/*
	This file is part of solidity.
	solidity is free software: you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation, either version 3 of the License, or
	(at your option) any later version.
	solidity is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
	GNU General Public License for more details.
	You should have received a copy of the GNU General Public License
	along with solidity.  If not, see .
*/
#include 
#ifdef HAVE_Z3
#include 
#endif
#include 
#include 
using namespace std;
using namespace dev;
using namespace langutil;
using namespace dev::solidity;
CHC::CHC(smt::EncodingContext& _context, ErrorReporter& _errorReporter):
	SMTEncoder(_context),
#ifdef HAVE_Z3
	m_interface(make_shared()),
#endif
	m_outerErrorReporter(_errorReporter)
{
}
void CHC::analyze(SourceUnit const& _source)
{
	solAssert(_source.annotation().experimentalFeatures.count(ExperimentalFeature::SMTChecker), "");
#ifdef HAVE_Z3
	auto z3Interface = dynamic_pointer_cast(m_interface);
	solAssert(z3Interface, "");
	m_context.setSolver(z3Interface->z3Interface());
	m_context.clear();
	m_context.setAssertionAccumulation(false);
	m_variableUsage.setFunctionInlining(false);
	_source.accept(*this);
#endif
}
bool CHC::visit(ContractDefinition const& _contract)
{
	if (!shouldVisit(_contract))
		return false;
	reset();
	initContract(_contract);
	m_stateVariables = _contract.stateVariablesIncludingInherited();
	for (auto const& var: m_stateVariables)
		// SMT solvers do not support function types as arguments.
		if (var->type()->category() == Type::Category::Function)
			m_stateSorts.push_back(make_shared(smt::Kind::Int));
		else
			m_stateSorts.push_back(smt::smtSort(*var->type()));
	clearIndices();
	string interfaceName = "interface_" + _contract.name() + "_" + to_string(_contract.id());
	m_interfacePredicate = createSymbolicBlock(interfaceSort(), interfaceName);
	// TODO create static instances for Bool/Int sorts in SolverInterface.
	auto boolSort = make_shared(smt::Kind::Bool);
	auto errorFunctionSort = make_shared(
		vector(),
		boolSort
	);
	m_errorPredicate = createSymbolicBlock(errorFunctionSort, "error");
	// If the contract has a constructor it is handled as a function.
	// Otherwise we zero-initialize all state vars.
	if (!_contract.constructor())
	{
		string constructorName = "constructor_" + _contract.name() + "_" + to_string(_contract.id());
		m_constructorPredicate = createSymbolicBlock(constructorSort(), constructorName);
		smt::Expression constructorPred = (*m_constructorPredicate)({});
		addRule(constructorPred, constructorName);
		for (auto const& var: m_stateVariables)
		{
			auto const& symbVar = m_context.variable(*var);
			symbVar->increaseIndex();
			m_interface->declareVariable(symbVar->currentName(), *symbVar->sort());
			m_context.setZeroValue(*symbVar);
		}
		connectBlocks(constructorPred, interface());
	}
	SMTEncoder::visit(_contract);
	return false;
}
void CHC::endVisit(ContractDefinition const& _contract)
{
	if (!shouldVisit(_contract))
		return;
	for (unsigned i = 0; i < m_verificationTargets.size(); ++i)
	{
		auto const& target = m_verificationTargets.at(i);
		auto errorAppl = error(i + 1);
		if (query(errorAppl, target->location()))
			m_safeAssertions.insert(target);
	}
	SMTEncoder::endVisit(_contract);
}
bool CHC::visit(FunctionDefinition const& _function)
{
	if (!shouldVisit(_function))
		return false;
	solAssert(!m_currentFunction, "Inlining internal function calls not yet implemented");
	m_currentFunction = &_function;
	initFunction(_function);
	auto functionEntryBlock = createBlock(m_currentFunction);
	auto bodyBlock = createBlock(&m_currentFunction->body());
	auto functionPred = predicate(*functionEntryBlock, currentFunctionVariables());
	auto bodyPred = predicate(*bodyBlock);
	// Store the constraints related to variable initialization.
	smt::Expression const& initAssertions = m_context.assertions();
	m_context.pushSolver();
	connectBlocks(interface(), functionPred);
	connectBlocks(functionPred, bodyPred);
	m_context.popSolver();
	setCurrentBlock(*bodyBlock);
	// We need to re-add the constraints that were created for initialization of variables.
	m_context.addAssertion(initAssertions);
	SMTEncoder::visit(*m_currentFunction);
	return false;
}
void CHC::endVisit(FunctionDefinition const& _function)
{
	if (!shouldVisit(_function))
		return;
	connectBlocks(m_currentBlock, interface());
	solAssert(&_function == m_currentFunction, "");
	m_currentFunction = nullptr;
	SMTEncoder::endVisit(_function);
}
bool CHC::visit(IfStatement const& _if)
{
	solAssert(m_currentFunction, "");
	bool unknownFunctionCallWasSeen = m_unknownFunctionCallSeen;
	m_unknownFunctionCallSeen = false;
	solAssert(m_currentFunction, "");
	auto const& functionBody = m_currentFunction->body();
	auto ifHeaderBlock = createBlock(&_if, "if_header_");
	auto trueBlock = createBlock(&_if.trueStatement(), "if_true_");
	auto falseBlock = _if.falseStatement() ? createBlock(_if.falseStatement(), "if_false_") : nullptr;
	auto afterIfBlock = createBlock(&functionBody);
	connectBlocks(m_currentBlock, predicate(*ifHeaderBlock));
	setCurrentBlock(*ifHeaderBlock);
	_if.condition().accept(*this);
	auto condition = expr(_if.condition());
	connectBlocks(m_currentBlock, predicate(*trueBlock), condition);
	if (_if.falseStatement())
		connectBlocks(m_currentBlock, predicate(*falseBlock), !condition);
	else
		connectBlocks(m_currentBlock, predicate(*afterIfBlock), !condition);
	setCurrentBlock(*trueBlock);
	_if.trueStatement().accept(*this);
	connectBlocks(m_currentBlock, predicate(*afterIfBlock));
	if (_if.falseStatement())
	{
		setCurrentBlock(*falseBlock);
		_if.falseStatement()->accept(*this);
		connectBlocks(m_currentBlock, predicate(*afterIfBlock));
	}
	setCurrentBlock(*afterIfBlock);
	if (m_unknownFunctionCallSeen)
		eraseKnowledge();
	m_unknownFunctionCallSeen = unknownFunctionCallWasSeen;
	return false;
}
bool CHC::visit(WhileStatement const& _while)
{
	bool unknownFunctionCallWasSeen = m_unknownFunctionCallSeen;
	m_unknownFunctionCallSeen = false;
	solAssert(m_currentFunction, "");
	auto const& functionBody = m_currentFunction->body();
	auto namePrefix = string(_while.isDoWhile() ? "do_" : "") + "while";
	auto loopHeaderBlock = createBlock(&_while, namePrefix + "_header_");
	auto loopBodyBlock = createBlock(&_while.body(), namePrefix + "_body_");
	auto afterLoopBlock = createBlock(&functionBody);
	auto outerBreakDest = m_breakDest;
	auto outerContinueDest = m_continueDest;
	m_breakDest = afterLoopBlock.get();
	m_continueDest = loopHeaderBlock.get();
	if (_while.isDoWhile())
		_while.body().accept(*this);
	connectBlocks(m_currentBlock, predicate(*loopHeaderBlock));
	setCurrentBlock(*loopHeaderBlock);
	_while.condition().accept(*this);
	auto condition = expr(_while.condition());
	connectBlocks(m_currentBlock, predicate(*loopBodyBlock), condition);
	connectBlocks(m_currentBlock, predicate(*afterLoopBlock), !condition);
	// Loop body visit.
	setCurrentBlock(*loopBodyBlock);
	_while.body().accept(*this);
	m_breakDest = outerBreakDest;
	m_continueDest = outerContinueDest;
	// Back edge.
	connectBlocks(m_currentBlock, predicate(*loopHeaderBlock));
	setCurrentBlock(*afterLoopBlock);
	if (m_unknownFunctionCallSeen)
		eraseKnowledge();
	m_unknownFunctionCallSeen = unknownFunctionCallWasSeen;
	return false;
}
bool CHC::visit(ForStatement const& _for)
{
	bool unknownFunctionCallWasSeen = m_unknownFunctionCallSeen;
	m_unknownFunctionCallSeen = false;
	solAssert(m_currentFunction, "");
	auto const& functionBody = m_currentFunction->body();
	auto loopHeaderBlock = createBlock(&_for, "for_header_");
	auto loopBodyBlock = createBlock(&_for.body(), "for_body_");
	auto afterLoopBlock = createBlock(&functionBody);
	auto postLoop = _for.loopExpression();
	auto postLoopBlock = postLoop ? createBlock(postLoop, "for_post_") : nullptr;
	auto outerBreakDest = m_breakDest;
	auto outerContinueDest = m_continueDest;
	m_breakDest = afterLoopBlock.get();
	m_continueDest = postLoop ? postLoopBlock.get() : loopHeaderBlock.get();
	if (auto init = _for.initializationExpression())
		init->accept(*this);
	connectBlocks(m_currentBlock, predicate(*loopHeaderBlock));
	setCurrentBlock(*loopHeaderBlock);
	auto condition = smt::Expression(true);
	if (auto forCondition = _for.condition())
	{
		forCondition->accept(*this);
		condition = expr(*forCondition);
	}
	connectBlocks(m_currentBlock, predicate(*loopBodyBlock), condition);
	connectBlocks(m_currentBlock, predicate(*afterLoopBlock), !condition);
	// Loop body visit.
	setCurrentBlock(*loopBodyBlock);
	_for.body().accept(*this);
	if (postLoop)
	{
		connectBlocks(m_currentBlock, predicate(*postLoopBlock));
		setCurrentBlock(*postLoopBlock);
		postLoop->accept(*this);
	}
	m_breakDest = outerBreakDest;
	m_continueDest = outerContinueDest;
	// Back edge.
	connectBlocks(m_currentBlock, predicate(*loopHeaderBlock));
	setCurrentBlock(*afterLoopBlock);
	if (m_unknownFunctionCallSeen)
		eraseKnowledge();
	m_unknownFunctionCallSeen = unknownFunctionCallWasSeen;
	return false;
}
void CHC::endVisit(FunctionCall const& _funCall)
{
	solAssert(_funCall.annotation().kind != FunctionCallKind::Unset, "");
	if (_funCall.annotation().kind != FunctionCallKind::FunctionCall)
	{
		SMTEncoder::endVisit(_funCall);
		return;
	}
	FunctionType const& funType = dynamic_cast(*_funCall.expression().annotation().type);
	switch (funType.kind())
	{
	case FunctionType::Kind::Assert:
		visitAssert(_funCall);
		SMTEncoder::endVisit(_funCall);
		break;
	case FunctionType::Kind::Internal:
	case FunctionType::Kind::External:
	case FunctionType::Kind::DelegateCall:
	case FunctionType::Kind::BareCall:
	case FunctionType::Kind::BareCallCode:
	case FunctionType::Kind::BareDelegateCall:
	case FunctionType::Kind::BareStaticCall:
	case FunctionType::Kind::Creation:
	case FunctionType::Kind::KECCAK256:
	case FunctionType::Kind::ECRecover:
	case FunctionType::Kind::SHA256:
	case FunctionType::Kind::RIPEMD160:
	case FunctionType::Kind::BlockHash:
	case FunctionType::Kind::AddMod:
	case FunctionType::Kind::MulMod:
		SMTEncoder::endVisit(_funCall);
		unknownFunctionCall(_funCall);
		break;
	default:
		SMTEncoder::endVisit(_funCall);
		break;
	}
	createReturnedExpressions(_funCall);
}
void CHC::endVisit(Break const& _break)
{
	solAssert(m_breakDest, "");
	connectBlocks(m_currentBlock, predicate(*m_breakDest));
	auto breakGhost = createBlock(&_break, "break_ghost_");
	m_currentBlock = predicate(*breakGhost);
}
void CHC::endVisit(Continue const& _continue)
{
	solAssert(m_continueDest, "");
	connectBlocks(m_currentBlock, predicate(*m_continueDest));
	auto continueGhost = createBlock(&_continue, "continue_ghost_");
	m_currentBlock = predicate(*continueGhost);
}
void CHC::visitAssert(FunctionCall const& _funCall)
{
	auto const& args = _funCall.arguments();
	solAssert(args.size() == 1, "");
	solAssert(args.front()->annotation().type->category() == Type::Category::Bool, "");
	createErrorBlock();
	smt::Expression assertNeg = !(m_context.expression(*args.front())->currentValue());
	connectBlocks(m_currentBlock, error(), currentPathConditions() && assertNeg);
	m_verificationTargets.push_back(&_funCall);
}
void CHC::unknownFunctionCall(FunctionCall const&)
{
	/// Function calls are not handled at the moment,
	/// so always erase knowledge.
	/// TODO remove when function calls get predicates/blocks.
	eraseKnowledge();
	/// Used to erase outer scope knowledge in loops and ifs.
	/// TODO remove when function calls get predicates/blocks.
	m_unknownFunctionCallSeen = true;
}
void CHC::reset()
{
	m_stateSorts.clear();
	m_stateVariables.clear();
	m_verificationTargets.clear();
	m_safeAssertions.clear();
	m_unknownFunctionCallSeen = false;
	m_blockCounter = 0;
	m_breakDest = nullptr;
	m_continueDest = nullptr;
}
void CHC::eraseKnowledge()
{
	resetStateVariables();
	m_context.resetVariables([&](VariableDeclaration const& _variable) { return _variable.hasReferenceOrMappingType(); });
}
bool CHC::shouldVisit(ContractDefinition const& _contract) const
{
	if (
		_contract.isLibrary() ||
		_contract.isInterface()
	)
		return false;
	return true;
}
bool CHC::shouldVisit(FunctionDefinition const& _function) const
{
	if (
		_function.isPublic() &&
		_function.isImplemented() &&
		!_function.isConstructor()
	)
		return true;
	return false;
}
void CHC::setCurrentBlock(smt::SymbolicFunctionVariable const& _block)
{
	m_context.popSolver();
	clearIndices();
	m_context.pushSolver();
	m_currentBlock = predicate(_block);
}
smt::SortPointer CHC::constructorSort()
{
	solAssert(m_currentContract, "");
	auto boolSort = make_shared(smt::Kind::Bool);
	if (!m_currentContract->constructor())
		return make_shared(vector{}, boolSort);
	return sort(*m_currentContract->constructor());
}
smt::SortPointer CHC::interfaceSort()
{
	auto boolSort = make_shared(smt::Kind::Bool);
	return make_shared(
		m_stateSorts,
		boolSort
	);
}
smt::SortPointer CHC::sort(FunctionDefinition const& _function)
{
	auto boolSort = make_shared(smt::Kind::Bool);
	vector varSorts;
	for (auto const& var: _function.parameters() + _function.returnParameters())
		varSorts.push_back(smt::smtSort(*var->type()));
	return make_shared(
		m_stateSorts + varSorts,
		boolSort
	);
}
smt::SortPointer CHC::sort(ASTNode const* _node)
{
	if (auto funDef = dynamic_cast(_node))
		return sort(*funDef);
	auto fSort = dynamic_pointer_cast(sort(*m_currentFunction));
	solAssert(fSort, "");
	auto boolSort = make_shared(smt::Kind::Bool);
	vector varSorts;
	for (auto const& var: m_currentFunction->localVariables())
		varSorts.push_back(smt::smtSort(*var->type()));
	return make_shared(
		fSort->domain + varSorts,
		boolSort
	);
}
unique_ptr CHC::createSymbolicBlock(smt::SortPointer _sort, string const& _name)
{
	auto block = make_unique(
		_sort,
		_name,
		m_context
	);
	m_interface->registerRelation(block->currentValue());
	return block;
}
smt::Expression CHC::constructor()
{
	solAssert(m_currentContract, "");
	if (!m_currentContract->constructor())
		return (*m_constructorPredicate)({});
	vector paramExprs;
	for (auto const& var: m_currentContract->constructor()->parameters())
		paramExprs.push_back(m_context.variable(*var)->currentValue());
	return (*m_constructorPredicate)(paramExprs);
}
smt::Expression CHC::interface()
{
	vector paramExprs;
	for (auto const& var: m_stateVariables)
		paramExprs.push_back(m_context.variable(*var)->currentValue());
	return (*m_interfacePredicate)(paramExprs);
}
smt::Expression CHC::error()
{
	return (*m_errorPredicate)({});
}
smt::Expression CHC::error(unsigned _idx)
{
	return m_errorPredicate->valueAtIndex(_idx)({});
}
unique_ptr CHC::createBlock(ASTNode const* _node, string const& _prefix)
{
	return createSymbolicBlock(sort(_node),
		"block_" +
		uniquePrefix() +
		"_" +
		_prefix +
		predicateName(_node));
}
void CHC::createErrorBlock()
{
	solAssert(m_errorPredicate, "");
	m_errorPredicate->increaseIndex();
	m_interface->registerRelation(m_errorPredicate->currentValue());
}
void CHC::connectBlocks(smt::Expression const& _from, smt::Expression const& _to, smt::Expression const& _constraints)
{
	smt::Expression edge = smt::Expression::implies(
		_from && m_context.assertions() && _constraints,
		_to
	);
	addRule(edge, _from.name + "_to_" + _to.name);
}
vector CHC::currentFunctionVariables()
{
	solAssert(m_currentFunction, "");
	vector paramExprs;
	for (auto const& var: m_stateVariables)
		paramExprs.push_back(m_context.variable(*var)->currentValue());
	for (auto const& var: m_currentFunction->parameters() + m_currentFunction->returnParameters())
		paramExprs.push_back(m_context.variable(*var)->currentValue());
	return paramExprs;
}
vector CHC::currentBlockVariables()
{
	solAssert(m_currentFunction, "");
	vector paramExprs;
	for (auto const& var: m_currentFunction->localVariables())
		paramExprs.push_back(m_context.variable(*var)->currentValue());
	return currentFunctionVariables() + paramExprs;
}
void CHC::clearIndices()
{
	for (auto const& var: m_stateVariables)
		m_context.variable(*var)->resetIndex();
	if (m_currentFunction)
	{
		for (auto const& var: m_currentFunction->parameters() + m_currentFunction->returnParameters())
			m_context.variable(*var)->resetIndex();
		for (auto const& var: m_currentFunction->localVariables())
			m_context.variable(*var)->resetIndex();
	}
}
string CHC::predicateName(ASTNode const* _node)
{
	string prefix;
	if (auto funDef = dynamic_cast(_node))
	{
		prefix = funDef->isConstructor() ?
			"constructor" :
			funDef->isFallback() ?
				"fallback" :
				"function_" + funDef->name();
		prefix += "_";
	}
	return prefix + to_string(_node->id());
}
smt::Expression CHC::predicate(smt::SymbolicFunctionVariable const& _block)
{
	return _block(currentBlockVariables());
}
smt::Expression CHC::predicate(
	smt::SymbolicFunctionVariable const& _block,
	vector const& _arguments
)
{
	return _block(_arguments);
}
void CHC::addRule(smt::Expression const& _rule, string const& _ruleName)
{
	m_interface->addRule(_rule, _ruleName);
}
bool CHC::query(smt::Expression const& _query, langutil::SourceLocation const& _location)
{
	smt::CheckResult result;
	vector values;
	tie(result, values) = m_interface->query(_query);
	switch (result)
	{
	case smt::CheckResult::SATISFIABLE:
		break;
	case smt::CheckResult::UNSATISFIABLE:
		return true;
	case smt::CheckResult::UNKNOWN:
		break;
	case smt::CheckResult::CONFLICTING:
		m_outerErrorReporter.warning(_location, "At least two SMT solvers provided conflicting answers. Results might not be sound.");
		break;
	case smt::CheckResult::ERROR:
		m_outerErrorReporter.warning(_location, "Error trying to invoke SMT solver.");
		break;
	}
	return false;
}
string CHC::uniquePrefix()
{
	return to_string(m_blockCounter++);
}