/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ /** @file Assembly.cpp * @author Gav Wood * @date 2014 */ #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace dev; using namespace dev::eth; using namespace langutil; void Assembly::append(Assembly const& _a) { auto newDeposit = m_deposit + _a.deposit(); for (AssemblyItem i: _a.m_items) { switch (i.type()) { case Tag: case PushTag: i.setData(i.data() + m_usedTags); break; case PushSub: case PushSubSize: i.setData(i.data() + m_subs.size()); break; default: break; } append(i); } m_deposit = newDeposit; m_usedTags += _a.m_usedTags; // This does not transfer the names of named tags on purpose. The tags themselves are // transferred, but their names are only available inside the assembly. for (auto const& i: _a.m_data) m_data.insert(i); for (auto const& i: _a.m_strings) m_strings.insert(i); m_subs += _a.m_subs; for (auto const& lib: _a.m_libraries) m_libraries.insert(lib); } void Assembly::append(Assembly const& _a, int _deposit) { assertThrow(_deposit <= _a.m_deposit, InvalidDeposit, ""); append(_a); while (_deposit++ < _a.m_deposit) append(Instruction::POP); } AssemblyItem const& Assembly::append(AssemblyItem const& _i) { assertThrow(m_deposit >= 0, AssemblyException, "Stack underflow."); m_deposit += _i.deposit(); m_items.emplace_back(_i); if (m_items.back().location().isEmpty() && !m_currentSourceLocation.isEmpty()) m_items.back().setLocation(m_currentSourceLocation); return back(); } void Assembly::injectStart(AssemblyItem const& _i) { m_items.insert(m_items.begin(), _i); } unsigned Assembly::bytesRequired(unsigned subTagSize) const { for (unsigned tagSize = subTagSize; true; ++tagSize) { unsigned ret = 1; for (auto const& i: m_data) ret += i.second.size(); for (AssemblyItem const& i: m_items) ret += i.bytesRequired(tagSize); if (dev::bytesRequired(ret) <= tagSize) return ret; } } namespace { string locationFromSources(StringMap const& _sourceCodes, SourceLocation const& _location) { if (_location.isEmpty() || !_location.source.get() || _sourceCodes.empty() || _location.start >= _location.end || _location.start < 0) return ""; auto it = _sourceCodes.find(_location.source->name()); if (it == _sourceCodes.end()) return ""; string const& source = it->second; if (size_t(_location.start) >= source.size()) return ""; string cut = source.substr(_location.start, _location.end - _location.start); auto newLinePos = cut.find_first_of("\n"); if (newLinePos != string::npos) cut = cut.substr(0, newLinePos) + "..."; return cut; } class Functionalizer { public: Functionalizer (ostream& _out, string const& _prefix, StringMap const& _sourceCodes): m_out(_out), m_prefix(_prefix), m_sourceCodes(_sourceCodes) {} void feed(AssemblyItem const& _item) { if (!_item.location().isEmpty() && _item.location() != m_location) { flush(); m_location = _item.location(); printLocation(); } if (!( _item.canBeFunctional() && _item.returnValues() <= 1 && _item.arguments() <= int(m_pending.size()) )) { flush(); m_out << m_prefix << (_item.type() == Tag ? "" : " ") << _item.toAssemblyText() << endl; return; } string expression = _item.toAssemblyText(); if (_item.arguments() > 0) { expression += "("; for (int i = 0; i < _item.arguments(); ++i) { expression += m_pending.back(); m_pending.pop_back(); if (i + 1 < _item.arguments()) expression += ", "; } expression += ")"; } m_pending.push_back(expression); if (_item.returnValues() != 1) flush(); } void flush() { for (string const& expression: m_pending) m_out << m_prefix << " " << expression << endl; m_pending.clear(); } void printLocation() { if (!m_location.source && m_location.isEmpty()) return; m_out << m_prefix << " /*"; if (m_location.source) m_out << " \"" + m_location.source->name() + "\""; if (!m_location.isEmpty()) m_out << ":" << to_string(m_location.start) + ":" + to_string(m_location.end); m_out << " " << locationFromSources(m_sourceCodes, m_location); m_out << " */" << endl; } private: strings m_pending; SourceLocation m_location; ostream& m_out; string const& m_prefix; StringMap const& m_sourceCodes; }; } void Assembly::assemblyStream(ostream& _out, string const& _prefix, StringMap const& _sourceCodes) const { Functionalizer f(_out, _prefix, _sourceCodes); for (auto const& i: m_items) f.feed(i); f.flush(); if (!m_data.empty() || !m_subs.empty()) { _out << _prefix << "stop" << endl; for (auto const& i: m_data) if (u256(i.first) >= m_subs.size()) _out << _prefix << "data_" << toHex(u256(i.first)) << " " << toHex(i.second) << endl; for (size_t i = 0; i < m_subs.size(); ++i) { _out << endl << _prefix << "sub_" << i << ": assembly {\n"; m_subs[i]->assemblyStream(_out, _prefix + " ", _sourceCodes); _out << _prefix << "}" << endl; } } if (m_auxiliaryData.size() > 0) _out << endl << _prefix << "auxdata: 0x" << toHex(m_auxiliaryData) << endl; } string Assembly::assemblyString(StringMap const& _sourceCodes) const { ostringstream tmp; assemblyStream(tmp, "", _sourceCodes); return tmp.str(); } Json::Value Assembly::createJsonValue(string _name, int _begin, int _end, string _value, string _jumpType) { Json::Value value; value["name"] = _name; value["begin"] = _begin; value["end"] = _end; if (!_value.empty()) value["value"] = _value; if (!_jumpType.empty()) value["jumpType"] = _jumpType; return value; } string Assembly::toStringInHex(u256 _value) { std::stringstream hexStr; hexStr << hex << _value; return hexStr.str(); } Json::Value Assembly::assemblyJSON(StringMap const& _sourceCodes) const { Json::Value root; Json::Value& collection = root[".code"] = Json::arrayValue; for (AssemblyItem const& i: m_items) { switch (i.type()) { case Operation: collection.append( createJsonValue(instructionInfo(i.instruction()).name, i.location().start, i.location().end, i.getJumpTypeAsString())); break; case Push: collection.append( createJsonValue("PUSH", i.location().start, i.location().end, toStringInHex(i.data()), i.getJumpTypeAsString())); break; case PushString: collection.append( createJsonValue("PUSH tag", i.location().start, i.location().end, m_strings.at((h256)i.data()))); break; case PushTag: if (i.data() == 0) collection.append( createJsonValue("PUSH [ErrorTag]", i.location().start, i.location().end, "")); else collection.append( createJsonValue("PUSH [tag]", i.location().start, i.location().end, dev::toString(i.data()))); break; case PushSub: collection.append( createJsonValue("PUSH [$]", i.location().start, i.location().end, dev::toString(h256(i.data())))); break; case PushSubSize: collection.append( createJsonValue("PUSH #[$]", i.location().start, i.location().end, dev::toString(h256(i.data())))); break; case PushProgramSize: collection.append( createJsonValue("PUSHSIZE", i.location().start, i.location().end)); break; case PushLibraryAddress: collection.append( createJsonValue("PUSHLIB", i.location().start, i.location().end, m_libraries.at(h256(i.data()))) ); break; case PushDeployTimeAddress: collection.append( createJsonValue("PUSHDEPLOYADDRESS", i.location().start, i.location().end) ); break; case Tag: collection.append( createJsonValue("tag", i.location().start, i.location().end, dev::toString(i.data()))); collection.append( createJsonValue("JUMPDEST", i.location().start, i.location().end)); break; case PushData: collection.append(createJsonValue("PUSH data", i.location().start, i.location().end, toStringInHex(i.data()))); break; default: BOOST_THROW_EXCEPTION(InvalidOpcode()); } } if (!m_data.empty() || !m_subs.empty()) { Json::Value& data = root[".data"] = Json::objectValue; for (auto const& i: m_data) if (u256(i.first) >= m_subs.size()) data[toStringInHex((u256)i.first)] = toHex(i.second); for (size_t i = 0; i < m_subs.size(); ++i) { std::stringstream hexStr; hexStr << hex << i; data[hexStr.str()] = m_subs[i]->assemblyJSON(_sourceCodes); } } if (m_auxiliaryData.size() > 0) root[".auxdata"] = toHex(m_auxiliaryData); return root; } AssemblyItem Assembly::namedTag(string const& _name) { assertThrow(!_name.empty(), AssemblyException, "Empty named tag."); if (!m_namedTags.count(_name)) m_namedTags[_name] = size_t(newTag().data()); return AssemblyItem{Tag, m_namedTags.at(_name)}; } AssemblyItem Assembly::newPushLibraryAddress(string const& _identifier) { h256 h(dev::keccak256(_identifier)); m_libraries[h] = _identifier; return AssemblyItem{PushLibraryAddress, h}; } Assembly& Assembly::optimise(bool _enable, EVMVersion _evmVersion, bool _isCreation, size_t _runs) { OptimiserSettings settings; settings.isCreation = _isCreation; settings.runJumpdestRemover = true; settings.runPeephole = true; if (_enable) { settings.runDeduplicate = true; settings.runCSE = true; settings.runConstantOptimiser = true; } settings.evmVersion = _evmVersion; settings.expectedExecutionsPerDeployment = _runs; optimise(settings); return *this; } Assembly& Assembly::optimise(OptimiserSettings const& _settings) { optimiseInternal(_settings, {}); return *this; } map Assembly::optimiseInternal( OptimiserSettings const& _settings, std::set _tagsReferencedFromOutside ) { // Run optimisation for sub-assemblies. for (size_t subId = 0; subId < m_subs.size(); ++subId) { OptimiserSettings settings = _settings; // Disable creation mode for sub-assemblies. settings.isCreation = false; map subTagReplacements = m_subs[subId]->optimiseInternal( settings, JumpdestRemover::referencedTags(m_items, subId) ); // Apply the replacements (can be empty). BlockDeduplicator::applyTagReplacement(m_items, subTagReplacements, subId); } map tagReplacements; // Iterate until no new optimisation possibilities are found. for (unsigned count = 1; count > 0;) { count = 0; if (_settings.runJumpdestRemover) { JumpdestRemover jumpdestOpt{m_items}; if (jumpdestOpt.optimise(_tagsReferencedFromOutside)) count++; } if (_settings.runPeephole) { PeepholeOptimiser peepOpt{m_items}; while (peepOpt.optimise()) { count++; assertThrow(count < 64000, OptimizerException, "Peephole optimizer seems to be stuck."); } } // This only modifies PushTags, we have to run again to actually remove code. if (_settings.runDeduplicate) { BlockDeduplicator dedup{m_items}; if (dedup.deduplicate()) { for (auto const& replacement: dedup.replacedTags()) { assertThrow( replacement.first <= size_t(-1) && replacement.second <= size_t(-1), OptimizerException, "Invalid tag replacement." ); assertThrow( !tagReplacements.count(replacement.first), OptimizerException, "Replacement already known." ); tagReplacements[replacement.first] = replacement.second; if (_tagsReferencedFromOutside.erase(size_t(replacement.first))) _tagsReferencedFromOutside.insert(size_t(replacement.second)); } count++; } } if (_settings.runCSE) { // Control flow graph optimization has been here before but is disabled because it // assumes we only jump to tags that are pushed. This is not the case anymore with // function types that can be stored in storage. AssemblyItems optimisedItems; bool usesMSize = (find(m_items.begin(), m_items.end(), AssemblyItem{Instruction::MSIZE}) != m_items.end()); auto iter = m_items.begin(); while (iter != m_items.end()) { KnownState emptyState; CommonSubexpressionEliminator eliminator{emptyState}; auto orig = iter; iter = eliminator.feedItems(iter, m_items.end(), usesMSize); bool shouldReplace = false; AssemblyItems optimisedChunk; try { optimisedChunk = eliminator.getOptimizedItems(); shouldReplace = (optimisedChunk.size() < size_t(iter - orig)); } catch (StackTooDeepException const&) { // This might happen if the opcode reconstruction is not as efficient // as the hand-crafted code. } catch (ItemNotAvailableException const&) { // This might happen if e.g. associativity and commutativity rules // reorganise the expression tree, but not all leaves are available. } if (shouldReplace) { count++; optimisedItems += optimisedChunk; } else copy(orig, iter, back_inserter(optimisedItems)); } if (optimisedItems.size() < m_items.size()) { m_items = move(optimisedItems); count++; } } } if (_settings.runConstantOptimiser) ConstantOptimisationMethod::optimiseConstants( _settings.isCreation, _settings.isCreation ? 1 : _settings.expectedExecutionsPerDeployment, _settings.evmVersion, *this ); return tagReplacements; } LinkerObject const& Assembly::assemble() const { if (!m_assembledObject.bytecode.empty()) return m_assembledObject; size_t subTagSize = 1; for (auto const& sub: m_subs) { sub->assemble(); for (size_t tagPos: sub->m_tagPositionsInBytecode) if (tagPos != size_t(-1) && tagPos > subTagSize) subTagSize = tagPos; } LinkerObject& ret = m_assembledObject; size_t bytesRequiredForCode = bytesRequired(subTagSize); m_tagPositionsInBytecode = vector(m_usedTags, -1); map> tagRef; multimap dataRef; multimap subRef; vector sizeRef; ///< Pointers to code locations where the size of the program is inserted unsigned bytesPerTag = dev::bytesRequired(bytesRequiredForCode); uint8_t tagPush = (uint8_t)Instruction::PUSH1 - 1 + bytesPerTag; unsigned bytesRequiredIncludingData = bytesRequiredForCode + 1 + m_auxiliaryData.size(); for (auto const& sub: m_subs) bytesRequiredIncludingData += sub->assemble().bytecode.size(); unsigned bytesPerDataRef = dev::bytesRequired(bytesRequiredIncludingData); uint8_t dataRefPush = (uint8_t)Instruction::PUSH1 - 1 + bytesPerDataRef; ret.bytecode.reserve(bytesRequiredIncludingData); for (AssemblyItem const& i: m_items) { // store position of the invalid jump destination if (i.type() != Tag && m_tagPositionsInBytecode[0] == size_t(-1)) m_tagPositionsInBytecode[0] = ret.bytecode.size(); switch (i.type()) { case Operation: ret.bytecode.push_back((uint8_t)i.instruction()); break; case PushString: { ret.bytecode.push_back((uint8_t)Instruction::PUSH32); unsigned ii = 0; for (auto j: m_strings.at((h256)i.data())) if (++ii > 32) break; else ret.bytecode.push_back((uint8_t)j); while (ii++ < 32) ret.bytecode.push_back(0); break; } case Push: { uint8_t b = max(1, dev::bytesRequired(i.data())); ret.bytecode.push_back((uint8_t)Instruction::PUSH1 - 1 + b); ret.bytecode.resize(ret.bytecode.size() + b); bytesRef byr(&ret.bytecode.back() + 1 - b, b); toBigEndian(i.data(), byr); break; } case PushTag: { ret.bytecode.push_back(tagPush); tagRef[ret.bytecode.size()] = i.splitForeignPushTag(); ret.bytecode.resize(ret.bytecode.size() + bytesPerTag); break; } case PushData: ret.bytecode.push_back(dataRefPush); dataRef.insert(make_pair((h256)i.data(), ret.bytecode.size())); ret.bytecode.resize(ret.bytecode.size() + bytesPerDataRef); break; case PushSub: ret.bytecode.push_back(dataRefPush); subRef.insert(make_pair(size_t(i.data()), ret.bytecode.size())); ret.bytecode.resize(ret.bytecode.size() + bytesPerDataRef); break; case PushSubSize: { auto s = m_subs.at(size_t(i.data()))->assemble().bytecode.size(); i.setPushedValue(u256(s)); uint8_t b = max(1, dev::bytesRequired(s)); ret.bytecode.push_back((uint8_t)Instruction::PUSH1 - 1 + b); ret.bytecode.resize(ret.bytecode.size() + b); bytesRef byr(&ret.bytecode.back() + 1 - b, b); toBigEndian(s, byr); break; } case PushProgramSize: { ret.bytecode.push_back(dataRefPush); sizeRef.push_back(ret.bytecode.size()); ret.bytecode.resize(ret.bytecode.size() + bytesPerDataRef); break; } case PushLibraryAddress: ret.bytecode.push_back(uint8_t(Instruction::PUSH20)); ret.linkReferences[ret.bytecode.size()] = m_libraries.at(i.data()); ret.bytecode.resize(ret.bytecode.size() + 20); break; case PushDeployTimeAddress: ret.bytecode.push_back(uint8_t(Instruction::PUSH20)); ret.bytecode.resize(ret.bytecode.size() + 20); break; case Tag: assertThrow(i.data() != 0, AssemblyException, "Invalid tag position."); assertThrow(i.splitForeignPushTag().first == size_t(-1), AssemblyException, "Foreign tag."); assertThrow(ret.bytecode.size() < 0xffffffffL, AssemblyException, "Tag too large."); assertThrow(m_tagPositionsInBytecode[size_t(i.data())] == size_t(-1), AssemblyException, "Duplicate tag position."); m_tagPositionsInBytecode[size_t(i.data())] = ret.bytecode.size(); ret.bytecode.push_back((uint8_t)Instruction::JUMPDEST); break; default: BOOST_THROW_EXCEPTION(InvalidOpcode()); } } if (!m_subs.empty() || !m_data.empty() || !m_auxiliaryData.empty()) // Append an INVALID here to help tests find miscompilation. ret.bytecode.push_back(uint8_t(Instruction::INVALID)); for (size_t i = 0; i < m_subs.size(); ++i) { auto references = subRef.equal_range(i); if (references.first == references.second) continue; for (auto ref = references.first; ref != references.second; ++ref) { bytesRef r(ret.bytecode.data() + ref->second, bytesPerDataRef); toBigEndian(ret.bytecode.size(), r); } ret.append(m_subs[i]->assemble()); } for (auto const& i: tagRef) { size_t subId; size_t tagId; tie(subId, tagId) = i.second; assertThrow(subId == size_t(-1) || subId < m_subs.size(), AssemblyException, "Invalid sub id"); std::vector const& tagPositions = subId == size_t(-1) ? m_tagPositionsInBytecode : m_subs[subId]->m_tagPositionsInBytecode; assertThrow(tagId < tagPositions.size(), AssemblyException, "Reference to non-existing tag."); size_t pos = tagPositions[tagId]; assertThrow(pos != size_t(-1), AssemblyException, "Reference to tag without position."); assertThrow(dev::bytesRequired(pos) <= bytesPerTag, AssemblyException, "Tag too large for reserved space."); bytesRef r(ret.bytecode.data() + i.first, bytesPerTag); toBigEndian(pos, r); } for (auto const& dataItem: m_data) { auto references = dataRef.equal_range(dataItem.first); if (references.first == references.second) continue; for (auto ref = references.first; ref != references.second; ++ref) { bytesRef r(ret.bytecode.data() + ref->second, bytesPerDataRef); toBigEndian(ret.bytecode.size(), r); } ret.bytecode += dataItem.second; } ret.bytecode += m_auxiliaryData; for (unsigned pos: sizeRef) { bytesRef r(ret.bytecode.data() + pos, bytesPerDataRef); toBigEndian(ret.bytecode.size(), r); } return ret; }