/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see .
*/
// SPDX-License-Identifier: GPL-3.0
#include
#include
#include
#include
#include
using namespace std;
using namespace solidity;
using namespace solidity::smtutil;
using namespace solidity::frontend;
using namespace solidity::frontend::smt;
map Predicate::m_predicates;
Predicate const* Predicate::create(
SortPointer _sort,
string _name,
PredicateType _type,
EncodingContext& _context,
ASTNode const* _node
)
{
smt::SymbolicFunctionVariable predicate{_sort, move(_name), _context};
string functorName = predicate.currentName();
solAssert(!m_predicates.count(functorName), "");
return &m_predicates.emplace(
std::piecewise_construct,
std::forward_as_tuple(functorName),
std::forward_as_tuple(move(predicate), _type, _node)
).first->second;
}
Predicate::Predicate(
smt::SymbolicFunctionVariable&& _predicate,
PredicateType _type,
ASTNode const* _node
):
m_predicate(move(_predicate)),
m_type(_type),
m_node(_node)
{
}
Predicate const* Predicate::predicate(string const& _name)
{
return &m_predicates.at(_name);
}
void Predicate::reset()
{
m_predicates.clear();
}
smtutil::Expression Predicate::operator()(vector const& _args) const
{
return m_predicate(_args);
}
smtutil::Expression Predicate::functor() const
{
return m_predicate.currentFunctionValue();
}
smtutil::Expression Predicate::functor(unsigned _idx) const
{
return m_predicate.functionValueAtIndex(_idx);
}
void Predicate::newFunctor()
{
m_predicate.increaseIndex();
}
ASTNode const* Predicate::programNode() const
{
return m_node;
}
ContractDefinition const* Predicate::programContract() const
{
if (auto const* contract = dynamic_cast(m_node))
if (!contract->constructor())
return contract;
return nullptr;
}
FunctionDefinition const* Predicate::programFunction() const
{
if (auto const* contract = dynamic_cast(m_node))
{
if (contract->constructor())
return contract->constructor();
return nullptr;
}
if (auto const* fun = dynamic_cast(m_node))
return fun;
return nullptr;
}
optional> Predicate::stateVariables() const
{
if (auto const* fun = programFunction())
return SMTEncoder::stateVariablesIncludingInheritedAndPrivate(*fun);
if (auto const* contract = programContract())
return SMTEncoder::stateVariablesIncludingInheritedAndPrivate(*contract);
auto const* node = m_node;
while (auto const* scopable = dynamic_cast(node))
{
node = scopable->scope();
if (auto const* fun = dynamic_cast(node))
return SMTEncoder::stateVariablesIncludingInheritedAndPrivate(*fun);
}
return nullopt;
}
bool Predicate::isSummary() const
{
return m_type == PredicateType::ConstructorSummary || m_type == PredicateType::FunctionSummary;
}
bool Predicate::isInterface() const
{
return m_type == PredicateType::Interface;
}
string Predicate::formatSummaryCall(vector const& _args) const
{
if (programContract())
return "constructor()";
solAssert(isSummary(), "");
auto stateVars = stateVariables();
solAssert(stateVars.has_value(), "");
auto const* fun = programFunction();
solAssert(fun, "");
/// The signature of a function summary predicate is: summary(error, this, abiFunctions, cryptoFunctions, txData, preBlockChainState, preStateVars, preInputVars, postBlockchainState, postStateVars, postInputVars, outputVars).
/// Here we are interested in preInputVars.
auto first = _args.begin() + 6 + static_cast(stateVars->size());
auto last = first + static_cast(fun->parameters().size());
solAssert(first >= _args.begin() && first <= _args.end(), "");
solAssert(last >= _args.begin() && last <= _args.end(), "");
auto inTypes = FunctionType(*fun).parameterTypes();
vector> functionArgsCex = formatExpressions(vector(first, last), inTypes);
vector functionArgs;
auto const& params = fun->parameters();
solAssert(params.size() == functionArgsCex.size(), "");
for (unsigned i = 0; i < params.size(); ++i)
if (params.at(i) && functionArgsCex.at(i))
functionArgs.emplace_back(*functionArgsCex.at(i));
else
functionArgs.emplace_back(params[i]->name());
string fName = fun->isConstructor() ? "constructor" :
fun->isFallback() ? "fallback" :
fun->isReceive() ? "receive" :
fun->name();
return fName + "(" + boost::algorithm::join(functionArgs, ", ") + ")";
}
vector> Predicate::summaryStateValues(vector const& _args) const
{
/// The signature of a function summary predicate is: summary(error, this, abiFunctions, cryptoFunctions, txData, preBlockchainState, preStateVars, preInputVars, postBlockchainState, postStateVars, postInputVars, outputVars).
/// The signature of the summary predicate of a contract without constructor is: summary(error, this, abiFunctions, cryptoFunctions, txData, preBlockchainState, postBlockchainState, preStateVars, postStateVars).
/// Here we are interested in postStateVars.
auto stateVars = stateVariables();
solAssert(stateVars.has_value(), "");
vector::const_iterator stateFirst;
vector::const_iterator stateLast;
if (auto const* function = programFunction())
{
stateFirst = _args.begin() + 6 + static_cast(stateVars->size()) + static_cast(function->parameters().size()) + 1;
stateLast = stateFirst + static_cast(stateVars->size());
}
else if (programContract())
{
stateFirst = _args.begin() + 7 + static_cast(stateVars->size());
stateLast = stateFirst + static_cast(stateVars->size());
}
else
solAssert(false, "");
solAssert(stateFirst >= _args.begin() && stateFirst <= _args.end(), "");
solAssert(stateLast >= _args.begin() && stateLast <= _args.end(), "");
vector stateArgs(stateFirst, stateLast);
solAssert(stateArgs.size() == stateVars->size(), "");
auto stateTypes = applyMap(*stateVars, [&](auto const& _var) { return _var->type(); });
return formatExpressions(stateArgs, stateTypes);
}
vector> Predicate::summaryPostInputValues(vector const& _args) const
{
/// The signature of a function summary predicate is: summary(error, this, abiFunctions, cryptoFunctions, txData, preBlockchainState, preStateVars, preInputVars, postBlockchainState, postStateVars, postInputVars, outputVars).
/// Here we are interested in postInputVars.
auto const* function = programFunction();
solAssert(function, "");
auto stateVars = stateVariables();
solAssert(stateVars.has_value(), "");
auto const& inParams = function->parameters();
auto first = _args.begin() + 6 + static_cast(stateVars->size()) * 2 + static_cast(inParams.size()) + 1;
auto last = first + static_cast(inParams.size());
solAssert(first >= _args.begin() && first <= _args.end(), "");
solAssert(last >= _args.begin() && last <= _args.end(), "");
vector inValues(first, last);
solAssert(inValues.size() == inParams.size(), "");
auto inTypes = FunctionType(*function).parameterTypes();
return formatExpressions(inValues, inTypes);
}
vector> Predicate::summaryPostOutputValues(vector const& _args) const
{
/// The signature of a function summary predicate is: summary(error, this, abiFunctions, cryptoFunctions, txData, preBlockchainState, preStateVars, preInputVars, postBlockchainState, postStateVars, postInputVars, outputVars).
/// Here we are interested in outputVars.
auto const* function = programFunction();
solAssert(function, "");
auto stateVars = stateVariables();
solAssert(stateVars.has_value(), "");
auto const& inParams = function->parameters();
auto first = _args.begin() + 6 + static_cast(stateVars->size()) * 2 + static_cast(inParams.size()) * 2 + 1;
solAssert(first >= _args.begin() && first <= _args.end(), "");
vector outValues(first, _args.end());
solAssert(outValues.size() == function->returnParameters().size(), "");
auto outTypes = FunctionType(*function).returnParameterTypes();
return formatExpressions(outValues, outTypes);
}
vector> Predicate::formatExpressions(vector const& _exprs, vector const& _types) const
{
solAssert(_exprs.size() == _types.size(), "");
vector> strExprs;
for (unsigned i = 0; i < _exprs.size(); ++i)
strExprs.push_back(expressionToString(_exprs.at(i), _types.at(i)));
return strExprs;
}
optional Predicate::expressionToString(smtutil::Expression const& _expr, TypePointer _type) const
{
if (smt::isNumber(*_type))
{
solAssert(_expr.sort->kind == Kind::Int, "");
solAssert(_expr.arguments.empty(), "");
// TODO assert that _expr.name is a number.
return _expr.name;
}
if (smt::isBool(*_type))
{
solAssert(_expr.sort->kind == Kind::Bool, "");
solAssert(_expr.arguments.empty(), "");
solAssert(_expr.name == "true" || _expr.name == "false", "");
return _expr.name;
}
if (smt::isFunction(*_type))
{
solAssert(_expr.arguments.empty(), "");
return _expr.name;
}
if (smt::isArray(*_type))
{
auto const& arrayType = dynamic_cast(*_type);
solAssert(_expr.name == "tuple_constructor", "");
auto const& tupleSort = dynamic_cast(*_expr.sort);
solAssert(tupleSort.components.size() == 2, "");
unsigned long length;
try
{
length = stoul(_expr.arguments.at(1).name);
}
catch(out_of_range const&)
{
return {};
}
catch(invalid_argument const&)
{
return {};
}
// Limit this counterexample size to 1k.
// Some OSs give you "unlimited" memory through swap and other virtual memory,
// so purely relying on bad_alloc being thrown is not a good idea.
// In that case, the array allocation might cause OOM and the program is killed.
if (length >= 1024)
return {};
try
{
vector array(length);
if (!fillArray(_expr.arguments.at(0), array, arrayType))
return {};
return "[" + boost::algorithm::join(array, ", ") + "]";
}
catch (bad_alloc const&)
{
// Solver gave a concrete array but length is too large.
}
}
if (smt::isNonRecursiveStruct(*_type))
{
auto const& structType = dynamic_cast(*_type);
solAssert(_expr.name == "tuple_constructor", "");
auto const& tupleSort = dynamic_cast(*_expr.sort);
auto members = structType.structDefinition().members();
solAssert(tupleSort.components.size() == members.size(), "");
solAssert(_expr.arguments.size() == members.size(), "");
vector elements;
for (unsigned i = 0; i < members.size(); ++i)
{
optional elementStr = expressionToString(_expr.arguments.at(i), members[i]->type());
elements.push_back(members[i]->name() + (elementStr.has_value() ? ": " + elementStr.value() : ""));
}
return "{" + boost::algorithm::join(elements, ", ") + "}";
}
return {};
}
bool Predicate::fillArray(smtutil::Expression const& _expr, vector& _array, ArrayType const& _type) const
{
// Base case
if (_expr.name == "const_array")
{
auto length = _array.size();
optional elemStr = expressionToString(_expr.arguments.at(1), _type.baseType());
if (!elemStr)
return false;
_array.clear();
_array.resize(length, *elemStr);
return true;
}
// Recursive case.
if (_expr.name == "store")
{
if (!fillArray(_expr.arguments.at(0), _array, _type))
return false;
optional indexStr = expressionToString(_expr.arguments.at(1), TypeProvider::uint256());
if (!indexStr)
return false;
// Sometimes the solver assigns huge lengths that are not related,
// we should catch and ignore those.
unsigned long index;
try
{
index = stoul(*indexStr);
}
catch (out_of_range const&)
{
return true;
}
catch (invalid_argument const&)
{
return true;
}
optional elemStr = expressionToString(_expr.arguments.at(2), _type.baseType());
if (!elemStr)
return false;
if (index < _array.size())
_array.at(index) = *elemStr;
return true;
}
// Special base case, not supported yet.
if (_expr.name.rfind("(_ as-array") == 0)
{
// Z3 expression representing reinterpretation of a different term as an array
return false;
}
solAssert(false, "");
}