/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see .
*/
/**
* Optimiser suite that combines all steps and also provides the settings for the heuristics.
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
using namespace dev;
using namespace yul;
void OptimiserSuite::run(
Dialect const& _dialect,
GasMeter const* _meter,
Object& _object,
bool _optimizeStackAllocation,
set const& _externallyUsedIdentifiers
)
{
set reservedIdentifiers = _externallyUsedIdentifiers;
reservedIdentifiers += _dialect.fixedFunctionNames();
*_object.code = std::get(Disambiguator(
_dialect,
*_object.analysisInfo,
reservedIdentifiers
)(*_object.code));
Block& ast = *_object.code;
OptimiserSuite suite(_dialect, reservedIdentifiers, Debug::None, ast);
suite.runSequence({
VarDeclInitializer::name,
FunctionHoister::name,
BlockFlattener::name,
ForLoopInitRewriter::name,
DeadCodeEliminator::name,
FunctionGrouper::name,
EquivalentFunctionCombiner::name,
UnusedPruner::name,
BlockFlattener::name,
ControlFlowSimplifier::name,
LiteralRematerialiser::name,
ConditionalUnsimplifier::name,
StructuralSimplifier::name,
ControlFlowSimplifier::name,
ForLoopConditionIntoBody::name,
BlockFlattener::name
}, ast);
// None of the above can make stack problems worse.
size_t codeSize = 0;
for (size_t rounds = 0; rounds < 12; ++rounds)
{
{
size_t newSize = CodeSize::codeSizeIncludingFunctions(ast);
if (newSize == codeSize)
break;
codeSize = newSize;
}
{
// Turn into SSA and simplify
suite.runSequence({
ExpressionSplitter::name,
SSATransform::name,
RedundantAssignEliminator::name,
RedundantAssignEliminator::name,
ExpressionSimplifier::name,
CommonSubexpressionEliminator::name,
LoadResolver::name
}, ast);
}
{
// perform structural simplification
suite.runSequence({
CommonSubexpressionEliminator::name,
ConditionalSimplifier::name,
LiteralRematerialiser::name,
ConditionalUnsimplifier::name,
StructuralSimplifier::name,
LiteralRematerialiser::name,
ForLoopConditionOutOfBody::name,
ControlFlowSimplifier::name,
StructuralSimplifier::name,
ControlFlowSimplifier::name,
BlockFlattener::name,
DeadCodeEliminator::name,
ForLoopConditionIntoBody::name,
UnusedPruner::name
}, ast);
}
{
// simplify again
suite.runSequence({
LoadResolver::name,
CommonSubexpressionEliminator::name,
UnusedPruner::name,
}, ast);
}
{
// reverse SSA
suite.runSequence({
SSAReverser::name,
CommonSubexpressionEliminator::name,
UnusedPruner::name,
ExpressionJoiner::name,
ExpressionJoiner::name,
}, ast);
}
// should have good "compilability" property here.
{
// run functional expression inliner
suite.runSequence({
ExpressionInliner::name,
UnusedPruner::name,
}, ast);
}
{
// Turn into SSA again and simplify
suite.runSequence({
ExpressionSplitter::name,
SSATransform::name,
RedundantAssignEliminator::name,
RedundantAssignEliminator::name,
CommonSubexpressionEliminator::name,
LoadResolver::name,
}, ast);
}
{
// run full inliner
suite.runSequence({
FunctionGrouper::name,
EquivalentFunctionCombiner::name,
FullInliner::name,
BlockFlattener::name
}, ast);
}
{
// SSA plus simplify
suite.runSequence({
ConditionalSimplifier::name,
LiteralRematerialiser::name,
ConditionalUnsimplifier::name,
CommonSubexpressionEliminator::name,
SSATransform::name,
RedundantAssignEliminator::name,
RedundantAssignEliminator::name,
LoadResolver::name,
ExpressionSimplifier::name,
LiteralRematerialiser::name,
ForLoopConditionOutOfBody::name,
StructuralSimplifier::name,
BlockFlattener::name,
DeadCodeEliminator::name,
ControlFlowSimplifier::name,
CommonSubexpressionEliminator::name,
SSATransform::name,
RedundantAssignEliminator::name,
RedundantAssignEliminator::name,
ForLoopConditionIntoBody::name,
UnusedPruner::name,
CommonSubexpressionEliminator::name,
}, ast);
}
}
// Make source short and pretty.
suite.runSequence({
ExpressionJoiner::name,
Rematerialiser::name,
UnusedPruner::name,
ExpressionJoiner::name,
UnusedPruner::name,
ExpressionJoiner::name,
UnusedPruner::name,
SSAReverser::name,
CommonSubexpressionEliminator::name,
LiteralRematerialiser::name,
ForLoopConditionOutOfBody::name,
CommonSubexpressionEliminator::name,
UnusedPruner::name,
ExpressionJoiner::name,
Rematerialiser::name,
UnusedPruner::name,
}, ast);
// This is a tuning parameter, but actually just prevents infinite loops.
size_t stackCompressorMaxIterations = 16;
suite.runSequence({
FunctionGrouper::name
}, ast);
// We ignore the return value because we will get a much better error
// message once we perform code generation.
StackCompressor::run(
_dialect,
_object,
_optimizeStackAllocation,
stackCompressorMaxIterations
);
suite.runSequence({
BlockFlattener::name,
DeadCodeEliminator::name,
ControlFlowSimplifier::name,
LiteralRematerialiser::name,
ForLoopConditionOutOfBody::name,
CommonSubexpressionEliminator::name,
FunctionGrouper::name,
}, ast);
if (EVMDialect const* dialect = dynamic_cast(&_dialect))
{
yulAssert(_meter, "");
ConstantOptimiser{*dialect, *_meter}(ast);
}
else if (dynamic_cast(&_dialect))
{
// If the first statement is an empty block, remove it.
// We should only have function definitions after that.
if (ast.statements.size() > 1 && std::get(ast.statements.front()).statements.empty())
ast.statements.erase(ast.statements.begin());
}
suite.runSequence({
VarNameCleaner::name
}, ast);
*_object.analysisInfo = AsmAnalyzer::analyzeStrictAssertCorrect(_dialect, _object);
}
namespace
{
template
map> optimiserStepCollection()
{
map> ret;
for (unique_ptr& s: make_vector>(
(make_unique>())...
))
{
yulAssert(!ret.count(s->name), "");
ret[s->name] = std::move(s);
}
return ret;
}
}
map> const& OptimiserSuite::allSteps()
{
static map> instance;
if (instance.empty())
instance = optimiserStepCollection<
BlockFlattener,
CommonSubexpressionEliminator,
ConditionalSimplifier,
ConditionalUnsimplifier,
ControlFlowSimplifier,
DeadCodeEliminator,
EquivalentFunctionCombiner,
ExpressionInliner,
ExpressionJoiner,
ExpressionSimplifier,
ExpressionSplitter,
ForLoopConditionIntoBody,
ForLoopConditionOutOfBody,
ForLoopInitRewriter,
FullInliner,
FunctionGrouper,
FunctionHoister,
LiteralRematerialiser,
LoadResolver,
RedundantAssignEliminator,
Rematerialiser,
SSAReverser,
SSATransform,
StructuralSimplifier,
UnusedPruner,
VarDeclInitializer,
VarNameCleaner
>();
return instance;
}
void OptimiserSuite::runSequence(std::vector const& _steps, Block& _ast)
{
unique_ptr copy;
if (m_debug == Debug::PrintChanges)
copy = make_unique(std::get(ASTCopier{}(_ast)));
for (string const& step: _steps)
{
if (m_debug == Debug::PrintStep)
cout << "Running " << step << endl;
allSteps().at(step)->run(m_context, _ast);
if (m_debug == Debug::PrintChanges)
{
// TODO should add switch to also compare variable names!
if (SyntacticallyEqual{}.statementEqual(_ast, *copy))
cout << "== Running " << step << " did not cause changes." << endl;
else
{
cout << "== Running " << step << " changed the AST." << endl;
cout << AsmPrinter{}(_ast) << endl;
copy = make_unique(std::get(ASTCopier{}(_ast)));
}
}
}
}