/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
using namespace solidity;
using namespace solidity::util;
using namespace solidity::yul;
using namespace solidity::smtutil;
void ReasoningBasedSimplifier::run(OptimiserStepContext& _context, Block& _ast)
{
ReasoningBasedSimplifier simpl{_context.dialect};
// Hack to inject the boolean lp solver.
//simpl.m_solver = make_unique();
simpl.m_solver = make_unique();
simpl(_ast);
}
std::optional ReasoningBasedSimplifier::invalidInCurrentEnvironment()
{
return nullopt;
}
void ReasoningBasedSimplifier::operator()(VariableDeclaration& _varDecl)
{
SMTSolver::encodeVariableDeclaration(_varDecl);
}
void ReasoningBasedSimplifier::operator()(Assignment& _assignment)
{
SMTSolver::encodeVariableAssignment(_assignment);
}
void ReasoningBasedSimplifier::operator()(If& _if)
{
checkIfConditionRedundant(_if);
decltype(m_variableSequenceCounter) oldCounters(m_variableSequenceCounter);
optional oldPathCondition = m_pathCondition;
// TODO do not call encode again - assert it is a variable
smtutil::Expression ifCondition = encodeExpression(*_if.condition);
smtutil::Expression branchCondition = (ifCondition >= 1);
if (m_pathCondition)
m_pathCondition = *m_pathCondition && branchCondition;
else
m_pathCondition = branchCondition;
ASTModifier::operator()(_if.body);
// join control flow
for (auto& var: oldCounters)
if (m_variableSequenceCounter.at(var.first) != var.second)
{
YulString const& name = var.first;
size_t oldCounter = var.second;
size_t branchCounter = m_variableSequenceCounter.at(name);
size_t newCounter = branchCounter + 1;
m_solver->newVariable(variableNameAtIndex(name, newCounter), defaultSort());
// TODO full path condition?
m_solver->addAssertion(
ifCondition == 0 ||
variableExpressionAtIndex(name, newCounter) == variableExpressionAtIndex(name, branchCounter)
);
m_solver->addAssertion(
ifCondition >= 1 ||
variableExpressionAtIndex(name, newCounter) == variableExpressionAtIndex(name, oldCounter)
);
var.second = newCounter;
}
m_variableSequenceCounter = move(oldCounters);
m_pathCondition = move(oldPathCondition);
}
void ReasoningBasedSimplifier::operator()(ForLoop& _for)
{
// TODO handle break / continue
decltype(m_variableSequenceCounter) oldCounters(m_variableSequenceCounter);
optional oldPathCondition = m_pathCondition;
// TODO do not call encode again - assert it is a variable
smtutil::Expression forCondition = encodeExpression(*_for.condition);
smtutil::Expression branchCondition = (forCondition >= 1);
if (m_pathCondition)
m_pathCondition = *m_pathCondition && branchCondition;
else
m_pathCondition = branchCondition;
yulAssert(_for.pre.statements.empty());
// clear variables assigned inside body and post
for (YulString const& varName: assignedVariableNames(_for.body) + assignedVariableNames(_for.post))
{
m_variableSequenceCounter[varName]++;
m_solver->newVariable(variableNameAtIndex(varName, m_variableSequenceCounter.at(varName)), defaultSort());
restrictToEVMWord(currentVariableExpression(varName));
}
ASTModifier::operator()(_for.body);
// TODO clear modified variables!
ASTModifier::operator()(_for.post);
// clear variables assigned inside body and post
for (YulString const& varName: assignedVariableNames(_for.body) + assignedVariableNames(_for.post))
{
m_variableSequenceCounter[varName]++;
m_solver->newVariable(variableNameAtIndex(varName, m_variableSequenceCounter.at(varName)), defaultSort());
restrictToEVMWord(currentVariableExpression(varName));
}
m_variableSequenceCounter = move(oldCounters);
m_pathCondition = move(oldPathCondition);
}
void ReasoningBasedSimplifier::operator()(FunctionCall& _fun)
{
ASTModifier::operator()(_fun);
// TODO do not forget to add path condition!
// TODO and(x, 0xfff) -> x if x <= 0xfff
// TODO if _fun is not returning, assert that the path condition is aflse
}
void ReasoningBasedSimplifier::operator()(FunctionDefinition& _fun)
{
ScopedSaveAndRestore counters(m_variableSequenceCounter, {});
ScopedSaveAndRestore pathCond(m_pathCondition, true);
for (auto const& param: _fun.parameters)
encodeVariableUpdateUnknown(param.name);
for (auto const& retVar: _fun.returnVariables)
{
encodeVariableUpdateUnknown(retVar.name);
// TODO remove the redundant encoding above
m_solver->addAssertion(currentVariableExpression(retVar.name) == 0);
}
ASTModifier::operator()(_fun);
}
ReasoningBasedSimplifier::ReasoningBasedSimplifier(
Dialect const& _dialect
):
SMTSolver(_dialect)
{
}
void ReasoningBasedSimplifier::checkIfConditionRedundant(If& _if)
{
if (!SideEffectsCollector{m_dialect, *_if.condition}.movable())
return;
cout << "Checking if condition can be false" << endl;
// TODO should not call encode, but instead check if it is
// a variable and use its name / value
smtutil::Expression condition = encodeExpression(*_if.condition);
m_solver->push();
// TODO find a way so that we do not have to do that all the time.
if (m_pathCondition)
m_solver->addAssertion(*m_pathCondition);
m_solver->addAssertion(condition == constantValue(0));
cout << " running check" << endl;
CheckResult result = m_solver->check({}).first;
m_solver->pop();
if (result == CheckResult::UNSATISFIABLE)
{
cout << " unsat => cannot be false!" << endl;
Literal trueCondition = m_dialect.trueLiteral();
trueCondition.debugData = debugDataOf(*_if.condition);
_if.condition = make_unique(move(trueCondition));
}
else
{
cout << "Checking if condition can be true" << endl;
m_solver->push();
// TODO find a way so that we do not have to do that all the time.
if (m_pathCondition)
m_solver->addAssertion(*m_pathCondition);
m_solver->addAssertion(condition >= 1);
cout << " running check" << endl;
CheckResult result2 = m_solver->check({}).first;
m_solver->pop();
if (result2 == CheckResult::UNSATISFIABLE)
{
cout << " unsat => cannot be true!" << endl;
Literal falseCondition = m_dialect.zeroLiteralForType(m_dialect.boolType);
falseCondition.debugData = debugDataOf(*_if.condition);
_if.condition = make_unique(move(falseCondition));
_if.body = yul::Block{};
}
cout << " unknown :(" << endl;
}
}
smtutil::Expression ReasoningBasedSimplifier::encodeEVMBuiltin(
evmasm::Instruction _instruction,
vector const& _arguments
)
{
vector arguments = applyMap(
_arguments,
[this](yul::Expression const& _expr) { return encodeExpression(_expr); }
);
switch (_instruction)
{
case evmasm::Instruction::ADD:
{
auto result = arguments.at(0) + arguments.at(1) - (bigint(1) << 256) * newZeroOneVariable();
restrictToEVMWord(result);
return result;
}
case evmasm::Instruction::MUL:
// TODO this only works will with the rematerializer.
if (holds_alternative(_arguments.at(0)) || holds_alternative(_arguments.at(1)))
return wrap(arguments.at(0) * arguments.at(1));
else
return newRestrictedVariable();
case evmasm::Instruction::SUB:
{
auto result = arguments.at(0) - arguments.at(1) + (bigint(1) << 256) * newZeroOneVariable();
restrictToEVMWord(result);
return result;
}
case evmasm::Instruction::DIV:
break;
/*
// TODO add assertion that result is <= input
return smtutil::Expression::ite(
arguments.at(1) == constantValue(0),
constantValue(0),
arguments.at(0) / arguments.at(1)
);
*/
case evmasm::Instruction::SDIV:
break;
/*
return smtutil::Expression::ite(
arguments.at(1) == constantValue(0),
constantValue(0),
// No `wrap()` needed here, because -2**255 / -1 results
// in 2**255 which is "converted" to its two's complement
// representation 2**255 in `signedToTwosComplement`
signedToTwosComplement(smtutil::signedDivisionEVM(
twosComplementToUpscaledUnsigned(arguments.at(0)),
twosComplementToUpscaledUnsigned(arguments.at(1))
))
);
*/
case evmasm::Instruction::MOD:
break;
/*
return smtutil::Expression::ite(
arguments.at(1) == constantValue(0),
constantValue(0),
arguments.at(0) % arguments.at(1)
);
*/
case evmasm::Instruction::SMOD:
break;
/*
return smtutil::Expression::ite(
arguments.at(1) == constantValue(0),
constantValue(0),
signedToTwosComplement(signedModuloEVM(
twosComplementToUpscaledUnsigned(arguments.at(0)),
twosComplementToUpscaledUnsigned(arguments.at(1))
))
);
*/
case evmasm::Instruction::LT:
return booleanValue(arguments.at(0) < arguments.at(1));
case evmasm::Instruction::SLT:
return booleanValue(
twosComplementToUpscaledUnsigned(arguments.at(0)) + smtutil::Expression(bigint(1) << 256) <
twosComplementToUpscaledUnsigned(arguments.at(1)) + smtutil::Expression(bigint(1) << 256)
);
case evmasm::Instruction::GT:
return booleanValue(arguments.at(0) > arguments.at(1));
case evmasm::Instruction::SGT:
return booleanValue(
twosComplementToUpscaledUnsigned(arguments.at(0)) + smtutil::Expression(bigint(1) << 256) >
twosComplementToUpscaledUnsigned(arguments.at(1)) + smtutil::Expression(bigint(1) << 256)
);
case evmasm::Instruction::EQ:
return booleanValue(arguments.at(0) == arguments.at(1));
case evmasm::Instruction::ISZERO:
return booleanValue(arguments.at(0) == constantValue(0));
case evmasm::Instruction::AND:
{
smtutil::Expression result = newRestrictedVariable();
m_solver->addAssertion(result <= arguments.at(0));
m_solver->addAssertion(result <= arguments.at(1));
// TODO can we say more?
return result;
}
case evmasm::Instruction::OR:
return smtutil::Expression::ite(
arguments.at(0) + arguments.at(1) <= 2,
booleanValue(arguments.at(0) + arguments.at(1) >= 1),
// TODO we could probably restrict it a bit more
newRestrictedVariable()
);
case evmasm::Instruction::XOR:
break;
//return bv2int(int2bv(arguments.at(0)) ^ int2bv(arguments.at(1)));
case evmasm::Instruction::NOT:
return smtutil::Expression(u256(-1)) - arguments.at(0);
case evmasm::Instruction::SHL:
return smtutil::Expression::ite(
arguments.at(0) > 255,
constantValue(0),
newRestrictedVariable() // TODO bv2int(int2bv(arguments.at(1)) << int2bv(arguments.at(0)))
);
case evmasm::Instruction::SHR:
return smtutil::Expression::ite(
arguments.at(0) > 255,
constantValue(0),
newRestrictedVariable() // TODO bv2int(int2bv(arguments.at(1)) >> int2bv(arguments.at(0)))
);
case evmasm::Instruction::SAR:
return smtutil::Expression::ite(
arguments.at(0) > 255,
constantValue(0),
newRestrictedVariable() // TODO bv2int(smtutil::Expression::ashr(int2bv(arguments.at(1)), int2bv(arguments.at(0))))
);
case evmasm::Instruction::ADDMOD:
break;
/*
return smtutil::Expression::ite(
arguments.at(2) == constantValue(0),
constantValue(0),
(arguments.at(0) + arguments.at(1)) % arguments.at(2)
);
*/
case evmasm::Instruction::MULMOD:
break;
/*
return smtutil::Expression::ite(
arguments.at(2) == constantValue(0),
constantValue(0),
(arguments.at(0) * arguments.at(1)) % arguments.at(2)
);
*/
// TODO SIGNEXTEND
default:
break;
}
return newRestrictedVariable();
}
smtutil::Expression ReasoningBasedSimplifier::newZeroOneVariable()
{
smtutil::Expression var = newVariable();
m_solver->addAssertion(var <= 1);
m_solver->addAssertion(var <= 0 || var >= 1);
return var;
}
void ReasoningBasedSimplifier::restrictToEVMWord(smtutil::Expression _value)
{
m_solver->addAssertion(0 <= _value && _value < bigint(1) << 256);
}