/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ /** * Component that translates Solidity code into Yul at statement level and below. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace solidity; using namespace solidity::util; using namespace solidity::frontend; using namespace std::string_literals; namespace { struct CopyTranslate: public yul::ASTCopier { using ExternalRefsMap = std::map; CopyTranslate(yul::Dialect const& _dialect, IRGenerationContext& _context, ExternalRefsMap const& _references): m_dialect(_dialect), m_context(_context), m_references(_references) {} using ASTCopier::operator(); yul::Expression operator()(yul::Identifier const& _identifier) override { if (m_references.count(&_identifier)) { auto const& reference = m_references.at(&_identifier); auto const varDecl = dynamic_cast(reference.declaration); solUnimplementedAssert(varDecl, ""); if (reference.isOffset || reference.isSlot) { solAssert(reference.isOffset != reference.isSlot, ""); pair slot_offset = m_context.storageLocationOfVariable(*varDecl); string const value = reference.isSlot ? slot_offset.first.str() : to_string(slot_offset.second); return yul::Literal{ _identifier.location, yul::LiteralKind::Number, yul::YulString{value}, {} }; } } return ASTCopier::operator()(_identifier); } yul::YulString translateIdentifier(yul::YulString _name) override { // Strictly, the dialect used by inline assembly (m_dialect) could be different // from the Yul dialect we are compiling to. So we are assuming here that the builtin // functions are identical. This should not be a problem for now since everything // is EVM anyway. if (m_dialect.builtin(_name)) return _name; else return yul::YulString{"usr$" + _name.str()}; } yul::Identifier translate(yul::Identifier const& _identifier) override { if (!m_references.count(&_identifier)) return ASTCopier::translate(_identifier); auto const& reference = m_references.at(&_identifier); auto const varDecl = dynamic_cast(reference.declaration); solUnimplementedAssert(varDecl, ""); solAssert( reference.isOffset == false && reference.isSlot == false, "Should not be called for offset/slot" ); return yul::Identifier{ _identifier.location, yul::YulString{m_context.localVariable(*varDecl).name()} }; } private: yul::Dialect const& m_dialect; IRGenerationContext& m_context; ExternalRefsMap const& m_references; }; } string IRGeneratorForStatements::code() const { solAssert(!m_currentLValue, "LValue not reset!"); return m_code.str(); } void IRGeneratorForStatements::initializeStateVar(VariableDeclaration const& _varDecl) { solAssert(m_context.isStateVariable(_varDecl), "Must be a state variable."); solAssert(!_varDecl.isConstant(), ""); solAssert(!_varDecl.immutable(), ""); if (_varDecl.value()) { _varDecl.value()->accept(*this); writeToLValue(IRLValue{ *_varDecl.annotation().type, IRLValue::Storage{ util::toCompactHexWithPrefix(m_context.storageLocationOfVariable(_varDecl).first), m_context.storageLocationOfVariable(_varDecl).second } }, *_varDecl.value()); } } void IRGeneratorForStatements::initializeLocalVar(VariableDeclaration const& _varDecl) { solAssert(m_context.isLocalVariable(_varDecl), "Must be a local variable."); auto const* type = _varDecl.type(); if (auto const* refType = dynamic_cast(type)) if (refType->dataStoredIn(DataLocation::Storage) && refType->isPointer()) return; IRVariable zero = zeroValue(*type); assign(m_context.localVariable(_varDecl), zero); } IRVariable IRGeneratorForStatements::evaluateExpression(Expression const& _expression, Type const& _targetType) { _expression.accept(*this); IRVariable variable{m_context.newYulVariable(), _targetType}; define(variable, _expression); return variable; } void IRGeneratorForStatements::endVisit(VariableDeclarationStatement const& _varDeclStatement) { if (Expression const* expression = _varDeclStatement.initialValue()) { if (_varDeclStatement.declarations().size() > 1) { auto const* tupleType = dynamic_cast(expression->annotation().type); solAssert(tupleType, "Expected expression of tuple type."); solAssert(_varDeclStatement.declarations().size() == tupleType->components().size(), "Invalid number of tuple components."); for (size_t i = 0; i < _varDeclStatement.declarations().size(); ++i) if (auto const& decl = _varDeclStatement.declarations()[i]) { solAssert(tupleType->components()[i], ""); define(m_context.addLocalVariable(*decl), IRVariable(*expression).tupleComponent(i)); } } else { VariableDeclaration const& varDecl = *_varDeclStatement.declarations().front(); define(m_context.addLocalVariable(varDecl), *expression); } } else for (auto const& decl: _varDeclStatement.declarations()) if (decl) { declare(m_context.addLocalVariable(*decl)); initializeLocalVar(*decl); } } bool IRGeneratorForStatements::visit(Conditional const& _conditional) { _conditional.condition().accept(*this); string condition = expressionAsType(_conditional.condition(), *TypeProvider::boolean()); declare(_conditional); m_code << "switch " << condition << "\n" "case 0 {\n"; _conditional.falseExpression().accept(*this); assign(_conditional, _conditional.falseExpression()); m_code << "}\n" "default {\n"; _conditional.trueExpression().accept(*this); assign(_conditional, _conditional.trueExpression()); m_code << "}\n"; return false; } bool IRGeneratorForStatements::visit(Assignment const& _assignment) { _assignment.rightHandSide().accept(*this); Type const* intermediateType = type(_assignment.rightHandSide()).closestTemporaryType( &type(_assignment.leftHandSide()) ); IRVariable value = convert(_assignment.rightHandSide(), *intermediateType); _assignment.leftHandSide().accept(*this); solAssert(!!m_currentLValue, "LValue not retrieved."); if (_assignment.assignmentOperator() != Token::Assign) { solAssert(type(_assignment.leftHandSide()) == *intermediateType, ""); solAssert(intermediateType->isValueType(), "Compound operators only available for value types."); IRVariable leftIntermediate = readFromLValue(*m_currentLValue); m_code << value.name() << " := " << binaryOperation( TokenTraits::AssignmentToBinaryOp(_assignment.assignmentOperator()), *intermediateType, leftIntermediate.name(), value.name() ); } writeToLValue(*m_currentLValue, value); m_currentLValue.reset(); if (*_assignment.annotation().type != *TypeProvider::emptyTuple()) define(_assignment, value); return false; } bool IRGeneratorForStatements::visit(TupleExpression const& _tuple) { if (_tuple.isInlineArray()) solUnimplementedAssert(false, ""); else { bool willBeWrittenTo = _tuple.annotation().willBeWrittenTo; if (willBeWrittenTo) solAssert(!m_currentLValue, ""); if (_tuple.components().size() == 1) { solAssert(_tuple.components().front(), ""); _tuple.components().front()->accept(*this); if (willBeWrittenTo) solAssert(!!m_currentLValue, ""); else define(_tuple, *_tuple.components().front()); } else { vector> lvalues; for (size_t i = 0; i < _tuple.components().size(); ++i) if (auto const& component = _tuple.components()[i]) { component->accept(*this); if (willBeWrittenTo) { solAssert(!!m_currentLValue, ""); lvalues.emplace_back(std::move(m_currentLValue)); m_currentLValue.reset(); } else define(IRVariable(_tuple).tupleComponent(i), *component); } else if (willBeWrittenTo) lvalues.emplace_back(); if (_tuple.annotation().willBeWrittenTo) m_currentLValue.emplace(IRLValue{ *_tuple.annotation().type, IRLValue::Tuple{std::move(lvalues)} }); } } return false; } bool IRGeneratorForStatements::visit(IfStatement const& _ifStatement) { _ifStatement.condition().accept(*this); string condition = expressionAsType(_ifStatement.condition(), *TypeProvider::boolean()); if (_ifStatement.falseStatement()) { m_code << "switch " << condition << "\n" "case 0 {\n"; _ifStatement.falseStatement()->accept(*this); m_code << "}\n" "default {\n"; } else m_code << "if " << condition << " {\n"; _ifStatement.trueStatement().accept(*this); m_code << "}\n"; return false; } bool IRGeneratorForStatements::visit(ForStatement const& _forStatement) { generateLoop( _forStatement.body(), _forStatement.condition(), _forStatement.initializationExpression(), _forStatement.loopExpression() ); return false; } bool IRGeneratorForStatements::visit(WhileStatement const& _whileStatement) { generateLoop( _whileStatement.body(), &_whileStatement.condition(), nullptr, nullptr, _whileStatement.isDoWhile() ); return false; } bool IRGeneratorForStatements::visit(Continue const&) { m_code << "continue\n"; return false; } bool IRGeneratorForStatements::visit(Break const&) { m_code << "break\n"; return false; } void IRGeneratorForStatements::endVisit(Return const& _return) { if (Expression const* value = _return.expression()) { solAssert(_return.annotation().functionReturnParameters, "Invalid return parameters pointer."); vector> const& returnParameters = _return.annotation().functionReturnParameters->parameters(); if (returnParameters.size() > 1) for (size_t i = 0; i < returnParameters.size(); ++i) assign(m_context.localVariable(*returnParameters[i]), IRVariable(*value).tupleComponent(i)); else if (returnParameters.size() == 1) assign(m_context.localVariable(*returnParameters.front()), *value); } m_code << "leave\n"; } void IRGeneratorForStatements::endVisit(UnaryOperation const& _unaryOperation) { Type const& resultType = type(_unaryOperation); Token const op = _unaryOperation.getOperator(); if (op == Token::Delete) { solAssert(!!m_currentLValue, "LValue not retrieved."); std::visit( util::GenericVisitor{ [&](IRLValue::Storage const& _storage) { m_code << m_utils.storageSetToZeroFunction(m_currentLValue->type) << "(" << _storage.slot << ", " << _storage.offsetString() << ")\n"; m_currentLValue.reset(); }, [&](auto const&) { IRVariable zeroValue(m_context.newYulVariable(), m_currentLValue->type); define(zeroValue) << m_utils.zeroValueFunction(m_currentLValue->type) << "()\n"; writeToLValue(*m_currentLValue, zeroValue); m_currentLValue.reset(); } }, m_currentLValue->kind ); } else if (resultType.category() == Type::Category::RationalNumber) define(_unaryOperation) << formatNumber(resultType.literalValue(nullptr)) << "\n"; else if (resultType.category() == Type::Category::Integer) { solAssert(resultType == type(_unaryOperation.subExpression()), "Result type doesn't match!"); if (op == Token::Inc || op == Token::Dec) { solAssert(!!m_currentLValue, "LValue not retrieved."); IRVariable modifiedValue(m_context.newYulVariable(), resultType); IRVariable originalValue = readFromLValue(*m_currentLValue); define(modifiedValue) << (op == Token::Inc ? m_utils.incrementCheckedFunction(resultType) : m_utils.decrementCheckedFunction(resultType) ) << "(" << originalValue.name() << ")\n"; writeToLValue(*m_currentLValue, modifiedValue); m_currentLValue.reset(); define(_unaryOperation, _unaryOperation.isPrefixOperation() ? modifiedValue : originalValue); } else if (op == Token::BitNot) appendSimpleUnaryOperation(_unaryOperation, _unaryOperation.subExpression()); else if (op == Token::Add) // According to SyntaxChecker... solAssert(false, "Use of unary + is disallowed."); else if (op == Token::Sub) { IntegerType const& intType = *dynamic_cast(&resultType); define(_unaryOperation) << m_utils.negateNumberCheckedFunction(intType) << "(" << IRVariable(_unaryOperation.subExpression()).name() << ")\n"; } else solUnimplementedAssert(false, "Unary operator not yet implemented"); } else if (resultType.category() == Type::Category::Bool) { solAssert( _unaryOperation.getOperator() != Token::BitNot, "Bitwise Negation can't be done on bool!" ); appendSimpleUnaryOperation(_unaryOperation, _unaryOperation.subExpression()); } else solUnimplementedAssert(false, "Unary operator not yet implemented"); } bool IRGeneratorForStatements::visit(BinaryOperation const& _binOp) { solAssert(!!_binOp.annotation().commonType, ""); TypePointer commonType = _binOp.annotation().commonType; langutil::Token op = _binOp.getOperator(); if (op == Token::And || op == Token::Or) { // This can short-circuit! appendAndOrOperatorCode(_binOp); return false; } _binOp.leftExpression().accept(*this); _binOp.rightExpression().accept(*this); if (commonType->category() == Type::Category::RationalNumber) define(_binOp) << toCompactHexWithPrefix(commonType->literalValue(nullptr)) << "\n"; else if (TokenTraits::isCompareOp(op)) { if (auto type = dynamic_cast(commonType)) { solAssert(op == Token::Equal || op == Token::NotEqual, "Invalid function pointer comparison!"); solAssert(type->kind() != FunctionType::Kind::External, "External function comparison not allowed!"); } solAssert(commonType->isValueType(), ""); bool isSigned = false; if (auto type = dynamic_cast(commonType)) isSigned = type->isSigned(); string args = expressionAsType(_binOp.leftExpression(), *commonType) + ", " + expressionAsType(_binOp.rightExpression(), *commonType); string expr; if (op == Token::Equal) expr = "eq(" + move(args) + ")"; else if (op == Token::NotEqual) expr = "iszero(eq(" + move(args) + "))"; else if (op == Token::GreaterThanOrEqual) expr = "iszero(" + string(isSigned ? "slt(" : "lt(") + move(args) + "))"; else if (op == Token::LessThanOrEqual) expr = "iszero(" + string(isSigned ? "sgt(" : "gt(") + move(args) + "))"; else if (op == Token::GreaterThan) expr = (isSigned ? "sgt(" : "gt(") + move(args) + ")"; else if (op == Token::LessThan) expr = (isSigned ? "slt(" : "lt(") + move(args) + ")"; else solAssert(false, "Unknown comparison operator."); define(_binOp) << expr << "\n"; } else { string left = expressionAsType(_binOp.leftExpression(), *commonType); string right = expressionAsType(_binOp.rightExpression(), *commonType); define(_binOp) << binaryOperation(_binOp.getOperator(), *commonType, left, right) << "\n"; } return false; } void IRGeneratorForStatements::endVisit(FunctionCall const& _functionCall) { solUnimplementedAssert( _functionCall.annotation().kind == FunctionCallKind::FunctionCall || _functionCall.annotation().kind == FunctionCallKind::TypeConversion, "This type of function call is not yet implemented" ); Type const& funcType = type(_functionCall.expression()); if (_functionCall.annotation().kind == FunctionCallKind::TypeConversion) { solAssert(funcType.category() == Type::Category::TypeType, "Expected category to be TypeType"); solAssert(_functionCall.arguments().size() == 1, "Expected one argument for type conversion"); define(_functionCall, *_functionCall.arguments().front()); return; } FunctionTypePointer functionType = dynamic_cast(&funcType); TypePointers parameterTypes = functionType->parameterTypes(); vector> const& callArguments = _functionCall.arguments(); vector> const& callArgumentNames = _functionCall.names(); if (!functionType->takesArbitraryParameters()) solAssert(callArguments.size() == parameterTypes.size(), ""); vector> arguments; if (callArgumentNames.empty()) // normal arguments arguments = callArguments; else // named arguments for (auto const& parameterName: functionType->parameterNames()) { auto const it = std::find_if(callArgumentNames.cbegin(), callArgumentNames.cend(), [&](ASTPointer const& _argName) { return *_argName == parameterName; }); solAssert(it != callArgumentNames.cend(), ""); arguments.push_back(callArguments[std::distance(callArgumentNames.begin(), it)]); } if (auto memberAccess = dynamic_cast(&_functionCall.expression())) if (auto expressionType = dynamic_cast(memberAccess->expression().annotation().type)) if (auto contractType = dynamic_cast(expressionType->actualType())) solUnimplementedAssert( !contractType->contractDefinition().isLibrary() || functionType->kind() == FunctionType::Kind::Internal, "Only internal function calls implemented for libraries" ); solUnimplementedAssert(!functionType->bound(), ""); switch (functionType->kind()) { case FunctionType::Kind::Declaration: solAssert(false, "Attempted to generate code for calling a function definition."); break; case FunctionType::Kind::Internal: { vector args; for (unsigned i = 0; i < arguments.size(); ++i) if (functionType->takesArbitraryParameters()) args.emplace_back(IRVariable(*arguments[i]).commaSeparatedList()); else args.emplace_back(convert(*arguments[i], *parameterTypes[i]).commaSeparatedList()); optional functionDef; if (auto memberAccess = dynamic_cast(&_functionCall.expression())) { solUnimplementedAssert(!functionType->bound(), "Internal calls to bound functions are not yet implemented for libraries and not allowed for contracts"); functionDef = dynamic_cast(memberAccess->annotation().referencedDeclaration); if (functionDef.value() != nullptr) solAssert(functionType->declaration() == *memberAccess->annotation().referencedDeclaration, ""); else { solAssert(dynamic_cast(memberAccess->annotation().referencedDeclaration), ""); solAssert(!functionType->hasDeclaration(), ""); } } else if (auto identifier = dynamic_cast(&_functionCall.expression())) { solAssert(!functionType->bound(), ""); if (auto unresolvedFunctionDef = dynamic_cast(identifier->annotation().referencedDeclaration)) { functionDef = &unresolvedFunctionDef->resolveVirtual(m_context.mostDerivedContract()); solAssert(functionType->declaration() == *identifier->annotation().referencedDeclaration, ""); } else { functionDef = nullptr; solAssert(dynamic_cast(identifier->annotation().referencedDeclaration), ""); solAssert(!functionType->hasDeclaration(), ""); } } else // Not a simple expression like x or A.x functionDef = nullptr; solAssert(functionDef.has_value(), ""); solAssert(functionDef.value() == nullptr || functionDef.value()->isImplemented(), ""); if (functionDef.value() != nullptr) define(_functionCall) << m_context.enqueueFunctionForCodeGeneration(*functionDef.value()) << "(" << joinHumanReadable(args) << ")\n"; else define(_functionCall) << // NOTE: internalDispatch() takes care of adding the function to function generation queue m_context.internalDispatch( TupleType(functionType->parameterTypes()).sizeOnStack(), TupleType(functionType->returnParameterTypes()).sizeOnStack() ) << "(" << IRVariable(_functionCall.expression()).part("functionIdentifier").name() << joinHumanReadablePrefixed(args) << ")\n"; break; } case FunctionType::Kind::External: case FunctionType::Kind::DelegateCall: case FunctionType::Kind::BareCall: case FunctionType::Kind::BareDelegateCall: case FunctionType::Kind::BareStaticCall: appendExternalFunctionCall(_functionCall, arguments); break; case FunctionType::Kind::BareCallCode: solAssert(false, "Callcode has been removed."); case FunctionType::Kind::Event: { auto const& event = dynamic_cast(functionType->declaration()); TypePointers paramTypes = functionType->parameterTypes(); ABIFunctions abi(m_context.evmVersion(), m_context.revertStrings(), m_context.functionCollector()); vector indexedArgs; string nonIndexedArgs; TypePointers nonIndexedArgTypes; TypePointers nonIndexedParamTypes; if (!event.isAnonymous()) define(indexedArgs.emplace_back(m_context.newYulVariable(), *TypeProvider::uint256())) << formatNumber(u256(h256::Arith(keccak256(functionType->externalSignature())))) << "\n"; for (size_t i = 0; i < event.parameters().size(); ++i) { Expression const& arg = *arguments[i]; if (event.parameters()[i]->isIndexed()) { string value; if (auto const& referenceType = dynamic_cast(paramTypes[i])) define(indexedArgs.emplace_back(m_context.newYulVariable(), *TypeProvider::uint256())) << m_utils.packedHashFunction({arg.annotation().type}, {referenceType}) << "(" << IRVariable(arg).commaSeparatedList() << ")"; else indexedArgs.emplace_back(convert(arg, *paramTypes[i])); } else { string vars = IRVariable(arg).commaSeparatedList(); if (!vars.empty()) // In reverse because abi_encode expects it like that. nonIndexedArgs = ", " + move(vars) + nonIndexedArgs; nonIndexedArgTypes.push_back(arg.annotation().type); nonIndexedParamTypes.push_back(paramTypes[i]); } } solAssert(indexedArgs.size() <= 4, "Too many indexed arguments."); Whiskers templ(R"({ let := let := ( ) (, sub(, ) ) })"); templ("pos", m_context.newYulVariable()); templ("end", m_context.newYulVariable()); templ("freeMemory", freeMemory()); templ("encode", abi.tupleEncoder(nonIndexedArgTypes, nonIndexedParamTypes)); templ("nonIndexedArgs", nonIndexedArgs); templ("log", "log" + to_string(indexedArgs.size())); templ("indexedArgs", joinHumanReadablePrefixed(indexedArgs | boost::adaptors::transformed([&](auto const& _arg) { return _arg.commaSeparatedList(); }))); m_code << templ.render(); break; } case FunctionType::Kind::Assert: case FunctionType::Kind::Require: { solAssert(arguments.size() > 0, "Expected at least one parameter for require/assert"); solAssert(arguments.size() <= 2, "Expected no more than two parameters for require/assert"); Type const* messageArgumentType = arguments.size() > 1 ? arguments[1]->annotation().type : nullptr; string requireOrAssertFunction = m_utils.requireOrAssertFunction( functionType->kind() == FunctionType::Kind::Assert, messageArgumentType ); m_code << move(requireOrAssertFunction) << "(" << IRVariable(*arguments[0]).name(); if (messageArgumentType && messageArgumentType->sizeOnStack() > 0) m_code << ", " << IRVariable(*arguments[1]).commaSeparatedList(); m_code << ")\n"; break; } // Array creation using new case FunctionType::Kind::ObjectCreation: { ArrayType const& arrayType = dynamic_cast(*_functionCall.annotation().type); solAssert(arguments.size() == 1, ""); IRVariable value = convert(*arguments[0], *TypeProvider::uint256()); define(_functionCall) << m_utils.allocateAndInitializeMemoryArrayFunction(arrayType) << "(" << value.commaSeparatedList() << ")\n"; break; } case FunctionType::Kind::KECCAK256: { solAssert(arguments.size() == 1, ""); ArrayType const* arrayType = TypeProvider::bytesMemory(); auto array = convert(*arguments[0], *arrayType); define(_functionCall) << "keccak256(" << m_utils.arrayDataAreaFunction(*arrayType) << "(" << array.commaSeparatedList() << "), " << m_utils.arrayLengthFunction(*arrayType) << "(" << array.commaSeparatedList() << "))\n"; break; } case FunctionType::Kind::ECRecover: case FunctionType::Kind::SHA256: case FunctionType::Kind::RIPEMD160: { solAssert(!_functionCall.annotation().tryCall, ""); appendExternalFunctionCall(_functionCall, arguments); break; } case FunctionType::Kind::ArrayPop: { auto const& memberAccessExpression = dynamic_cast(_functionCall.expression()).expression(); ArrayType const& arrayType = dynamic_cast(*memberAccessExpression.annotation().type); define(_functionCall) << m_utils.storageArrayPopFunction(arrayType) << "(" << IRVariable(_functionCall.expression()).commaSeparatedList() << ")\n"; break; } case FunctionType::Kind::ArrayPush: { auto const& memberAccessExpression = dynamic_cast(_functionCall.expression()).expression(); ArrayType const& arrayType = dynamic_cast(*memberAccessExpression.annotation().type); if (arguments.empty()) { auto slotName = m_context.newYulVariable(); auto offsetName = m_context.newYulVariable(); m_code << "let " << slotName << ", " << offsetName << " := " << m_utils.storageArrayPushZeroFunction(arrayType) << "(" << IRVariable(_functionCall.expression()).commaSeparatedList() << ")\n"; setLValue(_functionCall, IRLValue{ *arrayType.baseType(), IRLValue::Storage{ slotName, offsetName, } }); } else { IRVariable argument = convert(*arguments.front(), *arrayType.baseType()); m_code << m_utils.storageArrayPushFunction(arrayType) << "(" << IRVariable(_functionCall.expression()).commaSeparatedList() << ", " << argument.commaSeparatedList() << ")\n"; } break; } case FunctionType::Kind::MetaType: { break; } case FunctionType::Kind::GasLeft: { define(_functionCall) << "gas()\n"; break; } case FunctionType::Kind::Selfdestruct: { solAssert(arguments.size() == 1, ""); define(_functionCall) << "selfdestruct(" << expressionAsType(*arguments.front(), *parameterTypes.front()) << ")\n"; break; } case FunctionType::Kind::Log0: case FunctionType::Kind::Log1: case FunctionType::Kind::Log2: case FunctionType::Kind::Log3: case FunctionType::Kind::Log4: { unsigned logNumber = int(functionType->kind()) - int(FunctionType::Kind::Log0); solAssert(arguments.size() == logNumber + 1, ""); ABIFunctions abi(m_context.evmVersion(), m_context.revertStrings(), m_context.functionCollector()); string indexedArgs; for (unsigned arg = 0; arg < logNumber; ++arg) indexedArgs += ", " + expressionAsType(*arguments[arg + 1], *(parameterTypes[arg + 1])); Whiskers templ(R"({ let := let := (, ) (, sub(, ) ) })"); templ("pos", m_context.newYulVariable()); templ("end", m_context.newYulVariable()); templ("freeMemory", freeMemory()); templ("encode", abi.tupleEncoder({arguments.front()->annotation().type}, {parameterTypes.front()})); templ("nonIndexedArgs", IRVariable(*arguments.front()).commaSeparatedList()); templ("log", "log" + to_string(logNumber)); templ("indexedArgs", indexedArgs); m_code << templ.render(); break; } case FunctionType::Kind::Creation: { solAssert(!functionType->gasSet(), "Gas limit set for contract creation."); solAssert( functionType->returnParameterTypes().size() == 1, "Constructor should return only one type" ); TypePointers argumentTypes; string constructorParams; for (ASTPointer const& arg: arguments) { argumentTypes.push_back(arg->annotation().type); constructorParams += ", " + IRVariable{*arg}.commaSeparatedList(); } ContractDefinition const* contract = &dynamic_cast(*functionType->returnParameterTypes().front()).contractDefinition(); m_context.subObjectsCreated().insert(contract); Whiskers t(R"( let := () let := add(, datasize("")) if or(gt(, 0xffffffffffffffff), lt(, )) { revert(0, 0) } datacopy(, dataoffset(""), datasize("")) := () let := create2(, , sub(, ), ) let := create(, , sub(, )) () )"); t("memPos", m_context.newYulVariable()); t("memEnd", m_context.newYulVariable()); t("allocateTemporaryMemory", m_utils.allocationTemporaryMemoryFunction()); t("releaseTemporaryMemory", m_utils.releaseTemporaryMemoryFunction()); t("object", m_context.creationObjectName(*contract)); t("abiEncode", m_context.abiFunctions().tupleEncoder(argumentTypes, functionType->parameterTypes(),false) ); t("constructorParams", constructorParams); t("value", functionType->valueSet() ? IRVariable(_functionCall.expression()).part("value").name() : "0"); t("saltSet", functionType->saltSet()); if (functionType->saltSet()) t("salt", IRVariable(_functionCall.expression()).part("salt").name()); t("retVars", IRVariable(_functionCall).commaSeparatedList()); m_code << t.render(); break; } default: solUnimplemented("FunctionKind " + toString(static_cast(functionType->kind())) + " not yet implemented"); } } void IRGeneratorForStatements::endVisit(FunctionCallOptions const& _options) { FunctionType const& previousType = dynamic_cast(*_options.expression().annotation().type); solUnimplementedAssert(!previousType.bound(), ""); // Copy over existing values. for (auto const& item: previousType.stackItems()) define(IRVariable(_options).part(get<0>(item)), IRVariable(_options.expression()).part(get<0>(item))); for (size_t i = 0; i < _options.names().size(); ++i) { string const& name = *_options.names()[i]; solAssert(name == "salt" || name == "gas" || name == "value", ""); define(IRVariable(_options).part(name), *_options.options()[i]); } } void IRGeneratorForStatements::endVisit(MemberAccess const& _memberAccess) { ASTString const& member = _memberAccess.memberName(); if (auto funType = dynamic_cast(_memberAccess.annotation().type)) if (funType->bound()) { solUnimplementedAssert(false, ""); } switch (_memberAccess.expression().annotation().type->category()) { case Type::Category::Contract: { ContractType const& type = dynamic_cast(*_memberAccess.expression().annotation().type); if (type.isSuper()) { solUnimplementedAssert(false, ""); } // ordinary contract type else if (Declaration const* declaration = _memberAccess.annotation().referencedDeclaration) { u256 identifier; if (auto const* variable = dynamic_cast(declaration)) identifier = FunctionType(*variable).externalIdentifier(); else if (auto const* function = dynamic_cast(declaration)) identifier = FunctionType(*function).externalIdentifier(); else solAssert(false, "Contract member is neither variable nor function."); define(IRVariable(_memberAccess).part("address"), _memberAccess.expression()); define(IRVariable(_memberAccess).part("functionIdentifier")) << formatNumber(identifier) << "\n"; } else solAssert(false, "Invalid member access in contract"); break; } case Type::Category::Integer: { solAssert(false, "Invalid member access to integer"); break; } case Type::Category::Address: { if (member == "balance") define(_memberAccess) << "balance(" << expressionAsType(_memberAccess.expression(), *TypeProvider::address()) << ")\n"; else if (set{"send", "transfer"}.count(member)) { solAssert(dynamic_cast(*_memberAccess.expression().annotation().type).stateMutability() == StateMutability::Payable, ""); define(IRVariable{_memberAccess}.part("address"), _memberAccess.expression()); } else if (set{"call", "callcode", "delegatecall", "staticcall"}.count(member)) define(IRVariable{_memberAccess}.part("address"), _memberAccess.expression()); else solAssert(false, "Invalid member access to address"); break; } case Type::Category::Function: if (member == "selector") { FunctionType const& functionType = dynamic_cast( *_memberAccess.expression().annotation().type ); if (functionType.kind() == FunctionType::Kind::External) define(IRVariable{_memberAccess}, IRVariable(_memberAccess.expression()).part("functionIdentifier")); else if (functionType.kind() == FunctionType::Kind::Declaration) { solAssert(functionType.hasDeclaration(), ""); define(IRVariable{_memberAccess}) << formatNumber(functionType.externalIdentifier() << 224) << "\n"; } else solAssert(false, "Invalid use of .selector"); } else if (member == "address") { solUnimplementedAssert( dynamic_cast(*_memberAccess.expression().annotation().type).kind() == FunctionType::Kind::External, "" ); define(IRVariable{_memberAccess}, IRVariable(_memberAccess.expression()).part("address")); } else solAssert( !!_memberAccess.expression().annotation().type->memberType(member), "Invalid member access to function." ); break; case Type::Category::Magic: // we can ignore the kind of magic and only look at the name of the member if (member == "coinbase") define(_memberAccess) << "coinbase()\n"; else if (member == "timestamp") define(_memberAccess) << "timestamp()\n"; else if (member == "difficulty") define(_memberAccess) << "difficulty()\n"; else if (member == "number") define(_memberAccess) << "number()\n"; else if (member == "gaslimit") define(_memberAccess) << "gaslimit()\n"; else if (member == "sender") define(_memberAccess) << "caller()\n"; else if (member == "value") define(_memberAccess) << "callvalue()\n"; else if (member == "origin") define(_memberAccess) << "origin()\n"; else if (member == "gasprice") define(_memberAccess) << "gasprice()\n"; else if (member == "data") { IRVariable var(_memberAccess); declare(var); define(var.part("offset")) << "0\n"; define(var.part("length")) << "calldatasize()\n"; } else if (member == "sig") define(_memberAccess) << "and(calldataload(0), " << formatNumber(u256(0xffffffff) << (256 - 32)) << ")\n"; else if (member == "gas") solAssert(false, "Gas has been removed."); else if (member == "blockhash") solAssert(false, "Blockhash has been removed."); else if (member == "creationCode" || member == "runtimeCode") { solUnimplementedAssert(false, ""); } else if (member == "name") { solUnimplementedAssert(false, ""); } else if (member == "interfaceId") { TypePointer arg = dynamic_cast(*_memberAccess.expression().annotation().type).typeArgument(); ContractDefinition const& contract = dynamic_cast(*arg).contractDefinition(); uint64_t result{0}; for (auto const& function: contract.interfaceFunctionList(false)) result ^= fromBigEndian(function.first.ref()); define(_memberAccess) << formatNumber(u256{result} << (256 - 32)) << "\n"; } else if (set{"encode", "encodePacked", "encodeWithSelector", "encodeWithSignature", "decode"}.count(member)) { // no-op } else solAssert(false, "Unknown magic member."); break; case Type::Category::Struct: { solUnimplementedAssert(false, ""); } case Type::Category::Enum: { EnumType const& type = dynamic_cast(*_memberAccess.expression().annotation().type); define(_memberAccess) << to_string(type.memberValue(_memberAccess.memberName())) << "\n"; break; } case Type::Category::Array: { auto const& type = dynamic_cast(*_memberAccess.expression().annotation().type); if (member == "length") { if (!type.isDynamicallySized()) define(_memberAccess) << type.length() << "\n"; else switch (type.location()) { case DataLocation::CallData: define(_memberAccess, IRVariable(_memberAccess.expression()).part("length")); break; case DataLocation::Storage: { define(_memberAccess) << m_utils.arrayLengthFunction(type) << "(" << IRVariable(_memberAccess.expression()).commaSeparatedList() << ")\n"; break; } case DataLocation::Memory: define(_memberAccess) << "mload(" << IRVariable(_memberAccess.expression()).commaSeparatedList() << ")\n"; break; } } else if (member == "pop" || member == "push") { solAssert(type.location() == DataLocation::Storage, ""); define(IRVariable{_memberAccess}.part("slot"), IRVariable{_memberAccess.expression()}.part("slot")); } else solAssert(false, "Invalid array member access."); break; } case Type::Category::FixedBytes: { auto const& type = dynamic_cast(*_memberAccess.expression().annotation().type); if (member == "length") define(_memberAccess) << to_string(type.numBytes()) << "\n"; else solAssert(false, "Illegal fixed bytes member."); break; } case Type::Category::TypeType: { Type const& actualType = *dynamic_cast( *_memberAccess.expression().annotation().type ).actualType(); if (actualType.category() == Type::Category::Contract) { if (auto const* variable = dynamic_cast(_memberAccess.annotation().referencedDeclaration)) handleVariableReference(*variable, _memberAccess); else if (auto const* funType = dynamic_cast(_memberAccess.annotation().type)) { switch (funType->kind()) { case FunctionType::Kind::Declaration: break; case FunctionType::Kind::Internal: if (auto const* function = dynamic_cast(_memberAccess.annotation().referencedDeclaration)) define(_memberAccess) << to_string(function->id()) << "\n"; else solAssert(false, "Function not found in member access"); break; case FunctionType::Kind::Event: solAssert( dynamic_cast(_memberAccess.annotation().referencedDeclaration), "Event not found" ); // the call will do the resolving break; case FunctionType::Kind::DelegateCall: define(IRVariable(_memberAccess).part("address"), _memberAccess.expression()); define(IRVariable(_memberAccess).part("functionIdentifier")) << formatNumber(funType->externalIdentifier()) << "\n"; break; case FunctionType::Kind::External: case FunctionType::Kind::Creation: case FunctionType::Kind::Send: case FunctionType::Kind::BareCall: case FunctionType::Kind::BareCallCode: case FunctionType::Kind::BareDelegateCall: case FunctionType::Kind::BareStaticCall: case FunctionType::Kind::Transfer: case FunctionType::Kind::Log0: case FunctionType::Kind::Log1: case FunctionType::Kind::Log2: case FunctionType::Kind::Log3: case FunctionType::Kind::Log4: case FunctionType::Kind::ECRecover: case FunctionType::Kind::SHA256: case FunctionType::Kind::RIPEMD160: default: solAssert(false, "unsupported member function"); } } else if (dynamic_cast(_memberAccess.annotation().type)) { // no-op } else // The old code generator had a generic "else" case here // without any specific code being generated, // but it would still be better to have an exhaustive list. solAssert(false, ""); } else if (EnumType const* enumType = dynamic_cast(&actualType)) define(_memberAccess) << to_string(enumType->memberValue(_memberAccess.memberName())) << "\n"; else // The old code generator had a generic "else" case here // without any specific code being generated, // but it would still be better to have an exhaustive list. solAssert(false, ""); break; } default: solAssert(false, "Member access to unknown type."); } } bool IRGeneratorForStatements::visit(InlineAssembly const& _inlineAsm) { CopyTranslate bodyCopier{_inlineAsm.dialect(), m_context, _inlineAsm.annotation().externalReferences}; yul::Statement modified = bodyCopier(_inlineAsm.operations()); solAssert(holds_alternative(modified), ""); // Do not provide dialect so that we get the full type information. m_code << yul::AsmPrinter()(std::get(modified)) << "\n"; return false; } void IRGeneratorForStatements::endVisit(IndexAccess const& _indexAccess) { Type const& baseType = *_indexAccess.baseExpression().annotation().type; if (baseType.category() == Type::Category::Mapping) { solAssert(_indexAccess.indexExpression(), "Index expression expected."); MappingType const& mappingType = dynamic_cast(baseType); Type const& keyType = *_indexAccess.indexExpression()->annotation().type; solAssert(keyType.sizeOnStack() <= 1, ""); string slot = m_context.newYulVariable(); Whiskers templ("let := ( )\n"); templ("slot", slot); templ("indexAccess", m_utils.mappingIndexAccessFunction(mappingType, keyType)); templ("base", IRVariable(_indexAccess.baseExpression()).commaSeparatedList()); if (keyType.sizeOnStack() == 0) templ("key", ""); else templ("key", ", " + IRVariable(*_indexAccess.indexExpression()).commaSeparatedList()); m_code << templ.render(); setLValue(_indexAccess, IRLValue{ *_indexAccess.annotation().type, IRLValue::Storage{ slot, 0u } }); } else if (baseType.category() == Type::Category::Array || baseType.category() == Type::Category::ArraySlice) { ArrayType const& arrayType = baseType.category() == Type::Category::Array ? dynamic_cast(baseType) : dynamic_cast(baseType).arrayType(); if (baseType.category() == Type::Category::ArraySlice) solAssert(arrayType.dataStoredIn(DataLocation::CallData) && arrayType.isDynamicallySized(), ""); solAssert(_indexAccess.indexExpression(), "Index expression expected."); switch (arrayType.location()) { case DataLocation::Storage: { string slot = m_context.newYulVariable(); string offset = m_context.newYulVariable(); m_code << Whiskers(R"( let , := (, ) )") ("slot", slot) ("offset", offset) ("indexFunc", m_utils.storageArrayIndexAccessFunction(arrayType)) ("array", IRVariable(_indexAccess.baseExpression()).part("slot").name()) ("index", IRVariable(*_indexAccess.indexExpression()).name()) .render(); setLValue(_indexAccess, IRLValue{ *_indexAccess.annotation().type, IRLValue::Storage{slot, offset} }); break; } case DataLocation::Memory: { string const memAddress = m_utils.memoryArrayIndexAccessFunction(arrayType) + "(" + IRVariable(_indexAccess.baseExpression()).part("mpos").name() + ", " + expressionAsType(*_indexAccess.indexExpression(), *TypeProvider::uint256()) + ")"; setLValue(_indexAccess, IRLValue{ *arrayType.baseType(), IRLValue::Memory{memAddress} }); break; } case DataLocation::CallData: { IRVariable var(m_context.newYulVariable(), *arrayType.baseType()); define(var) << m_utils.calldataArrayIndexAccessFunction(arrayType) << "(" << IRVariable(_indexAccess.baseExpression()).commaSeparatedList() << ", " << expressionAsType(*_indexAccess.indexExpression(), *TypeProvider::uint256()) << ")\n"; if (arrayType.isByteArray()) define(_indexAccess) << m_utils.cleanupFunction(*arrayType.baseType()) << "(calldataload(" << var.name() << "))\n"; else if (arrayType.baseType()->isValueType()) define(_indexAccess) << m_utils.readFromCalldata(*arrayType.baseType()) << "(" << var.commaSeparatedList() << ")\n"; else define(_indexAccess, var); break; } } } else if (baseType.category() == Type::Category::FixedBytes) solUnimplementedAssert(false, ""); else if (baseType.category() == Type::Category::TypeType) { solAssert(baseType.sizeOnStack() == 0, ""); solAssert(_indexAccess.annotation().type->sizeOnStack() == 0, ""); // no-op - this seems to be a lone array type (`structType[];`) } else solAssert(false, "Index access only allowed for mappings or arrays."); } void IRGeneratorForStatements::endVisit(IndexRangeAccess const& _indexRangeAccess) { Type const& baseType = *_indexRangeAccess.baseExpression().annotation().type; solAssert( baseType.category() == Type::Category::Array || baseType.category() == Type::Category::ArraySlice, "Index range accesses is available only on arrays and array slices." ); ArrayType const& arrayType = baseType.category() == Type::Category::Array ? dynamic_cast(baseType) : dynamic_cast(baseType).arrayType(); switch (arrayType.location()) { case DataLocation::CallData: { solAssert(baseType.isDynamicallySized(), ""); IRVariable sliceStart{m_context.newYulVariable(), *TypeProvider::uint256()}; if (_indexRangeAccess.startExpression()) define(sliceStart, IRVariable{*_indexRangeAccess.startExpression()}); else define(sliceStart) << u256(0) << "\n"; IRVariable sliceEnd{ m_context.newYulVariable(), *TypeProvider::uint256() }; if (_indexRangeAccess.endExpression()) define(sliceEnd, IRVariable{*_indexRangeAccess.endExpression()}); else define(sliceEnd, IRVariable{_indexRangeAccess.baseExpression()}.part("length")); IRVariable range{_indexRangeAccess}; define(range) << m_utils.calldataArrayIndexRangeAccess(arrayType) << "(" << IRVariable{_indexRangeAccess.baseExpression()}.commaSeparatedList() << ", " << sliceStart.name() << ", " << sliceEnd.name() << ")\n"; break; } default: solUnimplementedAssert(false, "Index range accesses is implemented only on calldata arrays."); } } void IRGeneratorForStatements::endVisit(Identifier const& _identifier) { Declaration const* declaration = _identifier.annotation().referencedDeclaration; if (MagicVariableDeclaration const* magicVar = dynamic_cast(declaration)) { switch (magicVar->type()->category()) { case Type::Category::Contract: if (dynamic_cast(*magicVar->type()).isSuper()) solAssert(_identifier.name() == "super", ""); else { solAssert(_identifier.name() == "this", ""); define(_identifier) << "address()\n"; } break; case Type::Category::Integer: solAssert(_identifier.name() == "now", ""); define(_identifier) << "timestamp()\n"; break; default: break; } return; } else if (FunctionDefinition const* functionDef = dynamic_cast(declaration)) define(_identifier) << to_string(functionDef->resolveVirtual(m_context.mostDerivedContract()).id()) << "\n"; else if (VariableDeclaration const* varDecl = dynamic_cast(declaration)) handleVariableReference(*varDecl, _identifier); else if (dynamic_cast(declaration)) { // no-op } else if (dynamic_cast(declaration)) { // no-op } else if (dynamic_cast(declaration)) { // no-op } else if (dynamic_cast(declaration)) { // no-op } else { solAssert(false, "Identifier type not expected in expression context."); } } bool IRGeneratorForStatements::visit(Literal const& _literal) { Type const& literalType = type(_literal); switch (literalType.category()) { case Type::Category::RationalNumber: case Type::Category::Bool: case Type::Category::Address: define(_literal) << toCompactHexWithPrefix(literalType.literalValue(&_literal)) << "\n"; break; case Type::Category::StringLiteral: break; // will be done during conversion default: solUnimplemented("Only integer, boolean and string literals implemented for now."); } return false; } void IRGeneratorForStatements::handleVariableReference( VariableDeclaration const& _variable, Expression const& _referencingExpression ) { // TODO for the constant case, we have to be careful: // If the value is visited twice, `defineExpression` is called twice on // the same expression. solUnimplementedAssert(!_variable.isConstant(), ""); solUnimplementedAssert(!_variable.immutable(), ""); if (m_context.isLocalVariable(_variable)) setLValue(_referencingExpression, IRLValue{ *_variable.annotation().type, IRLValue::Stack{m_context.localVariable(_variable)} }); else if (m_context.isStateVariable(_variable)) setLValue(_referencingExpression, IRLValue{ *_variable.annotation().type, IRLValue::Storage{ toCompactHexWithPrefix(m_context.storageLocationOfVariable(_variable).first), m_context.storageLocationOfVariable(_variable).second } }); else solAssert(false, "Invalid variable kind."); } void IRGeneratorForStatements::appendExternalFunctionCall( FunctionCall const& _functionCall, vector> const& _arguments ) { FunctionType const& funType = dynamic_cast(type(_functionCall.expression())); solAssert( funType.takesArbitraryParameters() || _arguments.size() == funType.parameterTypes().size(), "" ); solUnimplementedAssert(!funType.bound(), ""); FunctionType::Kind const funKind = funType.kind(); solAssert(funKind != FunctionType::Kind::BareStaticCall || m_context.evmVersion().hasStaticCall(), ""); solAssert(funKind != FunctionType::Kind::BareCallCode, "Callcode has been removed."); bool const isDelegateCall = funKind == FunctionType::Kind::BareDelegateCall || funKind == FunctionType::Kind::DelegateCall; bool const useStaticCall = funKind == FunctionType::Kind::BareStaticCall || (funType.stateMutability() <= StateMutability::View && m_context.evmVersion().hasStaticCall()); ReturnInfo const returnInfo{m_context.evmVersion(), funType}; TypePointers argumentTypes; vector argumentStrings; for (auto const& arg: _arguments) { argumentTypes.emplace_back(&type(*arg)); if (IRVariable(*arg).type().sizeOnStack() > 0) argumentStrings.emplace_back(IRVariable(*arg).commaSeparatedList()); } string argumentString = argumentStrings.empty() ? ""s : (", " + joinHumanReadable(argumentStrings)); solUnimplementedAssert(funKind != FunctionType::Kind::ECRecover, ""); if (!m_context.evmVersion().canOverchargeGasForCall()) { // Touch the end of the output area so that we do not pay for memory resize during the call // (which we would have to subtract from the gas left) // We could also just use MLOAD; POP right before the gas calculation, but the optimizer // would remove that, so we use MSTORE here. if (!funType.gasSet() && returnInfo.estimatedReturnSize > 0) m_code << "mstore(add(" << freeMemory() << ", " << to_string(returnInfo.estimatedReturnSize) << "), 0)\n"; } ABIFunctions abi(m_context.evmVersion(), m_context.revertStrings(), m_context.functionCollector()); Whiskers templ(R"( if iszero(extcodesize(
)) { revert(0, 0) } // storage for arguments and returned data let := mstore(, ()) let := ( add(, 4) ) let := (,
, , , sub(, ), , ) if iszero() { () } let if { // copy dynamic return data out returndatacopy(, 0, returndatasize()) // update freeMemoryPointer according to dynamic return size mstore(, add(, ())) // decode return parameters from external try-call into retVars := (, add(, )) } )"); templ("pos", m_context.newYulVariable()); templ("end", m_context.newYulVariable()); templ("bareCall", funType.isBareCall()); if (_functionCall.annotation().tryCall) templ("success", m_context.trySuccessConditionVariable(_functionCall)); else templ("success", m_context.newYulVariable()); templ("freeMemory", freeMemory()); templ("shl28", m_utils.shiftLeftFunction(8 * (32 - 4))); if (!funType.isBareCall()) templ("funId", IRVariable(_functionCall.expression()).part("functionIdentifier").name()); if (funKind == FunctionType::Kind::ECRecover) templ("address", "1"); else if (funKind == FunctionType::Kind::SHA256) templ("address", "2"); else if (funKind == FunctionType::Kind::RIPEMD160) templ("address", "3"); else templ("address", IRVariable(_functionCall.expression()).part("address").name()); // Always use the actual return length, and not our calculated expected length, if returndatacopy is supported. // This ensures it can catch badly formatted input from external calls. if (m_context.evmVersion().supportsReturndata()) templ("returnSize", "returndatasize()"); else templ("returnSize", to_string(returnInfo.estimatedReturnSize)); templ("reservedReturnSize", returnInfo.dynamicReturnSize ? "0" : to_string(returnInfo.estimatedReturnSize)); string const retVars = IRVariable(_functionCall).commaSeparatedList(); templ("retVars", retVars); templ("hasRetVars", !retVars.empty()); solAssert(retVars.empty() == returnInfo.returnTypes.empty(), ""); templ("roundUp", m_utils.roundUpFunction()); templ("abiDecode", abi.tupleDecoder(returnInfo.returnTypes, true)); templ("dynamicReturnSize", returnInfo.dynamicReturnSize); templ("freeMemoryPointer", to_string(CompilerUtils::freeMemoryPointer)); templ("noTryCall", !_functionCall.annotation().tryCall); // If the function takes arbitrary parameters or is a bare call, copy dynamic length data in place. // Move arguments to memory, will not update the free memory pointer (but will update the memory // pointer on the stack). bool encodeInPlace = funType.takesArbitraryParameters() || funType.isBareCall(); if (funType.kind() == FunctionType::Kind::ECRecover) // This would be the only combination of padding and in-place encoding, // but all parameters of ecrecover are value types anyway. encodeInPlace = false; bool encodeForLibraryCall = funKind == FunctionType::Kind::DelegateCall; solUnimplementedAssert(encodeInPlace == !funType.padArguments(), ""); if (encodeInPlace) { solUnimplementedAssert(!encodeForLibraryCall, ""); templ("encodeArgs", abi.tupleEncoderPacked(argumentTypes, funType.parameterTypes())); } else templ("encodeArgs", abi.tupleEncoder(argumentTypes, funType.parameterTypes(), encodeForLibraryCall)); templ("argumentString", argumentString); // Output data will replace input data, unless we have ECRecover (then, output // area will be 32 bytes just before input area). solUnimplementedAssert(funKind != FunctionType::Kind::ECRecover, ""); solAssert(!isDelegateCall || !funType.valueSet(), "Value set for delegatecall"); solAssert(!useStaticCall || !funType.valueSet(), "Value set for staticcall"); templ("hasValue", !isDelegateCall && !useStaticCall); templ("value", funType.valueSet() ? IRVariable(_functionCall.expression()).part("value").name() : "0"); // Check that the target contract exists (has code) for non-low-level calls. bool checkExistence = (funKind == FunctionType::Kind::External || funKind == FunctionType::Kind::DelegateCall); templ("checkExistence", checkExistence); if (funType.gasSet()) templ("gas", IRVariable(_functionCall.expression()).part("gas").name()); else if (m_context.evmVersion().canOverchargeGasForCall()) // Send all gas (requires tangerine whistle EVM) templ("gas", "gas()"); else { // send all gas except the amount needed to execute "SUB" and "CALL" // @todo this retains too much gas for now, needs to be fine-tuned. u256 gasNeededByCaller = evmasm::GasCosts::callGas(m_context.evmVersion()) + 10; if (funType.valueSet()) gasNeededByCaller += evmasm::GasCosts::callValueTransferGas; if (!checkExistence) gasNeededByCaller += evmasm::GasCosts::callNewAccountGas; // we never know templ("gas", "sub(gas(), " + formatNumber(gasNeededByCaller) + ")"); } // Order is important here, STATICCALL might overlap with DELEGATECALL. if (isDelegateCall) templ("call", "delegatecall"); else if (useStaticCall) templ("call", "staticcall"); else templ("call", "call"); templ("forwardingRevert", m_utils.forwardingRevertFunction()); solUnimplementedAssert(funKind != FunctionType::Kind::RIPEMD160, ""); solUnimplementedAssert(funKind != FunctionType::Kind::ECRecover, ""); m_code << templ.render(); } string IRGeneratorForStatements::freeMemory() { return "mload(" + to_string(CompilerUtils::freeMemoryPointer) + ")"; } IRVariable IRGeneratorForStatements::convert(IRVariable const& _from, Type const& _to) { if (_from.type() == _to) return _from; else { IRVariable converted(m_context.newYulVariable(), _to); define(converted, _from); return converted; } } std::string IRGeneratorForStatements::expressionAsType(Expression const& _expression, Type const& _to) { IRVariable from(_expression); if (from.type() == _to) return from.commaSeparatedList(); else return m_utils.conversionFunction(from.type(), _to) + "(" + from.commaSeparatedList() + ")"; } std::ostream& IRGeneratorForStatements::define(IRVariable const& _var) { if (_var.type().sizeOnStack() > 0) m_code << "let " << _var.commaSeparatedList() << " := "; return m_code; } void IRGeneratorForStatements::declare(IRVariable const& _var) { if (_var.type().sizeOnStack() > 0) m_code << "let " << _var.commaSeparatedList() << "\n"; } void IRGeneratorForStatements::declareAssign(IRVariable const& _lhs, IRVariable const& _rhs, bool _declare) { string output; if (_lhs.type() == _rhs.type()) for (auto const& [stackItemName, stackItemType]: _lhs.type().stackItems()) if (stackItemType) declareAssign(_lhs.part(stackItemName), _rhs.part(stackItemName), _declare); else m_code << (_declare ? "let ": "") << _lhs.part(stackItemName).name() << " := " << _rhs.part(stackItemName).name() << "\n"; else { if (_lhs.type().sizeOnStack() > 0) m_code << (_declare ? "let ": "") << _lhs.commaSeparatedList() << " := "; m_code << m_context.utils().conversionFunction(_rhs.type(), _lhs.type()) << "(" << _rhs.commaSeparatedList() << ")\n"; } } IRVariable IRGeneratorForStatements::zeroValue(Type const& _type, bool _splitFunctionTypes) { IRVariable irVar{ "zero_value_for_type_" + _type.identifier() + m_context.newYulVariable(), _type }; define(irVar) << m_utils.zeroValueFunction(_type, _splitFunctionTypes) << "()\n"; return irVar; } void IRGeneratorForStatements::appendSimpleUnaryOperation(UnaryOperation const& _operation, Expression const& _expr) { string func; if (_operation.getOperator() == Token::Not) func = "iszero"; else if (_operation.getOperator() == Token::BitNot) func = "not"; else solAssert(false, "Invalid Token!"); define(_operation) << m_utils.cleanupFunction(type(_expr)) << "(" << func << "(" << IRVariable(_expr).commaSeparatedList() << ")" << ")\n"; } string IRGeneratorForStatements::binaryOperation( langutil::Token _operator, Type const& _type, string const& _left, string const& _right ) { if (IntegerType const* type = dynamic_cast(&_type)) { string fun; // TODO: Implement all operations for signed and unsigned types. switch (_operator) { case Token::Add: fun = m_utils.overflowCheckedIntAddFunction(*type); break; case Token::Sub: fun = m_utils.overflowCheckedIntSubFunction(*type); break; case Token::Mul: fun = m_utils.overflowCheckedIntMulFunction(*type); break; case Token::Div: fun = m_utils.overflowCheckedIntDivFunction(*type); break; case Token::Mod: fun = m_utils.checkedIntModFunction(*type); break; case Token::BitOr: fun = "or"; break; case Token::BitXor: fun = "xor"; break; case Token::BitAnd: fun = "and"; break; default: break; } solUnimplementedAssert(!fun.empty(), ""); return fun + "(" + _left + ", " + _right + ")\n"; } else solUnimplementedAssert(false, ""); return {}; } void IRGeneratorForStatements::appendAndOrOperatorCode(BinaryOperation const& _binOp) { langutil::Token const op = _binOp.getOperator(); solAssert(op == Token::Or || op == Token::And, ""); _binOp.leftExpression().accept(*this); IRVariable value(_binOp); define(value, _binOp.leftExpression()); if (op == Token::Or) m_code << "if iszero(" << value.name() << ") {\n"; else m_code << "if " << value.name() << " {\n"; _binOp.rightExpression().accept(*this); assign(value, _binOp.rightExpression()); m_code << "}\n"; } void IRGeneratorForStatements::writeToLValue(IRLValue const& _lvalue, IRVariable const& _value) { std::visit( util::GenericVisitor{ [&](IRLValue::Storage const& _storage) { std::optional offset; if (std::holds_alternative(_storage.offset)) offset = std::get(_storage.offset); m_code << m_utils.updateStorageValueFunction(_lvalue.type, offset) << "(" << _storage.slot << ( std::holds_alternative(_storage.offset) ? (", " + std::get(_storage.offset)) : "" ) << _value.commaSeparatedListPrefixed() << ")\n"; }, [&](IRLValue::Memory const& _memory) { if (_lvalue.type.isValueType()) { IRVariable prepared(m_context.newYulVariable(), _lvalue.type); define(prepared, _value); if (_memory.byteArrayElement) { solAssert(_lvalue.type == *TypeProvider::byte(), ""); m_code << "mstore8(" + _memory.address + ", byte(0, " + prepared.commaSeparatedList() + "))\n"; } else m_code << m_utils.writeToMemoryFunction(_lvalue.type) << "(" << _memory.address << ", " << prepared.commaSeparatedList() << ")\n"; } else { solAssert(_lvalue.type.sizeOnStack() == 1, ""); solAssert(dynamic_cast(&_lvalue.type), ""); auto const* valueReferenceType = dynamic_cast(&_value.type()); solAssert(valueReferenceType && valueReferenceType->dataStoredIn(DataLocation::Memory), ""); m_code << "mstore(" + _memory.address + ", " + _value.part("mpos").name() + ")\n"; } }, [&](IRLValue::Stack const& _stack) { assign(_stack.variable, _value); }, [&](IRLValue::Tuple const& _tuple) { auto components = std::move(_tuple.components); for (size_t i = 0; i < components.size(); i++) { size_t idx = components.size() - i - 1; if (components[idx]) writeToLValue(*components[idx], _value.tupleComponent(idx)); } } }, _lvalue.kind ); } IRVariable IRGeneratorForStatements::readFromLValue(IRLValue const& _lvalue) { IRVariable result{m_context.newYulVariable(), _lvalue.type}; std::visit(GenericVisitor{ [&](IRLValue::Storage const& _storage) { if (!_lvalue.type.isValueType()) define(result) << _storage.slot << "\n"; else if (std::holds_alternative(_storage.offset)) define(result) << m_utils.readFromStorageDynamic(_lvalue.type, false) << "(" << _storage.slot << ", " << std::get(_storage.offset) << ")\n"; else define(result) << m_utils.readFromStorage(_lvalue.type, std::get(_storage.offset), false) << "(" << _storage.slot << ")\n"; }, [&](IRLValue::Memory const& _memory) { if (_memory.byteArrayElement) define(result) << m_utils.cleanupFunction(_lvalue.type) << "(mload(" << _memory.address << "))\n"; else if (_lvalue.type.isValueType()) define(result) << m_utils.readFromMemory(_lvalue.type) << "(" << _memory.address << ")\n"; else define(result) << "mload(" << _memory.address << ")\n"; }, [&](IRLValue::Stack const& _stack) { define(result, _stack.variable); }, [&](IRLValue::Tuple const&) { solAssert(false, "Attempted to read from tuple lvalue."); } }, _lvalue.kind); return result; } void IRGeneratorForStatements::setLValue(Expression const& _expression, IRLValue _lvalue) { solAssert(!m_currentLValue, ""); if (_expression.annotation().willBeWrittenTo) { m_currentLValue.emplace(std::move(_lvalue)); solAssert(!_lvalue.type.dataStoredIn(DataLocation::CallData), ""); } else // Only define the expression, if it will not be written to. define(_expression, readFromLValue(_lvalue)); } void IRGeneratorForStatements::generateLoop( Statement const& _body, Expression const* _conditionExpression, Statement const* _initExpression, ExpressionStatement const* _loopExpression, bool _isDoWhile ) { string firstRun; if (_isDoWhile) { solAssert(_conditionExpression, "Expected condition for doWhile"); firstRun = m_context.newYulVariable(); m_code << "let " << firstRun << " := 1\n"; } m_code << "for {\n"; if (_initExpression) _initExpression->accept(*this); m_code << "} 1 {\n"; if (_loopExpression) _loopExpression->accept(*this); m_code << "}\n"; m_code << "{\n"; if (_conditionExpression) { if (_isDoWhile) m_code << "if iszero(" << firstRun << ") {\n"; _conditionExpression->accept(*this); m_code << "if iszero(" << expressionAsType(*_conditionExpression, *TypeProvider::boolean()) << ") { break }\n"; if (_isDoWhile) m_code << "}\n" << firstRun << " := 0\n"; } _body.accept(*this); m_code << "}\n"; } Type const& IRGeneratorForStatements::type(Expression const& _expression) { solAssert(_expression.annotation().type, "Type of expression not set."); return *_expression.annotation().type; } bool IRGeneratorForStatements::visit(TryStatement const& _tryStatement) { Expression const& externalCall = _tryStatement.externalCall(); externalCall.accept(*this); m_code << "switch iszero(" << m_context.trySuccessConditionVariable(externalCall) << ")\n"; m_code << "case 0 { // success case\n"; TryCatchClause const& successClause = *_tryStatement.clauses().front(); if (successClause.parameters()) { size_t i = 0; for (ASTPointer const& varDecl: successClause.parameters()->parameters()) { solAssert(varDecl, ""); define(m_context.addLocalVariable(*varDecl), successClause.parameters()->parameters().size() == 1 ? IRVariable(externalCall) : IRVariable(externalCall).tupleComponent(i++) ); } } successClause.block().accept(*this); m_code << "}\n"; m_code << "default { // failure case\n"; handleCatch(_tryStatement); m_code << "}\n"; return false; } void IRGeneratorForStatements::handleCatch(TryStatement const& _tryStatement) { if (_tryStatement.structuredClause()) handleCatchStructuredAndFallback(*_tryStatement.structuredClause(), _tryStatement.fallbackClause()); else if (_tryStatement.fallbackClause()) handleCatchFallback(*_tryStatement.fallbackClause()); else rethrow(); } void IRGeneratorForStatements::handleCatchStructuredAndFallback( TryCatchClause const& _structured, TryCatchClause const* _fallback ) { solAssert( _structured.parameters() && _structured.parameters()->parameters().size() == 1 && _structured.parameters()->parameters().front() && *_structured.parameters()->parameters().front()->annotation().type == *TypeProvider::stringMemory(), "" ); solAssert(m_context.evmVersion().supportsReturndata(), ""); // Try to decode the error message. // If this fails, leaves 0 on the stack, otherwise the pointer to the data string. string const dataVariable = m_context.newYulVariable(); m_code << "let " << dataVariable << " := " << m_utils.tryDecodeErrorMessageFunction() << "()\n"; m_code << "switch iszero(" << dataVariable << ") \n"; m_code << "case 0 { // decoding success\n"; if (_structured.parameters()) { solAssert(_structured.parameters()->parameters().size() == 1, ""); IRVariable const& var = m_context.addLocalVariable(*_structured.parameters()->parameters().front()); define(var) << dataVariable << "\n"; } _structured.accept(*this); m_code << "}\n"; m_code << "default { // decoding failure\n"; if (_fallback) handleCatchFallback(*_fallback); else rethrow(); m_code << "}\n"; } void IRGeneratorForStatements::handleCatchFallback(TryCatchClause const& _fallback) { if (_fallback.parameters()) { solAssert(m_context.evmVersion().supportsReturndata(), ""); solAssert( _fallback.parameters()->parameters().size() == 1 && _fallback.parameters()->parameters().front() && *_fallback.parameters()->parameters().front()->annotation().type == *TypeProvider::bytesMemory(), "" ); VariableDeclaration const& paramDecl = *_fallback.parameters()->parameters().front(); define(m_context.addLocalVariable(paramDecl)) << m_utils.extractReturndataFunction() << "()\n"; } _fallback.accept(*this); } void IRGeneratorForStatements::rethrow() { if (m_context.evmVersion().supportsReturndata()) m_code << R"( returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) )"s; else m_code << "revert(0, 0) // rethrow\n"s; } bool IRGeneratorForStatements::visit(TryCatchClause const& _clause) { _clause.block().accept(*this); return false; }