/*( This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ /** * Optimisation stage that aggressively rematerializes certain variables ina a function to free * space on the stack until it is compilable. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace solidity; using namespace solidity::yul; namespace { /** * Class that discovers all variables that can be fully eliminated by rematerialization, * and the corresponding approximate costs. */ class RematCandidateSelector: public DataFlowAnalyzer { public: explicit RematCandidateSelector(Dialect const& _dialect): DataFlowAnalyzer(_dialect) {} /// @returns a map from rematerialisation costs to a vector of variables to rematerialise /// and variables that occur in their expression. /// While the map is sorted by cost, the contained vectors are sorted by the order of occurrence. map>>> candidates() { map>>> cand; for (auto const& candidate: m_candidates) { if (size_t const* cost = util::valueOrNullptr(m_expressionCodeCost, candidate)) { size_t numRef = m_numReferences[candidate]; set const* ref = references(candidate); cand[*cost * numRef].emplace_back(candidate, ref ? move(*ref) : set{}); } } return cand; } using DataFlowAnalyzer::operator(); void operator()(VariableDeclaration& _varDecl) override { DataFlowAnalyzer::operator()(_varDecl); if (_varDecl.variables.size() == 1) { YulString varName = _varDecl.variables.front().name; if (AssignedValue const* value = variableValue(varName)) { yulAssert(!m_expressionCodeCost.count(varName), ""); m_candidates.emplace_back(varName); m_expressionCodeCost[varName] = CodeCost::codeCost(m_dialect, *value->value); } } } void operator()(Assignment& _assignment) override { for (auto const& var: _assignment.variableNames) rematImpossible(var.name); DataFlowAnalyzer::operator()(_assignment); } // We use visit(Expression) because operator()(Identifier) would also // get called on left-hand-sides of assignments. void visit(Expression& _e) override { if (holds_alternative(_e)) { YulString name = std::get(_e).name; if (m_expressionCodeCost.count(name)) { if (!variableValue(name)) rematImpossible(name); else ++m_numReferences[name]; } } DataFlowAnalyzer::visit(_e); } /// Remove the variable from the candidate set. void rematImpossible(YulString _variable) { m_numReferences.erase(_variable); m_expressionCodeCost.erase(_variable); } /// All candidate variables in order of occurrence. vector m_candidates; /// Candidate variables and the code cost of their value. map m_expressionCodeCost; /// Number of references to each candidate variable. map m_numReferences; }; /// Selects at most @a _numVariables among @a _candidates. set chooseVarsToEliminate( map>>> const& _candidates, size_t _numVariables ) { set varsToEliminate; for (auto&& [cost, candidates]: _candidates) for (auto&& [candidate, references]: candidates) { if (varsToEliminate.size() >= _numVariables) return varsToEliminate; // If a variable we would like to eliminate references another one // we already selected for elimination, then stop selecting // candidates. If we would add that variable, then the cost calculation // for the previous variable would be off. Furthermore, we // do not skip the variable because it would be better to properly re-compute // the costs of all other variables instead. for (YulString const& referencedVar: references) if (varsToEliminate.count(referencedVar)) return varsToEliminate; varsToEliminate.insert(candidate); } return varsToEliminate; } template void eliminateVariables( Dialect const& _dialect, ASTNode& _node, size_t _numVariables, bool _allowMSizeOptimization ) { RematCandidateSelector selector{_dialect}; selector(_node); Rematerialiser::run(_dialect, _node, chooseVarsToEliminate(selector.candidates(), _numVariables)); UnusedPruner::runUntilStabilised(_dialect, _node, _allowMSizeOptimization); } void eliminateVariables( Dialect const& _dialect, Block& _block, vector const& _unreachables, bool _allowMSizeOptimization ) { RematCandidateSelector selector{_dialect}; selector(_block); std::map candidates; for (auto [cost, candidatesWithCost]: selector.candidates()) for (auto candidate: candidatesWithCost) candidates[get<0>(candidate)] = cost; set varsToEliminate; // TODO: this currently ignores the fact that variables may reference other variables we want to eliminate. for (auto const& unreachable: _unreachables) { map> suitableCandidates; size_t neededSlots = unreachable.deficit; for (auto varName: unreachable.variableChoices) { if (varsToEliminate.count(varName)) --neededSlots; else if (size_t* cost = util::valueOrNullptr(candidates, varName)) if (!util::contains(suitableCandidates[*cost], varName)) suitableCandidates[*cost].emplace_back(varName); } for (auto candidatesByCost: suitableCandidates) { for (auto candidate: candidatesByCost.second) if (neededSlots--) varsToEliminate.emplace(candidate); else break; if (!neededSlots) break; } } Rematerialiser::run(_dialect, _block, std::move(varsToEliminate), true); UnusedPruner::runUntilStabilised(_dialect, _block, _allowMSizeOptimization); } } bool StackCompressor::run( Dialect const& _dialect, Object& _object, bool _optimizeStackAllocation, size_t _maxIterations ) { yulAssert( _object.code && _object.code->statements.size() > 0 && holds_alternative(_object.code->statements.at(0)), "Need to run the function grouper before the stack compressor." ); bool usesOptimizedCodeGenerator = false; if (auto evmDialect = dynamic_cast(&_dialect)) usesOptimizedCodeGenerator = _optimizeStackAllocation && evmDialect->evmVersion().canOverchargeGasForCall() && evmDialect->providesObjectAccess(); bool allowMSizeOptimzation = !MSizeFinder::containsMSize(_dialect, *_object.code); if (usesOptimizedCodeGenerator) { yul::AsmAnalysisInfo analysisInfo = yul::AsmAnalyzer::analyzeStrictAssertCorrect(_dialect, _object); unique_ptr cfg = ControlFlowGraphBuilder::build(analysisInfo, _dialect, *_object.code); Block& mainBlock = std::get(_object.code->statements.at(0)); if ( auto stackTooDeepErrors = StackLayoutGenerator::reportStackTooDeep(*cfg, YulString{}); !stackTooDeepErrors.empty() ) eliminateVariables(_dialect, mainBlock, stackTooDeepErrors, allowMSizeOptimzation); for (size_t i = 1; i < _object.code->statements.size(); ++i) { auto& fun = std::get(_object.code->statements[i]); if ( auto stackTooDeepErrors = StackLayoutGenerator::reportStackTooDeep(*cfg, fun.name); !stackTooDeepErrors.empty() ) eliminateVariables(_dialect, fun.body, stackTooDeepErrors, allowMSizeOptimzation); } } else for (size_t iterations = 0; iterations < _maxIterations; iterations++) { map stackSurplus = CompilabilityChecker(_dialect, _object, _optimizeStackAllocation).stackDeficit; if (stackSurplus.empty()) return true; if (stackSurplus.count(YulString{})) { yulAssert(stackSurplus.at({}) > 0, "Invalid surplus value."); eliminateVariables( _dialect, std::get(_object.code->statements.at(0)), static_cast(stackSurplus.at({})), allowMSizeOptimzation ); } for (size_t i = 1; i < _object.code->statements.size(); ++i) { auto& fun = std::get(_object.code->statements[i]); if (!stackSurplus.count(fun.name)) continue; yulAssert(stackSurplus.at(fun.name) > 0, "Invalid surplus value."); eliminateVariables( _dialect, fun, static_cast(stackSurplus.at(fun.name)), allowMSizeOptimzation ); } } return false; }