/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see .
*/
/**
* @author Christian
* @author Gav Wood
* @date 2014
* Full-stack compiler that converts a source code string to bytecode.
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
using namespace solidity;
using namespace solidity::langutil;
using namespace solidity::frontend;
using solidity::util::errinfo_comment;
using solidity::util::toHex;
static int g_compilerStackCounts = 0;
CompilerStack::CompilerStack(ReadCallback::Callback const& _readFile):
m_readFile{_readFile},
m_enabledSMTSolvers{smt::SMTSolverChoice::All()},
m_generateIR{false},
m_generateEwasm{false},
m_errorList{},
m_errorReporter{m_errorList}
{
// Because TypeProvider is currently a singleton API, we must ensure that
// no more than one entity is actually using it at a time.
solAssert(g_compilerStackCounts == 0, "You shall not have another CompilerStack aside me.");
++g_compilerStackCounts;
}
CompilerStack::~CompilerStack()
{
--g_compilerStackCounts;
TypeProvider::reset();
}
std::optional CompilerStack::parseRemapping(string const& _remapping)
{
auto eq = find(_remapping.begin(), _remapping.end(), '=');
if (eq == _remapping.end())
return {};
auto colon = find(_remapping.begin(), eq, ':');
Remapping r;
r.context = colon == eq ? string() : string(_remapping.begin(), colon);
r.prefix = colon == eq ? string(_remapping.begin(), eq) : string(colon + 1, eq);
r.target = string(eq + 1, _remapping.end());
if (r.prefix.empty())
return {};
return r;
}
void CompilerStack::setRemappings(vector const& _remappings)
{
if (m_stackState >= ParsingPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Must set remappings before parsing."));
for (auto const& remapping: _remappings)
solAssert(!remapping.prefix.empty(), "");
m_remappings = _remappings;
}
void CompilerStack::setEVMVersion(langutil::EVMVersion _version)
{
if (m_stackState >= ParsingPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Must set EVM version before parsing."));
m_evmVersion = _version;
}
void CompilerStack::setSMTSolverChoice(smt::SMTSolverChoice _enabledSMTSolvers)
{
if (m_stackState >= ParsingPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Must set enabled SMT solvers before parsing."));
m_enabledSMTSolvers = _enabledSMTSolvers;
}
void CompilerStack::setLibraries(std::map const& _libraries)
{
if (m_stackState >= ParsingPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Must set libraries before parsing."));
m_libraries = _libraries;
}
void CompilerStack::setOptimiserSettings(bool _optimize, unsigned _runs)
{
OptimiserSettings settings = _optimize ? OptimiserSettings::standard() : OptimiserSettings::minimal();
settings.expectedExecutionsPerDeployment = _runs;
setOptimiserSettings(std::move(settings));
}
void CompilerStack::setOptimiserSettings(OptimiserSettings _settings)
{
if (m_stackState >= ParsingPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Must set optimiser settings before parsing."));
m_optimiserSettings = std::move(_settings);
}
void CompilerStack::setRevertStringBehaviour(RevertStrings _revertStrings)
{
if (m_stackState >= ParsingPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Must set revert string settings before parsing."));
solUnimplementedAssert(_revertStrings == RevertStrings::Default || _revertStrings == RevertStrings::Strip, "");
m_revertStrings = _revertStrings;
}
void CompilerStack::useMetadataLiteralSources(bool _metadataLiteralSources)
{
if (m_stackState >= ParsingPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Must set use literal sources before parsing."));
m_metadataLiteralSources = _metadataLiteralSources;
}
void CompilerStack::setMetadataHash(MetadataHash _metadataHash)
{
if (m_stackState >= ParsingPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Must set metadata hash before parsing."));
m_metadataHash = _metadataHash;
}
void CompilerStack::addSMTLib2Response(h256 const& _hash, string const& _response)
{
if (m_stackState >= ParsingPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Must add SMTLib2 responses before parsing."));
m_smtlib2Responses[_hash] = _response;
}
void CompilerStack::reset(bool _keepSettings)
{
m_stackState = Empty;
m_hasError = false;
m_sources.clear();
m_smtlib2Responses.clear();
m_unhandledSMTLib2Queries.clear();
if (!_keepSettings)
{
m_remappings.clear();
m_libraries.clear();
m_evmVersion = langutil::EVMVersion();
m_enabledSMTSolvers = smt::SMTSolverChoice::All();
m_generateIR = false;
m_generateEwasm = false;
m_revertStrings = RevertStrings::Default;
m_optimiserSettings = OptimiserSettings::minimal();
m_metadataLiteralSources = false;
m_metadataHash = MetadataHash::IPFS;
}
m_globalContext.reset();
m_scopes.clear();
m_sourceOrder.clear();
m_contracts.clear();
m_errorReporter.clear();
TypeProvider::reset();
}
void CompilerStack::setSources(StringMap _sources)
{
if (m_stackState == SourcesSet)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Cannot change sources once set."));
if (m_stackState != Empty)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Must set sources before parsing."));
for (auto source: _sources)
m_sources[source.first].scanner = make_shared(CharStream(/*content*/std::move(source.second), /*name*/source.first));
m_stackState = SourcesSet;
}
bool CompilerStack::parse()
{
if (m_stackState != SourcesSet)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Must call parse only after the SourcesSet state."));
m_errorReporter.clear();
if (SemVerVersion{string(VersionString)}.isPrerelease())
m_errorReporter.warning("This is a pre-release compiler version, please do not use it in production.");
Parser parser{m_errorReporter, m_evmVersion, m_parserErrorRecovery};
vector sourcesToParse;
for (auto const& s: m_sources)
sourcesToParse.push_back(s.first);
for (size_t i = 0; i < sourcesToParse.size(); ++i)
{
string const& path = sourcesToParse[i];
Source& source = m_sources[path];
source.scanner->reset();
source.ast = parser.parse(source.scanner);
if (!source.ast)
solAssert(!Error::containsOnlyWarnings(m_errorReporter.errors()), "Parser returned null but did not report error.");
else
{
source.ast->annotation().path = path;
for (auto const& newSource: loadMissingSources(*source.ast, path))
{
string const& newPath = newSource.first;
string const& newContents = newSource.second;
m_sources[newPath].scanner = make_shared(CharStream(newContents, newPath));
sourcesToParse.push_back(newPath);
}
}
}
m_stackState = ParsingPerformed;
if (!Error::containsOnlyWarnings(m_errorReporter.errors()))
m_hasError = true;
return !m_hasError;
}
void CompilerStack::importASTs(map const& _sources)
{
if (m_stackState != Empty)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Must call importASTs only before the SourcesSet state."));
m_sourceJsons = _sources;
map> reconstructedSources = ASTJsonImporter(m_evmVersion).jsonToSourceUnit(m_sourceJsons);
for (auto& src: reconstructedSources)
{
string const& path = src.first;
Source source;
source.ast = src.second;
string srcString = util::jsonCompactPrint(m_sourceJsons[src.first]);
ASTPointer scanner = make_shared(langutil::CharStream(srcString, src.first));
source.scanner = scanner;
m_sources[path] = source;
}
m_stackState = ParsingPerformed;
m_importedSources = true;
}
bool CompilerStack::analyze()
{
if (m_stackState != ParsingPerformed || m_stackState >= AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Must call analyze only after parsing was performed."));
resolveImports();
bool noErrors = true;
try
{
SyntaxChecker syntaxChecker(m_errorReporter, m_optimiserSettings.runYulOptimiser);
for (Source const* source: m_sourceOrder)
if (source->ast && !syntaxChecker.checkSyntax(*source->ast))
noErrors = false;
DocStringAnalyser docStringAnalyser(m_errorReporter);
for (Source const* source: m_sourceOrder)
if (source->ast && !docStringAnalyser.analyseDocStrings(*source->ast))
noErrors = false;
m_globalContext = make_shared();
NameAndTypeResolver resolver(*m_globalContext, m_evmVersion, m_scopes, m_errorReporter);
for (Source const* source: m_sourceOrder)
if (source->ast && !resolver.registerDeclarations(*source->ast))
return false;
map sourceUnitsByName;
for (auto& source: m_sources)
sourceUnitsByName[source.first] = source.second.ast.get();
for (Source const* source: m_sourceOrder)
if (source->ast && !resolver.performImports(*source->ast, sourceUnitsByName))
return false;
// This is the main name and type resolution loop. Needs to be run for every contract, because
// the special variables "this" and "super" must be set appropriately.
for (Source const* source: m_sourceOrder)
if (source->ast)
for (ASTPointer const& node: source->ast->nodes())
{
if (!resolver.resolveNamesAndTypes(*node))
return false;
if (ContractDefinition* contract = dynamic_cast(node.get()))
{
// Note that we now reference contracts by their fully qualified names, and
// thus contracts can only conflict if declared in the same source file. This
// should already cause a double-declaration error elsewhere.
if (m_contracts.find(contract->fullyQualifiedName()) == m_contracts.end())
m_contracts[contract->fullyQualifiedName()].contract = contract;
else
solAssert(
m_errorReporter.hasErrors(),
"Contract already present (name clash?), but no error was reported."
);
}
}
// Next, we check inheritance, overrides, function collisions and other things at
// contract or function level.
// This also calculates whether a contract is abstract, which is needed by the
// type checker.
ContractLevelChecker contractLevelChecker(m_errorReporter);
for (Source const* source: m_sourceOrder)
if (source->ast)
for (ASTPointer const& node: source->ast->nodes())
if (ContractDefinition* contract = dynamic_cast(node.get()))
if (!contractLevelChecker.check(*contract))
noErrors = false;
// New we run full type checks that go down to the expression level. This
// cannot be done earlier, because we need cross-contract types and information
// about whether a contract is abstract for the `new` expression.
// This populates the `type` annotation for all expressions.
//
// Note: this does not resolve overloaded functions. In order to do that, types of arguments are needed,
// which is only done one step later.
TypeChecker typeChecker(m_evmVersion, m_errorReporter);
for (Source const* source: m_sourceOrder)
if (source->ast)
for (ASTPointer const& node: source->ast->nodes())
if (ContractDefinition* contract = dynamic_cast(node.get()))
if (!typeChecker.checkTypeRequirements(*contract))
noErrors = false;
if (noErrors)
{
// Checks that can only be done when all types of all AST nodes are known.
PostTypeChecker postTypeChecker(m_errorReporter);
for (Source const* source: m_sourceOrder)
if (source->ast && !postTypeChecker.check(*source->ast))
noErrors = false;
}
if (noErrors)
{
// Control flow graph generator and analyzer. It can check for issues such as
// variable is used before it is assigned to.
CFG cfg(m_errorReporter);
for (Source const* source: m_sourceOrder)
if (source->ast && !cfg.constructFlow(*source->ast))
noErrors = false;
if (noErrors)
{
ControlFlowAnalyzer controlFlowAnalyzer(cfg, m_errorReporter);
for (Source const* source: m_sourceOrder)
if (source->ast && !controlFlowAnalyzer.analyze(*source->ast))
noErrors = false;
}
}
if (noErrors)
{
// Checks for common mistakes. Only generates warnings.
StaticAnalyzer staticAnalyzer(m_errorReporter);
for (Source const* source: m_sourceOrder)
if (source->ast && !staticAnalyzer.analyze(*source->ast))
noErrors = false;
}
if (noErrors)
{
// Check for state mutability in every function.
vector> ast;
for (Source const* source: m_sourceOrder)
if (source->ast)
ast.push_back(source->ast);
if (!ViewPureChecker(ast, m_errorReporter).check())
noErrors = false;
}
if (noErrors)
{
ModelChecker modelChecker(m_errorReporter, m_smtlib2Responses, m_readFile, m_enabledSMTSolvers);
for (Source const* source: m_sourceOrder)
if (source->ast)
modelChecker.analyze(*source->ast);
m_unhandledSMTLib2Queries += modelChecker.unhandledQueries();
}
}
catch (FatalError const&)
{
if (m_errorReporter.errors().empty())
throw; // Something is weird here, rather throw again.
noErrors = false;
}
m_stackState = AnalysisPerformed;
if (!noErrors)
m_hasError = true;
return !m_hasError;
}
bool CompilerStack::parseAndAnalyze()
{
bool success = parse();
if (success || m_parserErrorRecovery)
success = analyze();
return success;
}
bool CompilerStack::isRequestedSource(string const& _sourceName) const
{
return
m_requestedContractNames.empty() ||
m_requestedContractNames.count("") ||
m_requestedContractNames.count(_sourceName);
}
bool CompilerStack::isRequestedContract(ContractDefinition const& _contract) const
{
/// In case nothing was specified in outputSelection.
if (m_requestedContractNames.empty())
return true;
for (auto const& key: vector{"", _contract.sourceUnitName()})
{
auto const& it = m_requestedContractNames.find(key);
if (it != m_requestedContractNames.end())
if (it->second.count(_contract.name()) || it->second.count(""))
return true;
}
return false;
}
bool CompilerStack::compile()
{
if (m_stackState < AnalysisPerformed)
if (!parseAndAnalyze())
return false;
if (m_hasError)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Called compile with errors."));
// Only compile contracts individually which have been requested.
map> otherCompilers;
for (Source const* source: m_sourceOrder)
for (ASTPointer const& node: source->ast->nodes())
if (auto contract = dynamic_cast(node.get()))
if (isRequestedContract(*contract))
{
compileContract(*contract, otherCompilers);
if (m_generateIR || m_generateEwasm)
generateIR(*contract);
if (m_generateEwasm)
generateEwasm(*contract);
}
m_stackState = CompilationSuccessful;
this->link();
return true;
}
void CompilerStack::link()
{
solAssert(m_stackState >= CompilationSuccessful, "");
for (auto& contract: m_contracts)
{
contract.second.object.link(m_libraries);
contract.second.runtimeObject.link(m_libraries);
}
}
vector CompilerStack::contractNames() const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Parsing was not successful."));
vector contractNames;
for (auto const& contract: m_contracts)
contractNames.push_back(contract.first);
return contractNames;
}
string const CompilerStack::lastContractName() const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Parsing was not successful."));
// try to find some user-supplied contract
string contractName;
for (auto const& it: m_sources)
for (ASTPointer const& node: it.second.ast->nodes())
if (auto contract = dynamic_cast(node.get()))
contractName = contract->fullyQualifiedName();
return contractName;
}
evmasm::AssemblyItems const* CompilerStack::assemblyItems(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
Contract const& currentContract = contract(_contractName);
return currentContract.compiler ? &contract(_contractName).compiler->assemblyItems() : nullptr;
}
evmasm::AssemblyItems const* CompilerStack::runtimeAssemblyItems(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
Contract const& currentContract = contract(_contractName);
return currentContract.compiler ? &contract(_contractName).compiler->runtimeAssemblyItems() : nullptr;
}
string const* CompilerStack::sourceMapping(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
Contract const& c = contract(_contractName);
if (!c.sourceMapping)
{
if (auto items = assemblyItems(_contractName))
c.sourceMapping = make_unique(computeSourceMapping(*items));
}
return c.sourceMapping.get();
}
string const* CompilerStack::runtimeSourceMapping(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
Contract const& c = contract(_contractName);
if (!c.runtimeSourceMapping)
{
if (auto items = runtimeAssemblyItems(_contractName))
c.runtimeSourceMapping = make_unique(computeSourceMapping(*items));
}
return c.runtimeSourceMapping.get();
}
std::string const CompilerStack::filesystemFriendlyName(string const& _contractName) const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("No compiled contracts found."));
// Look up the contract (by its fully-qualified name)
Contract const& matchContract = m_contracts.at(_contractName);
// Check to see if it could collide on name
for (auto const& contract: m_contracts)
{
if (contract.second.contract->name() == matchContract.contract->name() &&
contract.second.contract != matchContract.contract)
{
// If it does, then return its fully-qualified name, made fs-friendly
std::string friendlyName = boost::algorithm::replace_all_copy(_contractName, "/", "_");
boost::algorithm::replace_all(friendlyName, ":", "_");
boost::algorithm::replace_all(friendlyName, ".", "_");
return friendlyName;
}
}
// If no collision, return the contract's name
return matchContract.contract->name();
}
string const& CompilerStack::yulIR(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
return contract(_contractName).yulIR;
}
string const& CompilerStack::yulIROptimized(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
return contract(_contractName).yulIROptimized;
}
string const& CompilerStack::ewasm(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
return contract(_contractName).ewasm;
}
evmasm::LinkerObject const& CompilerStack::ewasmObject(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
return contract(_contractName).ewasmObject;
}
evmasm::LinkerObject const& CompilerStack::object(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
return contract(_contractName).object;
}
evmasm::LinkerObject const& CompilerStack::runtimeObject(string const& _contractName) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
return contract(_contractName).runtimeObject;
}
/// TODO: cache this string
string CompilerStack::assemblyString(string const& _contractName, StringMap _sourceCodes) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
Contract const& currentContract = contract(_contractName);
if (currentContract.compiler)
return currentContract.compiler->assemblyString(_sourceCodes);
else
return string();
}
/// TODO: cache the JSON
Json::Value CompilerStack::assemblyJSON(string const& _contractName, StringMap const& _sourceCodes) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
Contract const& currentContract = contract(_contractName);
if (currentContract.compiler)
return currentContract.compiler->assemblyJSON(_sourceCodes);
else
return Json::Value();
}
vector CompilerStack::sourceNames() const
{
vector names;
for (auto const& s: m_sources)
names.push_back(s.first);
return names;
}
map CompilerStack::sourceIndices() const
{
map indices;
unsigned index = 0;
for (auto const& s: m_sources)
indices[s.first] = index++;
return indices;
}
Json::Value const& CompilerStack::contractABI(string const& _contractName) const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Analysis was not successful."));
return contractABI(contract(_contractName));
}
Json::Value const& CompilerStack::contractABI(Contract const& _contract) const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Analysis was not successful."));
solAssert(_contract.contract, "");
// caches the result
if (!_contract.abi)
_contract.abi = make_unique(ABI::generate(*_contract.contract));
return *_contract.abi;
}
Json::Value const& CompilerStack::storageLayout(string const& _contractName) const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Analysis was not successful."));
return storageLayout(contract(_contractName));
}
Json::Value const& CompilerStack::storageLayout(Contract const& _contract) const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Analysis was not successful."));
solAssert(_contract.contract, "");
// caches the result
if (!_contract.storageLayout)
_contract.storageLayout = make_unique(StorageLayout().generate(*_contract.contract));
return *_contract.storageLayout;
}
Json::Value const& CompilerStack::natspecUser(string const& _contractName) const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Analysis was not successful."));
return natspecUser(contract(_contractName));
}
Json::Value const& CompilerStack::natspecUser(Contract const& _contract) const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Analysis was not successful."));
solAssert(_contract.contract, "");
// caches the result
if (!_contract.userDocumentation)
_contract.userDocumentation = make_unique(Natspec::userDocumentation(*_contract.contract));
return *_contract.userDocumentation;
}
Json::Value const& CompilerStack::natspecDev(string const& _contractName) const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Analysis was not successful."));
return natspecDev(contract(_contractName));
}
Json::Value const& CompilerStack::natspecDev(Contract const& _contract) const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Analysis was not successful."));
solAssert(_contract.contract, "");
// caches the result
if (!_contract.devDocumentation)
_contract.devDocumentation = make_unique(Natspec::devDocumentation(*_contract.contract));
return *_contract.devDocumentation;
}
Json::Value CompilerStack::methodIdentifiers(string const& _contractName) const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Analysis was not successful."));
Json::Value methodIdentifiers(Json::objectValue);
for (auto const& it: contractDefinition(_contractName).interfaceFunctions())
methodIdentifiers[it.second->externalSignature()] = it.first.hex();
return methodIdentifiers;
}
string const& CompilerStack::metadata(string const& _contractName) const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Analysis was not successful."));
return metadata(contract(_contractName));
}
string const& CompilerStack::metadata(Contract const& _contract) const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Analysis was not successful."));
solAssert(_contract.contract, "");
// cache the result
if (!_contract.metadata)
_contract.metadata = make_unique(createMetadata(_contract));
return *_contract.metadata;
}
Scanner const& CompilerStack::scanner(string const& _sourceName) const
{
if (m_stackState < SourcesSet)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("No sources set."));
return *source(_sourceName).scanner;
}
SourceUnit const& CompilerStack::ast(string const& _sourceName) const
{
if (m_stackState < ParsingPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Parsing not yet performed."));
if (!source(_sourceName).ast && !m_parserErrorRecovery)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Parsing was not successful."));
return *source(_sourceName).ast;
}
ContractDefinition const& CompilerStack::contractDefinition(string const& _contractName) const
{
if (m_stackState < AnalysisPerformed)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Analysis was not successful."));
return *contract(_contractName).contract;
}
size_t CompilerStack::functionEntryPoint(
std::string const& _contractName,
FunctionDefinition const& _function
) const
{
if (m_stackState != CompilationSuccessful)
BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful."));
shared_ptr const& compiler = contract(_contractName).compiler;
if (!compiler)
return 0;
evmasm::AssemblyItem tag = compiler->functionEntryLabel(_function);
if (tag.type() == evmasm::UndefinedItem)
return 0;
evmasm::AssemblyItems const& items = compiler->runtimeAssemblyItems();
for (size_t i = 0; i < items.size(); ++i)
if (items.at(i).type() == evmasm::Tag && items.at(i).data() == tag.data())
return i;
return 0;
}
tuple CompilerStack::positionFromSourceLocation(SourceLocation const& _sourceLocation) const
{
int startLine;
int startColumn;
int endLine;
int endColumn;
tie(startLine, startColumn) = scanner(_sourceLocation.source->name()).translatePositionToLineColumn(_sourceLocation.start);
tie(endLine, endColumn) = scanner(_sourceLocation.source->name()).translatePositionToLineColumn(_sourceLocation.end);
return make_tuple(++startLine, ++startColumn, ++endLine, ++endColumn);
}
h256 const& CompilerStack::Source::keccak256() const
{
if (keccak256HashCached == h256{})
keccak256HashCached = util::keccak256(scanner->source());
return keccak256HashCached;
}
h256 const& CompilerStack::Source::swarmHash() const
{
if (swarmHashCached == h256{})
swarmHashCached = util::bzzr1Hash(scanner->source());
return swarmHashCached;
}
string const& CompilerStack::Source::ipfsUrl() const
{
if (ipfsUrlCached.empty())
if (scanner->source().size() < 1024 * 256)
ipfsUrlCached = "dweb:/ipfs/" + util::ipfsHashBase58(scanner->source());
return ipfsUrlCached;
}
StringMap CompilerStack::loadMissingSources(SourceUnit const& _ast, std::string const& _sourcePath)
{
solAssert(m_stackState < ParsingPerformed, "");
StringMap newSources;
for (auto const& node: _ast.nodes())
if (ImportDirective const* import = dynamic_cast(node.get()))
{
solAssert(!import->path().empty(), "Import path cannot be empty.");
string importPath = util::absolutePath(import->path(), _sourcePath);
// The current value of `path` is the absolute path as seen from this source file.
// We first have to apply remappings before we can store the actual absolute path
// as seen globally.
importPath = applyRemapping(importPath, _sourcePath);
import->annotation().absolutePath = importPath;
if (m_sources.count(importPath) || newSources.count(importPath))
continue;
ReadCallback::Result result{false, string("File not supplied initially.")};
if (m_readFile)
result = m_readFile(ReadCallback::kindString(ReadCallback::Kind::ReadFile), importPath);
if (result.success)
newSources[importPath] = result.responseOrErrorMessage;
else
{
m_errorReporter.parserError(
import->location(),
string("Source \"" + importPath + "\" not found: " + result.responseOrErrorMessage)
);
continue;
}
}
return newSources;
}
string CompilerStack::applyRemapping(string const& _path, string const& _context)
{
solAssert(m_stackState < ParsingPerformed, "");
// Try to find the longest prefix match in all remappings that are active in the current context.
auto isPrefixOf = [](string const& _a, string const& _b)
{
if (_a.length() > _b.length())
return false;
return std::equal(_a.begin(), _a.end(), _b.begin());
};
size_t longestPrefix = 0;
size_t longestContext = 0;
string bestMatchTarget;
for (auto const& redir: m_remappings)
{
string context = util::sanitizePath(redir.context);
string prefix = util::sanitizePath(redir.prefix);
// Skip if current context is closer
if (context.length() < longestContext)
continue;
// Skip if redir.context is not a prefix of _context
if (!isPrefixOf(context, _context))
continue;
// Skip if we already have a closer prefix match.
if (prefix.length() < longestPrefix && context.length() == longestContext)
continue;
// Skip if the prefix does not match.
if (!isPrefixOf(prefix, _path))
continue;
longestContext = context.length();
longestPrefix = prefix.length();
bestMatchTarget = util::sanitizePath(redir.target);
}
string path = bestMatchTarget;
path.append(_path.begin() + longestPrefix, _path.end());
return path;
}
void CompilerStack::resolveImports()
{
solAssert(m_stackState == ParsingPerformed, "");
// topological sorting (depth first search) of the import graph, cutting potential cycles
vector