/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ // SPDX-License-Identifier: GPL-3.0 /** * @date 2018 * Templatized list of simplification rules. */ #pragma once #include #include #include #include #include #include #include #include #include namespace solidity::evmasm { template S divWorkaround(S const& _a, S const& _b) { return (S)(bigint(_a) / bigint(_b)); } template S modWorkaround(S const& _a, S const& _b) { return (S)(bigint(_a) % bigint(_b)); } // This works around a bug fixed with Boost 1.64. // https://www.boost.org/doc/libs/release/libs/multiprecision/doc/html/boost_multiprecision/map/hist.html#boost_multiprecision.map.hist.multiprecision_2_3_1_boost_1_64 template S shlWorkaround(S const& _x, unsigned _amount) { return u256((bigint(_x) << _amount) & u256(-1)); } /// @returns k if _x == 2**k, nullopt otherwise inline std::optional binaryLogarithm(u256 const& _x) { if (_x == 0) return std::nullopt; size_t msb = boost::multiprecision::msb(_x); return (u256(1) << msb) == _x ? std::make_optional(msb) : std::nullopt; } // simplificationRuleList below was split up into parts to prevent // stack overflows in the JavaScript optimizer for emscripten builds // that affected certain browser versions. template std::vector> simplificationRuleListPart1( Pattern A, Pattern B, Pattern C, Pattern, Pattern ) { using Word = typename Pattern::Word; using Builtins = typename Pattern::Builtins; return std::vector>{ // arithmetic on constants {Builtins::ADD(A, B), [=]{ return A.d() + B.d(); }}, {Builtins::MUL(A, B), [=]{ return A.d() * B.d(); }}, {Builtins::SUB(A, B), [=]{ return A.d() - B.d(); }}, {Builtins::DIV(A, B), [=]{ return B.d() == 0 ? 0 : divWorkaround(A.d(), B.d()); }}, {Builtins::SDIV(A, B), [=]{ return B.d() == 0 ? 0 : s2u(divWorkaround(u2s(A.d()), u2s(B.d()))); }}, {Builtins::MOD(A, B), [=]{ return B.d() == 0 ? 0 : modWorkaround(A.d(), B.d()); }}, {Builtins::SMOD(A, B), [=]{ return B.d() == 0 ? 0 : s2u(modWorkaround(u2s(A.d()), u2s(B.d()))); }}, {Builtins::EXP(A, B), [=]{ return Word(boost::multiprecision::powm(bigint(A.d()), bigint(B.d()), bigint(1) << Pattern::WordSize)); }}, {Builtins::NOT(A), [=]{ return ~A.d(); }}, {Builtins::LT(A, B), [=]() -> Word { return A.d() < B.d() ? 1 : 0; }}, {Builtins::GT(A, B), [=]() -> Word { return A.d() > B.d() ? 1 : 0; }}, {Builtins::SLT(A, B), [=]() -> Word { return u2s(A.d()) < u2s(B.d()) ? 1 : 0; }}, {Builtins::SGT(A, B), [=]() -> Word { return u2s(A.d()) > u2s(B.d()) ? 1 : 0; }}, {Builtins::EQ(A, B), [=]() -> Word { return A.d() == B.d() ? 1 : 0; }}, {Builtins::ISZERO(A), [=]() -> Word { return A.d() == 0 ? 1 : 0; }}, {Builtins::AND(A, B), [=]{ return A.d() & B.d(); }}, {Builtins::OR(A, B), [=]{ return A.d() | B.d(); }}, {Builtins::XOR(A, B), [=]{ return A.d() ^ B.d(); }}, {Builtins::BYTE(A, B), [=]{ return A.d() >= Pattern::WordSize / 8 ? 0 : (B.d() >> unsigned(8 * (Pattern::WordSize / 8 - 1 - A.d()))) & 0xff; }}, {Builtins::ADDMOD(A, B, C), [=]{ return C.d() == 0 ? 0 : Word((bigint(A.d()) + bigint(B.d())) % C.d()); }}, {Builtins::MULMOD(A, B, C), [=]{ return C.d() == 0 ? 0 : Word((bigint(A.d()) * bigint(B.d())) % C.d()); }}, {Builtins::SIGNEXTEND(A, B), [=]() -> Word { if (A.d() >= Pattern::WordSize / 8 - 1) return B.d(); unsigned testBit = unsigned(A.d()) * 8 + 7; Word mask = (Word(1) << testBit) - 1; return boost::multiprecision::bit_test(B.d(), testBit) ? B.d() | ~mask : B.d() & mask; }}, {Builtins::SHL(A, B), [=]{ if (A.d() >= Pattern::WordSize) return Word(0); return shlWorkaround(B.d(), unsigned(A.d())); }}, {Builtins::SHR(A, B), [=]{ if (A.d() >= Pattern::WordSize) return Word(0); return B.d() >> unsigned(A.d()); }} }; } template std::vector> simplificationRuleListPart2( Pattern, Pattern, Pattern, Pattern X, Pattern Y ) { using Word = typename Pattern::Word; using Builtins = typename Pattern::Builtins; return std::vector> { // invariants involving known constants {Builtins::ADD(X, 0), [=]{ return X; }}, {Builtins::ADD(0, X), [=]{ return X; }}, {Builtins::SUB(X, 0), [=]{ return X; }}, {Builtins::SUB(~Word(0), X), [=]() -> Pattern { return Builtins::NOT(X); }}, {Builtins::MUL(X, 0), [=]{ return Word(0); }}, {Builtins::MUL(0, X), [=]{ return Word(0); }}, {Builtins::MUL(X, 1), [=]{ return X; }}, {Builtins::MUL(1, X), [=]{ return X; }}, {Builtins::MUL(X, Word(-1)), [=]() -> Pattern { return Builtins::SUB(0, X); }}, {Builtins::MUL(Word(-1), X), [=]() -> Pattern { return Builtins::SUB(0, X); }}, {Builtins::DIV(X, 0), [=]{ return Word(0); }}, {Builtins::DIV(0, X), [=]{ return Word(0); }}, {Builtins::DIV(X, 1), [=]{ return X; }}, {Builtins::SDIV(X, 0), [=]{ return Word(0); }}, {Builtins::SDIV(0, X), [=]{ return Word(0); }}, {Builtins::SDIV(X, 1), [=]{ return X; }}, {Builtins::AND(X, ~Word(0)), [=]{ return X; }}, {Builtins::AND(~Word(0), X), [=]{ return X; }}, {Builtins::AND(X, 0), [=]{ return Word(0); }}, {Builtins::AND(0, X), [=]{ return Word(0); }}, {Builtins::OR(X, 0), [=]{ return X; }}, {Builtins::OR(0, X), [=]{ return X; }}, {Builtins::OR(X, ~Word(0)), [=]{ return ~Word(0); }}, {Builtins::OR(~Word(0), X), [=]{ return ~Word(0); }}, {Builtins::XOR(X, 0), [=]{ return X; }}, {Builtins::XOR(0, X), [=]{ return X; }}, {Builtins::MOD(X, 0), [=]{ return Word(0); }}, {Builtins::MOD(0, X), [=]{ return Word(0); }}, {Builtins::EQ(X, 0), [=]() -> Pattern { return Builtins::ISZERO(X); },}, {Builtins::EQ(0, X), [=]() -> Pattern { return Builtins::ISZERO(X); },}, {Builtins::SHL(0, X), [=]{ return X; }}, {Builtins::SHR(0, X), [=]{ return X; }}, {Builtins::SHL(X, 0), [=]{ return Word(0); }}, {Builtins::SHR(X, 0), [=]{ return Word(0); }}, {Builtins::GT(X, 0), [=]() -> Pattern { return Builtins::ISZERO(Builtins::ISZERO(X)); }}, {Builtins::LT(0, X), [=]() -> Pattern { return Builtins::ISZERO(Builtins::ISZERO(X)); }}, {Builtins::GT(X, ~Word(0)), [=]{ return Word(0); }}, {Builtins::LT(~Word(0), X), [=]{ return Word(0); }}, {Builtins::GT(0, X), [=]{ return Word(0); }}, {Builtins::LT(X, 0), [=]{ return Word(0); }}, {Builtins::AND(Builtins::BYTE(X, Y), Word(0xff)), [=]() -> Pattern { return Builtins::BYTE(X, Y); }}, {Builtins::BYTE(Word(Pattern::WordSize / 8 - 1), X), [=]() -> Pattern { return Builtins::AND(X, Word(0xff)); }}, }; } template std::vector> simplificationRuleListPart3( Pattern, Pattern, Pattern, Pattern X, Pattern ) { using Word = typename Pattern::Word; using Builtins = typename Pattern::Builtins; return std::vector> { // operations involving an expression and itself {Builtins::AND(X, X), [=]{ return X; }}, {Builtins::OR(X, X), [=]{ return X; }}, {Builtins::XOR(X, X), [=]{ return Word(0); }}, {Builtins::SUB(X, X), [=]{ return Word(0); }}, {Builtins::EQ(X, X), [=]{ return Word(1); }}, {Builtins::LT(X, X), [=]{ return Word(0); }}, {Builtins::SLT(X, X), [=]{ return Word(0); }}, {Builtins::GT(X, X), [=]{ return Word(0); }}, {Builtins::SGT(X, X), [=]{ return Word(0); }}, {Builtins::MOD(X, X), [=]{ return Word(0); }} }; } template std::vector> simplificationRuleListPart4( Pattern, Pattern, Pattern, Pattern X, Pattern Y ) { using Word = typename Pattern::Word; using Builtins = typename Pattern::Builtins; return std::vector> { // logical instruction combinations {Builtins::NOT(Builtins::NOT(X)), [=]{ return X; }}, {Builtins::XOR(X, Builtins::XOR(X, Y)), [=]{ return Y; }}, {Builtins::XOR(X, Builtins::XOR(Y, X)), [=]{ return Y; }}, {Builtins::XOR(Builtins::XOR(X, Y), X), [=]{ return Y; }}, {Builtins::XOR(Builtins::XOR(Y, X), X), [=]{ return Y; }}, {Builtins::OR(X, Builtins::AND(X, Y)), [=]{ return X; }}, {Builtins::OR(X, Builtins::AND(Y, X)), [=]{ return X; }}, {Builtins::OR(Builtins::AND(X, Y), X), [=]{ return X; }}, {Builtins::OR(Builtins::AND(Y, X), X), [=]{ return X; }}, {Builtins::AND(X, Builtins::OR(X, Y)), [=]{ return X; }}, {Builtins::AND(X, Builtins::OR(Y, X)), [=]{ return X; }}, {Builtins::AND(Builtins::OR(X, Y), X), [=]{ return X; }}, {Builtins::AND(Builtins::OR(Y, X), X), [=]{ return X; }}, {Builtins::AND(X, Builtins::NOT(X)), [=]{ return Word(0); }}, {Builtins::AND(Builtins::NOT(X), X), [=]{ return Word(0); }}, {Builtins::OR(X, Builtins::NOT(X)), [=]{ return ~Word(0); }}, {Builtins::OR(Builtins::NOT(X), X), [=]{ return ~Word(0); }}, }; } template std::vector> simplificationRuleListPart4_5( Pattern A, Pattern B, Pattern, Pattern X, Pattern Y ) { using Builtins = typename Pattern::Builtins; return std::vector>{ // idempotent operations {Builtins::AND(Builtins::AND(X, Y), Y), [=]{ return Builtins::AND(X, Y); }}, {Builtins::AND(Y, Builtins::AND(X, Y)), [=]{ return Builtins::AND(X, Y); }}, {Builtins::AND(Builtins::AND(Y, X), Y), [=]{ return Builtins::AND(Y, X); }}, {Builtins::AND(Y, Builtins::AND(Y, X)), [=]{ return Builtins::AND(Y, X); }}, {Builtins::OR(Builtins::OR(X, Y), Y), [=]{ return Builtins::OR(X, Y); }}, {Builtins::OR(Y, Builtins::OR(X, Y)), [=]{ return Builtins::OR(X, Y); }}, {Builtins::OR(Builtins::OR(Y, X), Y), [=]{ return Builtins::OR(Y, X); }}, {Builtins::OR(Y, Builtins::OR(Y, X)), [=]{ return Builtins::OR(Y, X); }}, {Builtins::SIGNEXTEND(X, Builtins::SIGNEXTEND(X, Y)), [=]() { return Builtins::SIGNEXTEND(X, Y); }}, {Builtins::SIGNEXTEND(A, Builtins::SIGNEXTEND(B, X)), [=]() { return Builtins::SIGNEXTEND(A.d() < B.d() ? A.d() : B.d(), X); }}, }; } template std::vector> simplificationRuleListPart5( bool _forYulOptimizer, Pattern A, Pattern B, Pattern, Pattern X, Pattern Y ) { using Word = typename Pattern::Word; using Builtins = typename Pattern::Builtins; std::vector> rules; // The libevmasm optimizer does not support rules resulting in opcodes with more than two arguments. if (_forYulOptimizer) { // Replace MOD(MUL(X, Y), A) with MULMOD(X, Y, A) iff A=2**N rules.push_back({ Builtins::MOD(Builtins::MUL(X, Y), A), [=]() -> Pattern { return Builtins::MULMOD(X, Y, A); }, [=] { return A.d() > 0 && ((A.d() & (A.d() - 1)) == 0); } }); // Replace MOD(ADD(X, Y), A) with ADDMOD(X, Y, A) iff A=2**N rules.push_back({ Builtins::MOD(Builtins::ADD(X, Y), A), [=]() -> Pattern { return Builtins::ADDMOD(X, Y, A); }, [=] { return A.d() > 0 && ((A.d() & (A.d() - 1)) == 0); } }); } // Replace MOD X, with AND X, - 1 for (size_t i = 0; i < Pattern::WordSize; ++i) { Word value = Word(1) << i; rules.push_back({ Builtins::MOD(X, value), [=]() -> Pattern { return Builtins::AND(X, value - 1); } }); } // Replace SHL >=256, X with 0 rules.push_back({ Builtins::SHL(A, X), [=]() -> Pattern { return Word(0); }, [=]() { return A.d() >= Pattern::WordSize; } }); // Replace SHR >=256, X with 0 rules.push_back({ Builtins::SHR(A, X), [=]() -> Pattern { return Word(0); }, [=]() { return A.d() >= Pattern::WordSize; } }); // Replace BYTE(A, X), A >= 32 with 0 rules.push_back({ Builtins::BYTE(A, X), [=]() -> Pattern { return Word(0); }, [=]() { return A.d() >= Pattern::WordSize / 8; } }); // Replace SIGNEXTEND(A, X), A >= 31 with ID rules.push_back({ Builtins::SIGNEXTEND(A, X), [=]() -> Pattern { return X; }, [=]() { return A.d() >= Pattern::WordSize / 8 - 1; } }); rules.push_back({ Builtins::AND(A, Builtins::SIGNEXTEND(B, X)), [=]() -> Pattern { return Builtins::AND(A, X); }, [=]() { return B.d() < Pattern::WordSize / 8 - 1 && (A.d() & ((u256(1) << static_cast((B.d() + 1) * 8)) - 1)) == A.d(); } }); rules.push_back({ Builtins::AND(Builtins::SIGNEXTEND(B, X), A), [=]() -> Pattern { return Builtins::AND(A, X); }, [=]() { return B.d() < Pattern::WordSize / 8 - 1 && (A.d() & ((u256(1) << static_cast((B.d() + 1) * 8)) - 1)) == A.d(); } }); for (auto instr: { Instruction::ADDRESS, Instruction::CALLER, Instruction::ORIGIN, Instruction::COINBASE }) { assertThrow(Pattern::WordSize > 160, OptimizerException, ""); Word const mask = (Word(1) << 160) - 1; rules.push_back({ Builtins::AND(Pattern{instr}, mask), [=]() -> Pattern { return {instr}; } }); rules.push_back({ Builtins::AND(mask, Pattern{instr}), [=]() -> Pattern { return {instr}; } }); } return rules; } template std::vector> simplificationRuleListPart6( Pattern, Pattern, Pattern, Pattern X, Pattern Y ) { using Builtins = typename Pattern::Builtins; std::vector> rules; // Double negation of opcodes with boolean result for (auto instr: { Instruction::EQ, Instruction::LT, Instruction::SLT, Instruction::GT, Instruction::SGT }) { typename Builtins::PatternGeneratorInstance op{instr}; rules.push_back({ Builtins::ISZERO(Builtins::ISZERO(op(X, Y))), [=]() -> Pattern { return op(X, Y); } }); } rules.push_back({ Builtins::ISZERO(Builtins::ISZERO(Builtins::ISZERO(X))), [=]() -> Pattern { return Builtins::ISZERO(X); } }); rules.push_back({ Builtins::ISZERO(Builtins::XOR(X, Y)), [=]() -> Pattern { return Builtins::EQ(X, Y); } }); rules.push_back({ Builtins::ISZERO(Builtins::SUB(X, Y)), [=]() -> Pattern { return Builtins::EQ(X, Y); } }); return rules; } template std::vector> simplificationRuleListPart7( Pattern A, Pattern B, Pattern, Pattern X, Pattern Y, Pattern Z ) { using Word = typename Pattern::Word; using Builtins = typename Pattern::Builtins; std::vector> rules; // Associative operations for (auto&& instrAndFunc: std::vector>>{ {Instruction::ADD, std::plus()}, {Instruction::MUL, std::multiplies()}, {Instruction::AND, std::bit_and()}, {Instruction::OR, std::bit_or()}, {Instruction::XOR, std::bit_xor()} }) { typename Builtins::PatternGeneratorInstance op{instrAndFunc.first}; std::function fun = instrAndFunc.second; // Moving constants to the outside, order matters here - we first add rules // for constants and then for non-constants. // xa can be (X, A) or (A, X) for (auto const& opXA: {op(X, A), op(A, X)}) { rules += std::vector>{{ // (X+A)+B -> X+(A+B) op(opXA, B), [=]() -> Pattern { return op(X, fun(A.d(), B.d())); } }, { // (X+A)+Y -> (X+Y)+A op(opXA, Y), [=]() -> Pattern { return op(op(X, Y), A); } }, { // B+(X+A) -> X+(A+B) op(B, opXA), [=]() -> Pattern { return op(X, fun(A.d(), B.d())); } }, { // Y+(X+A) -> (Y+X)+A op(Y, opXA), [=]() -> Pattern { return op(op(Y, X), A); } }}; } } // Combine two SHL by constant rules.push_back({ // SHL(B, SHL(A, X)) -> SHL(min(A+B, 256), X) Builtins::SHL(B, Builtins::SHL(A, X)), [=]() -> Pattern { bigint sum = bigint(A.d()) + B.d(); if (sum >= Pattern::WordSize) return Builtins::AND(X, Word(0)); else return Builtins::SHL(Word(sum), X); } }); // Combine two SHR by constant rules.push_back({ // SHR(B, SHR(A, X)) -> SHR(min(A+B, 256), X) Builtins::SHR(B, Builtins::SHR(A, X)), [=]() -> Pattern { bigint sum = bigint(A.d()) + B.d(); if (sum >= Pattern::WordSize) return Builtins::AND(X, Word(0)); else return Builtins::SHR(Word(sum), X); } }); // Combine SHL-SHR by constant rules.push_back({ // SHR(B, SHL(A, X)) -> AND(SH[L/R]([B - A / A - B], X), Mask) Builtins::SHR(B, Builtins::SHL(A, X)), [=]() -> Pattern { Word mask = shlWorkaround(~Word(0), unsigned(A.d())) >> unsigned(B.d()); if (A.d() > B.d()) return Builtins::AND(Builtins::SHL(A.d() - B.d(), X), mask); else if (B.d() > A.d()) return Builtins::AND(Builtins::SHR(B.d() - A.d(), X), mask); else return Builtins::AND(X, mask); }, [=] { return A.d() < Pattern::WordSize && B.d() < Pattern::WordSize; } }); // Combine SHR-SHL by constant rules.push_back({ // SHL(B, SHR(A, X)) -> AND(SH[L/R]([B - A / A - B], X), Mask) Builtins::SHL(B, Builtins::SHR(A, X)), [=]() -> Pattern { Word mask = shlWorkaround((~Word(0)) >> unsigned(A.d()), unsigned(B.d())); if (A.d() > B.d()) return Builtins::AND(Builtins::SHR(A.d() - B.d(), X), mask); else if (B.d() > A.d()) return Builtins::AND(Builtins::SHL(B.d() - A.d(), X), mask); else return Builtins::AND(X, mask); }, [=] { return A.d() < Pattern::WordSize && B.d() < Pattern::WordSize; } }); // Move AND with constant across SHL and SHR by constant for (auto instr: {Instruction::SHL, Instruction::SHR}) { typename Builtins::PatternGeneratorInstance shiftOp{instr}; auto replacement = [=]() -> Pattern { Word mask = instr == Instruction::SHL ? shlWorkaround(A.d(), unsigned(B.d())) : A.d() >> unsigned(B.d()); return Builtins::AND(shiftOp(B.d(), X), std::move(mask)); }; rules.push_back({ // SH[L/R](B, AND(X, A)) -> AND(SH[L/R](B, X), [ A << B / A >> B ]) shiftOp(B, Builtins::AND(X, A)), replacement, [=] { return B.d() < Pattern::WordSize; } }); rules.push_back({ // SH[L/R](B, AND(A, X)) -> AND(SH[L/R](B, X), [ A << B / A >> B ]) shiftOp(B, Builtins::AND(A, X)), replacement, [=] { return B.d() < Pattern::WordSize; } }); } // Combine alternating AND/OR/AND with constant, // AND(OR(AND(X, A), Y), B) -> OR(AND(X, A & B), AND(Y, B)) // Many versions due to commutativity. for (auto const& inner: {Builtins::AND(X, A), Builtins::AND(A, X)}) for (auto const& second: {Builtins::OR(inner, Y), Builtins::OR(Y, inner)}) { // We might swap X and Y but this is not an issue anymore. rules.push_back({ Builtins::AND(second, B), [=]() -> Pattern { return Builtins::OR(Builtins::AND(X, A.d() & B.d()), Builtins::AND(Y, B)); } }); rules.push_back({ Builtins::AND(B, second), [=]() -> Pattern { return Builtins::OR(Builtins::AND(X, A.d() & B.d()), Builtins::AND(Y, B)); } }); } rules.push_back({ // MUL(X, SHL(Y, 1)) -> SHL(Y, X) Builtins::MUL(X, Builtins::SHL(Y, Word(1))), [=]() -> Pattern { return Builtins::SHL(Y, X); } }); rules.push_back({ // MUL(SHL(X, 1), Y) -> SHL(X, Y) Builtins::MUL(Builtins::SHL(X, Word(1)), Y), [=]() -> Pattern { return Builtins::SHL(X, Y); } }); rules.push_back({ // DIV(X, SHL(Y, 1)) -> SHR(Y, X) Builtins::DIV(X, Builtins::SHL(Y, Word(1))), [=]() -> Pattern { return Builtins::SHR(Y, X); } }); std::function feasibilityFunction = [=]() { if (B.d() > Pattern::WordSize) return false; unsigned bAsUint = static_cast(B.d()); return (A.d() & ((~Word(0)) >> bAsUint)) == ((~Word(0)) >> bAsUint); }; rules.push_back({ // AND(A, SHR(B, X)) -> A & ((2^256-1) >> B) == ((2^256-1) >> B) Builtins::AND(A, Builtins::SHR(B, X)), [=]() -> Pattern { return Builtins::SHR(B, X); }, feasibilityFunction }); rules.push_back({ // AND(SHR(B, X), A) -> ((2^256-1) >> B) & A == ((2^256-1) >> B) Builtins::AND(Builtins::SHR(B, X), A), [=]() -> Pattern { return Builtins::SHR(B, X); }, feasibilityFunction }); rules.push_back({ // AND(SHL(Z, X), SHL(Z, Y)) -> SHL(Z, AND(X, Y)) Builtins::AND(Builtins::SHL(Z, X), Builtins::SHL(Z, Y)), [=]() -> Pattern { return Builtins::SHL(Z, Builtins::AND(X, Y)); } }); rules.push_back({ Builtins::BYTE(A, Builtins::SHL(B, X)), [=]() -> Pattern { return Builtins::BYTE(A.d() + B.d() / 8, X); }, [=] { return B.d() % 8 == 0 && A.d() <= 32 && B.d() <= 256; } }); rules.push_back({ Builtins::BYTE(A, Builtins::SHR(B, X)), [=]() -> Pattern { return Word(0); }, [=] { return A.d() < B.d() / 8; } }); rules.push_back({ Builtins::BYTE(A, Builtins::SHR(B, X)), [=]() -> Pattern { return Builtins::BYTE(A.d() - B.d() / 8, X); }, [=] { return B.d() % 8 == 0 && A.d() < Pattern::WordSize / 8 && B.d() <= Pattern::WordSize && A.d() >= B.d() / 8; } }); rules.push_back({ Builtins::SHL(A, Builtins::SIGNEXTEND(B, X)), [=]() -> Pattern { return Builtins::SIGNEXTEND((A.d() >> 3) + B.d(), Builtins::SHL(A, X)); }, [=] { return (A.d() & 7) == 0 && A.d() <= Pattern::WordSize && B.d() <= Pattern::WordSize / 8; } }); rules.push_back({ Builtins::SIGNEXTEND(A, Builtins::SHR(B, X)), [=]() -> Pattern { return Builtins::SAR(B, X); }, [=] { return B.d() % 8 == 0 && B.d() <= Pattern::WordSize && A.d() <= Pattern::WordSize && (Pattern::WordSize - B.d()) / 8 == A.d() + 1; } }); return rules; } template std::vector> simplificationRuleListPart8( Pattern A, Pattern, Pattern, Pattern X, Pattern Y ) { using Builtins = typename Pattern::Builtins; std::vector> rules; // move constants across subtractions rules += std::vector>{ { // X - A -> X + (-A) Builtins::SUB(X, A), [=]() -> Pattern { return Builtins::ADD(X, 0 - A.d()); } }, { // (X + A) - Y -> (X - Y) + A Builtins::SUB(Builtins::ADD(X, A), Y), [=]() -> Pattern { return Builtins::ADD(Builtins::SUB(X, Y), A); } }, { // (A + X) - Y -> (X - Y) + A Builtins::SUB(Builtins::ADD(A, X), Y), [=]() -> Pattern { return Builtins::ADD(Builtins::SUB(X, Y), A); } }, { // X - (Y + A) -> (X - Y) + (-A) Builtins::SUB(X, Builtins::ADD(Y, A)), [=]() -> Pattern { return Builtins::ADD(Builtins::SUB(X, Y), 0 - A.d()); } }, { // X - (A + Y) -> (X - Y) + (-A) Builtins::SUB(X, Builtins::ADD(A, Y)), [=]() -> Pattern { return Builtins::ADD(Builtins::SUB(X, Y), 0 - A.d()); } }, { // (X - A) - Y -> (X - Y) - A Builtins::SUB(Builtins::SUB(X, A), Y), [=]() -> Pattern { return Builtins::SUB(Builtins::SUB(X, Y), A); } }, { // (A - X) - Y -> A - (X + Y) Builtins::SUB(Builtins::SUB(A, X), Y), [=]() -> Pattern { return Builtins::SUB(A, Builtins::ADD(X, Y)); } }, { // X - (Y - A) -> (X - Y) + A Builtins::SUB(X, Builtins::SUB(Y, A)), [=]() -> Pattern { return Builtins::ADD(Builtins::SUB(X, Y), A.d()); } }, { // X - (A - Y) -> (X + Y) + (-A) Builtins::SUB(X, Builtins::SUB(A, Y)), [=]() -> Pattern { return Builtins::ADD(Builtins::ADD(X, Y), 0 - A.d()); } } }; return rules; } template std::vector> evmRuleList( langutil::EVMVersion _evmVersion, Pattern A, Pattern, Pattern, Pattern, Pattern X, Pattern, Pattern ) { using Builtins = typename Pattern::Builtins; using Word = typename Pattern::Word; std::vector> rules; if (_evmVersion.hasSelfBalance()) rules.push_back({ Builtins::BALANCE(Instruction::ADDRESS), []() -> Pattern { return Instruction::SELFBALANCE; } }); rules.emplace_back( Builtins::EXP(0, X), [=]() -> Pattern { return Builtins::ISZERO(X); } ); rules.emplace_back( Builtins::EXP(1, X), [=]() -> Pattern { return Word(1); } ); if (_evmVersion.hasBitwiseShifting()) { rules.emplace_back( Builtins::EXP(2, X), [=]() -> Pattern { return Builtins::SHL(X, 1); } ); rules.emplace_back( Builtins::MUL(A, X), [=]() -> Pattern { return Builtins::SHL(u256(*binaryLogarithm(A.d())), X); }, [=] { return binaryLogarithm(A.d()).has_value(); } ); rules.emplace_back( Builtins::MUL(X, A), [=]() -> Pattern { return Builtins::SHL(u256(*binaryLogarithm(A.d())), X); }, [=] { return binaryLogarithm(A.d()).has_value(); } ); rules.emplace_back( Builtins::DIV(X, A), [=]() -> Pattern { return Builtins::SHR(u256(*binaryLogarithm(A.d())), X); }, [=] { return binaryLogarithm(A.d()).has_value(); } ); } rules.emplace_back( Builtins::EXP(Word(-1), X), [=]() -> Pattern { return Builtins::SUB( Builtins::ISZERO(Builtins::AND(X, Word(1))), Builtins::AND(X, Word(1)) ); } ); return rules; } /// @returns a list of simplification rules given certain match placeholders. /// A, B and C should represent constants, W, X, Y, and Z arbitrary expressions. /// The simplifications should never change the order of evaluation of /// arbitrary operations. template std::vector> simplificationRuleList( std::optional _evmVersion, Pattern A, Pattern B, Pattern C, Pattern W, Pattern X, Pattern Y, Pattern Z ) { using Word = typename Pattern::Word; // Some sanity checks assertThrow(Pattern::WordSize % 8 == 0, OptimizerException, ""); assertThrow(Pattern::WordSize >= 8, OptimizerException, ""); assertThrow(Pattern::WordSize <= 256, OptimizerException, ""); assertThrow(Word(-1) == ~Word(0), OptimizerException, ""); assertThrow(Word(-1) + 1 == Word(0), OptimizerException, ""); std::vector> rules; rules += simplificationRuleListPart1(A, B, C, W, X); rules += simplificationRuleListPart2(A, B, C, W, X); rules += simplificationRuleListPart3(A, B, C, W, X); rules += simplificationRuleListPart4(A, B, C, W, X); rules += simplificationRuleListPart4_5(A, B, C, W, X); rules += simplificationRuleListPart5(_evmVersion.has_value(), A, B, C, W, X); rules += simplificationRuleListPart6(A, B, C, W, X); rules += simplificationRuleListPart7(A, B, C, W, X, Y); rules += simplificationRuleListPart8(A, B, C, W, X); if (_evmVersion.has_value()) rules += evmRuleList(*_evmVersion, A, B, C, W, X, Y, Z); return rules; } }