorReporter.warning( _funCall.location(), "Assertion checker does not yet support calls to functions that return more than one value." ); else defineExpr(_funCall, currentValue(*returnParams[0])); } } else { m_errorReporter.warning( _funCall.location(), "Assertion checker does not support calls to functions without implementation." ); } } void SMTChecker::abstractFunctionCall(FunctionCall const& _funCall) { vector smtArguments; for (auto const& arg: _funCall.arguments()) smtArguments.push_back(expr(*arg)); defineExpr(_funCall, (*m_expressions.at(&_funCall.expression()))(smtArguments)); m_uninterpretedTerms.insert(&_funCall); setSymbolicUnknownValue(expr(_funCall), _funCall.annotation().type, *m_interface); } void SMTChecker::endVisit(Identifier const& _identifier) { if (_identifier.annotation().lValueRequested) { // Will be translated as part of the node that requested the lvalue. } else if (_identifier.annotation().type->category() == Type::Category::Function) visitFunctionIdentifier(_identifier); else if (isSupportedType(_identifier.annotation().type->category())) { if (VariableDeclaration const* decl = dynamic_cast(_identifier.annotation().referencedDeclaration)) defineExpr(_identifier, currentValue(*decl)); else if (_identifier.name() == "now") defineGlobalVariable(_identifier.name(), _identifier); else // TODO: handle MagicVariableDeclaration here m_errorReporter.warning( _identifier.location(), "Assertion checker does not yet support the type of this variable." ); } } void SMTChecker::visitTypeConversion(FunctionCall const& _funCall) { solAssert(_funCall.annotation().kind == FunctionCallKind::TypeConversion, ""); solAssert(_funCall.arguments().size() == 1, ""); auto argument = _funCall.arguments().at(0); unsigned argSize = argument->annotation().type->storageBytes(); unsigned castSize = _funCall.annotation().type->storageBytes(); if (argSize == castSize) defineExpr(_funCall, expr(*argument)); else { createExpr(_funCall); setUnknownValue(*m_expressions.at(&_funCall)); auto const& funCallCategory = _funCall.annotation().type->category(); // TODO: truncating and bytesX needs a different approach because of right padding. if (funCallCategory == Type::Category::Integer || funCallCategory == Type::Category::Address) { if (argSize < castSize) defineExpr(_funCall, expr(*argument)); else { auto const& intType = dynamic_cast(*m_expressions.at(&_funCall)->type()); defineExpr(_funCall, smt::Expression::ite( expr(*argument) >= minValue(intType) && expr(*argument) <= maxValue(intType), expr(*argument), expr(_funCall) )); } } m_errorReporter.warning( _funCall.location(), "Type conversion is not yet fully supported and might yield false positives." ); } } void SMTChecker::visitFunctionIdentifier(Identifier const& _identifier) { auto const& fType = dynamic_cast(*_identifier.annotation().type); if (fType.returnParameterTypes().size() > 1) { m_errorReporter.warning( _identifier.location(), "Assertion checker does not yet support functions with more than one return parameter." ); } defineGlobalFunction(fType.richIdentifier(), _identifier); m_expressions.emplace(&_identifier, m_globalContext.at(fType.richIdentifier())); } void SMTChecker::endVisit(Literal const& _literal) { Type const& type = *_literal.annotation().type; if (isNumber(type.category())) defineExpr(_literal, smt::Expression(type.literalValue(&_literal))); else if (isBool(type.category())) defineExpr(_literal, smt::Expression(_literal.token() == Token::TrueLiteral ? true : false)); else m_errorReporter.warning( _literal.location(), "Assertion checker does not yet support the type of this literal (" + _literal.annotation().type->toString() + ")." ); } void SMTChecker::endVisit(Return const& _return) { if (knownExpr(*_return.expression())) { auto returnParams = m_functionPath.back()->returnParameters(); if (returnParams.size() > 1) m_errorReporter.warning( _return.location(), "Assertion checker does not yet support more than one return value." ); else if (returnParams.size() == 1) m_interface->addAssertion(expr(*_return.expression()) == newValue(*returnParams[0])); } } bool SMTChecker::visit(MemberAccess const& _memberAccess) { auto const& accessType = _memberAccess.annotation().type; if (accessType->category() == Type::Category::Function) return true; auto const& exprType = _memberAccess.expression().annotation().type; solAssert(exprType, ""); if (exprType->category() == Type::Category::Magic) { auto identifier = dynamic_cast(&_memberAccess.expression()); string accessedName; if (identifier) accessedName = identifier->name(); else m_errorReporter.warning( _memberAccess.location(), "Assertion checker does not yet support this expression." ); defineGlobalVariable(accessedName + "." + _memberAccess.memberName(), _memberAccess); return false; } else m_errorReporter.warning( _memberAccess.location(), "Assertion checker does not yet support this expression." ); return true; } void SMTChecker::endVisit(IndexAccess const& _indexAccess) { shared_ptr array; if (auto const& id = dynamic_cast(&_indexAccess.baseExpression())) { auto const& varDecl = dynamic_cast(*id->annotation().referencedDeclaration); solAssert(knownVariable(varDecl), ""); array = m_variables[&varDecl]; } else if (auto const& innerAccess = dynamic_cast(&_indexAccess.baseExpression())) { solAssert(knownExpr(*innerAccess), ""); array = m_expressions[innerAccess]; } else { m_errorReporter.warning( _indexAccess.location(), "Assertion checker does not yet implement this expression." ); return; } solAssert(array, ""); defineExpr(_indexAccess, smt::Expression::select( array->currentValue(), expr(*_indexAccess.indexExpression()) )); setSymbolicUnknownValue( expr(_indexAccess), _indexAccess.annotation().type, *m_interface ); m_uninterpretedTerms.insert(&_indexAccess); } void SMTChecker::arrayAssignment() { m_arrayAssignmentHappened = true; eraseArrayKnowledge(); } void SMTChecker::arrayIndexAssignment(Assignment const& _assignment) { auto const& indexAccess = dynamic_cast(_assignment.leftHandSide()); if (auto const& id = dynamic_cast(&indexAccess.baseExpression())) { auto const& varDecl = dynamic_cast(*id->annotation().referencedDeclaration); solAssert(knownVariable(varDecl), ""); smt::Expression store = smt::Expression::store( m_variables[&varDecl]->currentValue(), expr(*indexAccess.indexExpression()), expr(_assignment.rightHandSide()) ); m_interface->addAssertion(newValue(varDecl) == store); } else if (dynamic_cast(&indexAccess.baseExpression())) m_errorReporter.warning( indexAccess.location(), "Assertion checker does not yet implement assignments to multi-dimensional mappings or arrays." ); else m_errorReporter.warning( _assignment.location(), "Assertion checker does not yet implement this expression." ); } void SMTChecker::defineGlobalVariable(string const& _name, Expression const& _expr, bool _increaseIndex) { if (!knownGlobalSymbol(_name)) { auto result = newSymbolicVariable(*_expr.annotation().type, _name, *m_interface); m_globalContext.emplace(_name, result.second); setUnknownValue(*result.second); if (result.first) m_errorReporter.warning( _expr.location(), "Assertion checker does not yet support this global variable." ); } else if (_increaseIndex) m_globalContext.at(_name)->increaseIndex(); // The default behavior is not to increase the index since // most of the global values stay the same throughout a tx. if (isSupportedType(_expr.annotation().type->category())) defineExpr(_expr, m_globalContext.at(_name)->currentValue()); } void SMTChecker::defineGlobalFunction(string const& _name, Expression const& _expr) { if (!knownGlobalSymbol(_name)) { auto result = newSymbolicVariable(*_expr.annotation().type, _name, *m_interface); m_globalContext.emplace(_name, result.second); if (result.first) m_errorReporter.warning( _expr.location(), "Assertion checker does not yet support the type of this function." ); } } void SMTChecker::arithmeticOperation(BinaryOperation const& _op) { switch (_op.getOperator()) { case Token::Add: case Token::Sub: case Token::Mul: case Token::Div: { solAssert(_op.annotation().commonType, ""); if (_op.annotation().commonType->category() != Type::Category::Integer) { m_errorReporter.warning( _op.location(), "Assertion checker does not yet implement this operator on non-integer types." ); break; } auto const& intType = dynamic_cast(*_op.annotation().commonType); smt::Expression left(expr(_op.leftExpression())); smt::Expression right(expr(_op.rightExpression())); Token op = _op.getOperator(); smt::Expression value( op == Token::Add ? left + right : op == Token::Sub ? left - right : op == Token::Div ? division(left, right, intType) : /*op == Token::Mul*/ left * right ); if (_op.getOperator() == Token::Div) { checkCondition(right == 0, _op.location(), "Division by zero", "", &right); m_interface->addAssertion(right != 0); } addOverflowTarget( OverflowTarget::Type::All, _op.annotation().commonType, value, _op.location() ); smt::Expression intValueRange = (0 - minValue(intType)) + maxValue(intType) + 1; defineExpr(_op, smt::Expression::ite( value > maxValue(intType) || value < minValue(intType), value % intValueRange, value )); if (intType.isSigned()) { defineExpr(_op, smt::Expression::ite( expr(_op) > maxValue(intType), expr(_op) - intValueRange, expr(_op) )); } break; } default: m_errorReporter.warning( _op.location(), "Assertion checker does not yet implement this operator." ); } } void SMTChecker::compareOperation(BinaryOperation const& _op) { solAssert(_op.annotation().commonType, ""); if (isSupportedType(_op.annotation().commonType->category())) { smt::Expression left(expr(_op.leftExpression())); smt::Expression right(expr(_op.rightExpression())); Token op = _op.getOperator(); shared_ptr value; if (isNumber(_op.annotation().commonType->category())) { value = make_shared( op == Token::Equal ? (left == right) : op == Token::NotEqual ? (left != right) : op == Token::LessThan ? (left < right) : op == Token::LessThanOrEqual ? (left <= right) : op == Token::GreaterThan ? (left > right) : /*op == Token::GreaterThanOrEqual*/ (left >= right) ); } else // Bool { solUnimplementedAssert(isBool(_op.annotation().commonType->category()), "Operation not yet supported"); value = make_shared( op == Token::Equal ? (left == right) : /*op == Token::NotEqual*/ (left != right) ); } // TODO: check that other values for op are not possible. defineExpr(_op, *value); } else m_errorReporter.warning( _op.location(), "Assertion checker does not yet implement the type " + _op.annotation().commonType->toString() + " for comparisons" ); } void SMTChecker::booleanOperation(BinaryOperation const& _op) { solAssert(_op.getOperator() == Token::And || _op.getOperator() == Token::Or, ""); solAssert(_op.annotation().commonType, ""); if (_op.annotation().commonType->category() == Type::Category::Bool) { // @TODO check that both of them are not constant if (_op.getOperator() == Token::And) defineExpr(_op, expr(_op.leftExpression()) && expr(_op.rightExpression())); else defineExpr(_op, expr(_op.leftExpression()) || expr(_op.rightExpression())); } else m_errorReporter.warning( _op.location(), "Assertion checker does not yet implement the type " + _op.annotation().commonType->toString() + " for boolean operations" ); } smt::Expression SMTChecker::division(smt::Expression _left, smt::Expression _right, IntegerType const& _type) { // Signed division in SMTLIB2 rounds differently for negative division. if (_type.isSigned()) return (smt::Expression::ite( _left >= 0, smt::Expression::ite(_right >= 0, _left / _right, 0 - (_left / (0 - _right))), smt::Expression::ite(_right >= 0, 0 - ((0 - _left) / _right), (0 - _left) / (0 - _right)) )); else return _left / _right; } void SMTChecker::assignment(VariableDeclaration const& _variable, Expression const& _value, SourceLocation const& _location) { assignment(_variable, expr(_value), _location); } void SMTChecker::assignment(VariableDeclaration const& _variable, smt::Expression const& _value, SourceLocation const& _location) { TypePointer type = _variable.type(); if (type->category() == Type::Category::Integer) addOverflowTarget(OverflowTarget::Type::All, type, _value, _location); else if (type->category() == Type::Category::Address) addOverflowTarget(OverflowTarget::Type::All, make_shared(160), _value, _location); else if (type->category() == Type::Category::Mapping) arrayAssignment(); m_interface->addAssertion(newValue(_variable) == _value); } SMTChecker::VariableIndices SMTChecker::visitBranch(Statement const& _statement, smt::Expression _condition) { return visitBranch(_statement, &_condition); } SMTChecker::VariableIndices SMTChecker::visitBranch(Statement const& _statement, smt::Expression const* _condition) { auto indicesBeforeBranch = copyVariableIndices(); if (_condition) pushPathCondition(*_condition); _statement.accept(*this); if (_condition) popPathCondition(); auto indicesAfterBranch = copyVariableIndices(); resetVariableIndices(indicesBeforeBranch); return indicesAfterBranch; } void SMTChecker::checkCondition( smt::Expression _condition, SourceLocation const& _location, string const& _description, string const& _additionalValueName, smt::Expression* _additionalValue ) { m_interface->push(); addPathConjoinedExpression(_condition); vector expressionsToEvaluate; vector expressionNames; if (m_functionPath.size()) { solAssert(m_scanner, ""); if (_additionalValue) { expressionsToEvaluate.emplace_back(*_additionalValue); expressionNames.push_back(_additionalValueName); } for (auto const& var: m_variables) { if (var.first->type()->isValueType()) { expressionsToEvaluate.emplace_back(currentValue(*var.first)); expressionNames.push_back(var.first->name()); } } for (auto const& var: m_globalContext) { auto const& type = var.second->type(); if ( type->isValueType() && smtKind(type->category()) != smt::Kind::Function ) { expressionsToEvaluate.emplace_back(var.second->currentValue()); expressionNames.push_back(var.first); } } for (auto const& uf: m_uninterpretedTerms) { if (uf->annotation().type->isValueType()) { expressionsToEvaluate.emplace_back(expr(*uf)); expressionNames.push_back(m_scanner->sourceAt(uf->location())); } } } smt::CheckResult result; vector values; tie(result, values) = checkSatisfiableAndGenerateModel(expressionsToEvaluate); string loopComment; if (m_loopExecutionHappened) loopComment = "\nNote that some information is erased after the execution of loops.\n" "You can re-introduce information using require()."; if (m_arrayAssignmentHappened) loopComment += "\nNote that array aliasing is not supported," " therefore all mapping information is erased after" " a mapping local variable/parameter is assigned.\n" "You can re-introduce information using require()."; switch (result) { case smt::CheckResult::SATISFIABLE: { std::ostringstream message; message << _description << " happens here"; if (m_functionPath.size()) { std::ostringstream modelMessage; modelMessage << " for:\n"; solAssert(values.size() == expressionNames.size(), ""); map sortedModel; for (size_t i = 0; i < values.size(); ++i) if (expressionsToEvaluate.at(i).name != values.at(i)) sortedModel[expressionNames.at(i)] = values.at(i); for (auto const& eval: sortedModel) modelMessage << " " << eval.first << " = " << eval.second << "\n"; m_errorReporter.warning(_location, message.str(), SecondarySourceLocation().append(modelMessage.str(), SourceLocation()).append(loopComment, SourceLocation())); } else { message << "."; m_errorReporter.warning(_location, message.str(), SecondarySourceLocation().append(loopComment, SourceLocation())); } break; } case smt::CheckResult::UNSATISFIABLE: break; case smt::CheckResult::UNKNOWN: m_errorReporter.warning(_location, _description + " might happen here.", SecondarySourceLocation().append(loopComment, SourceLocation())); break; case smt::CheckResult::CONFLICTING: m_errorReporter.warning(_location, "At least two SMT solvers provided conflicting answers. Results might not be sound."); break; case smt::CheckResult::ERROR: m_errorReporter.warning(_location, "Error trying to invoke SMT solver."); break; } m_interface->pop(); } void SMTChecker::checkBooleanNotConstant(Expression const& _condition, string const& _description) { // Do not check for const-ness if this is a constant. if (dynamic_cast(&_condition)) return; m_interface->push(); addPathConjoinedExpression(expr(_condition)); auto positiveResult = checkSatisfiable(); m_interface->pop(); m_interface->push(); addPathConjoinedExpression(!expr(_condition)); auto negatedResult = checkSatisfiable(); m_interface->pop(); if (positiveResult == smt::CheckResult::ERROR || negatedResult == smt::CheckResult::ERROR) m_errorReporter.warning(_condition.location(), "Error trying to invoke SMT solver."); else if (positiveResult == smt::CheckResult::CONFLICTING || negatedResult == smt::CheckResult::CONFLICTING) m_errorReporter.warning(_condition.location(), "At least two SMT solvers provided conflicting answers. Results might not be sound."); else if (positiveResult == smt::CheckResult::SATISFIABLE && negatedResult == smt::CheckResult::SATISFIABLE) { // everything fine. } else if (positiveResult == smt::CheckResult::UNKNOWN || negatedResult == smt::CheckResult::UNKNOWN) { // can't do anything. } else if (positiveResult == smt::CheckResult::UNSATISFIABLE && negatedResult == smt::CheckResult::UNSATISFIABLE) m_errorReporter.warning(_condition.location(), "Condition unreachable."); else { string value; if (positiveResult == smt::CheckResult::SATISFIABLE) { solAssert(negatedResult == smt::CheckResult::UNSATISFIABLE, ""); value = "true"; } else { solAssert(positiveResult == smt::CheckResult::UNSATISFIABLE, ""); solAssert(negatedResult == smt::CheckResult::SATISFIABLE, ""); value = "false"; } m_errorReporter.warning(_condition.location(), boost::algorithm::replace_all_copy(_description, "$VALUE", value)); } } pair> SMTChecker::checkSatisfiableAndGenerateModel(vector const& _expressionsToEvaluate) { smt::CheckResult result; vector values; try { tie(result, values) = m_interface->check(_expressionsToEvaluate); } catch (smt::SolverError const& _e) { string description("Error querying SMT solver"); if (_e.comment()) description += ": " + *_e.comment(); m_errorReporter.warning(description); result = smt::CheckResult::ERROR; } for (string& value: values) { try { // Parse and re-format nicely value = formatNumberReadable(bigint(value)); } catch (...) { } } return make_pair(result, values); } smt::CheckResult SMTChecker::checkSatisfiable() { return checkSatisfiableAndGenerateModel({}).first; } void SMTChecker::initializeFunctionCallParameters(FunctionDefinition const& _function, vector const& _callArgs) { auto const& funParams = _function.parameters(); solAssert(funParams.size() == _callArgs.size(), ""); for (unsigned i = 0; i < funParams.size(); ++i) if (createVariable(*funParams[i])) { m_interface->addAssertion(_callArgs[i] == newValue(*funParams[i])); if (funParams[i]->annotation().type->category() == Type::Category::Mapping) m_arrayAssignmentHappened = true; } for (auto const& variable: _function.localVariables()) if (createVariable(*variable)) { newValue(*variable); setZeroValue(*variable); } if (_function.returnParameterList()) for (auto const& retParam: _function.returnParameters()) if (createVariable(*retParam)) { newValue(*retParam); setZeroValue(*retParam); } } void SMTChecker::initializeLocalVariables(FunctionDefinition const& _function) { for (auto const& variable: _function.localVariables()) if (createVariable(*variable)) setZeroValue(*variable); for (auto const& param: _function.parameters()) if (createVariable(*param)) setUnknownValue(*param); if (_function.returnParameterList()) for (auto const& retParam: _function.returnParameters()) if (createVariable(*retParam)) setZeroValue(*retParam); } void SMTChecker::removeLocalVariables() { for (auto it = m_variables.begin(); it != m_variables.end(); ) { if (it->first->isLocalVariable()) it = m_variables.erase(it); else ++it; } } void SMTChecker::resetVariable(VariableDeclaration const& _variable) { newValue(_variable); setUnknownValue(_variable); } void SMTChecker::resetStateVariables() { resetVariables([&](VariableDeclaration const& _variable) { return _variable.isStateVariable(); }); } void SMTChecker::resetStorageReferences() { resetVariables([&](VariableDeclaration const& _variable) { return _variable.hasReferenceOrMappingType(); }); } void SMTChecker::resetVariables(vector _variables) { for (auto const* decl: _variables) resetVariable(*decl); } void SMTChecker::resetVariables(function const& _filter) { for_each(begin(m_variables), end(m_variables), [&](auto _variable) { if (_filter(*_variable.first)) this->resetVariable(*_variable.first); }); } void SMTChecker::mergeVariables(vector const& _variables, smt::Expression const& _condition, VariableIndices const& _indicesEndTrue, VariableIndices const& _indicesEndFalse) { set uniqueVars(_variables.begin(), _variables.end()); for (auto const* decl: uniqueVars) { solAssert(_indicesEndTrue.count(decl) && _indicesEndFalse.count(decl), ""); int trueIndex = _indicesEndTrue.at(decl); int falseIndex = _indicesEndFalse.at(decl); solAssert(trueIndex != falseIndex, ""); m_interface->addAssertion(newValue(*decl) == smt::Expression::ite( _condition, valueAtIndex(*decl, trueIndex), valueAtIndex(*decl, falseIndex)) ); } } bool SMTChecker::createVariable(VariableDeclaration const& _varDecl) { // This might be the case for multiple calls to the same function. if (knownVariable(_varDecl)) return true; auto const& type = _varDecl.type(); solAssert(m_variables.count(&_varDecl) == 0, ""); auto result = newSymbolicVariable(*type, _varDecl.name() + "_" + to_string(_varDecl.id()), *m_interface); m_variables.emplace(&_varDecl, result.second); if (result.first) { m_errorReporter.warning( _varDecl.location(), "Assertion checker does not yet support the type of this variable." ); return false; } return true; } bool SMTChecker::knownVariable(VariableDeclaration const& _decl) { return m_variables.count(&_decl); } smt::Expression SMTChecker::currentValue(VariableDeclaration const& _decl) { solAssert(knownVariable(_decl), ""); return m_variables.at(&_decl)->currentValue(); } smt::Expression SMTChecker::valueAtIndex(VariableDeclaration const& _decl, int _index) { solAssert(knownVariable(_decl), ""); return m_variables.at(&_decl)->valueAtIndex(_index); } smt::Expression SMTChecker::newValue(VariableDeclaration const& _decl) { solAssert(knownVariable(_decl), ""); return m_variables.at(&_decl)->increaseIndex(); } void SMTChecker::setZeroValue(VariableDeclaration const& _decl) { solAssert(knownVariable(_decl), ""); setZeroValue(*m_variables.at(&_decl)); } void SMTChecker::setZeroValue(SymbolicVariable& _variable) { smt::setSymbolicZeroValue(_variable, *m_interface); } void SMTChecker::setUnknownValue(VariableDeclaration const& _decl) { solAssert(knownVariable(_decl), ""); setUnknownValue(*m_variables.at(&_decl)); } void SMTChecker::setUnknownValue(SymbolicVariable& _variable) { smt::setSymbolicUnknownValue(_variable, *m_interface); } smt::Expression SMTChecker::expr(Expression const& _e) { if (!knownExpr(_e)) { m_errorReporter.warning(_e.location(), "Internal error: Expression undefined for SMT solver." ); createExpr(_e); } return m_expressions.at(&_e)->currentValue(); } bool SMTChecker::knownExpr(Expression const& _e) const { return m_expressions.count(&_e); } bool SMTChecker::knownGlobalSymbol(string const& _var) const { return m_globalContext.count(_var); } void SMTChecker::createExpr(Expression const& _e) { solAssert(_e.annotation().type, ""); if (knownExpr(_e)) m_expressions.at(&_e)->increaseIndex(); else { auto result = newSymbolicVariable(*_e.annotation().type, "expr_" + to_string(_e.id()), *m_interface); m_expressions.emplace(&_e, result.second); if (result.first) m_errorReporter.warning( _e.location(), "Assertion checker does not yet implement this type." ); } } void SMTChecker::defineExpr(Expression const& _e, smt::Expression _value) { createExpr(_e); solAssert(smtKind(_e.annotation().type->category()) != smt::Kind::Function, "Equality operator applied to type that is not fully supported"); m_interface->addAssertion(expr(_e) == _value); } void SMTChecker::popPathCondition() { solAssert(m_pathConditions.size() > 0, "Cannot pop path condition, empty."); m_pathConditions.pop_back(); } void SMTChecker::pushPathCondition(smt::Expression const& _e) { m_pathConditions.push_back(currentPathConditions() && _e); } smt::Expression SMTChecker::currentPathConditions() { if (m_pathConditions.empty()) return smt::Expression(true); return m_pathConditions.back(); } void SMTChecker::addPathConjoinedExpression(smt::Expression const& _e) { m_interface->addAssertion(currentPathConditions() && _e); } void SMTChecker::addPathImpliedExpression(smt::Expression const& _e) { m_interface->addAssertion(smt::Expression::implies(currentPathConditions(), _e)); } bool SMTChecker::isRootFunction() { return m_functionPath.size() == 1; } bool SMTChecker::visitedFunction(FunctionDefinition const* _funDef) { return contains(m_functionPath, _funDef); } SMTChecker::VariableIndices SMTChecker::copyVariableIndices() { VariableIndices indices; for (auto const& var: m_variables) indices.emplace(var.first, var.second->index()); return indices; } void SMTChecker::resetVariableIndices(VariableIndices const& _indices) { for (auto const& var: _indices) m_variables.at(var.first)->index() = var.second; }