/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ // SPDX-License-Identifier: GPL-3.0 /** * Component that translates Solidity code into Yul at statement level and below. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace solidity; using namespace solidity::util; using namespace solidity::frontend; using namespace std::string_literals; namespace { struct CopyTranslate: public yul::ASTCopier { using ExternalRefsMap = std::map; CopyTranslate(yul::Dialect const& _dialect, IRGenerationContext& _context, ExternalRefsMap const& _references): m_dialect(_dialect), m_context(_context), m_references(_references) {} using ASTCopier::operator(); yul::Expression operator()(yul::Identifier const& _identifier) override { // The operator() function is only called in lvalue context. In rvalue context, // only translate(yul::Identifier) is called. if (m_references.count(&_identifier)) return translateReference(_identifier); else return ASTCopier::operator()(_identifier); } yul::YulString translateIdentifier(yul::YulString _name) override { // Strictly, the dialect used by inline assembly (m_dialect) could be different // from the Yul dialect we are compiling to. So we are assuming here that the builtin // functions are identical. This should not be a problem for now since everything // is EVM anyway. if (m_dialect.builtin(_name)) return _name; else return yul::YulString{"usr$" + _name.str()}; } yul::Identifier translate(yul::Identifier const& _identifier) override { if (!m_references.count(&_identifier)) return ASTCopier::translate(_identifier); yul::Expression translated = translateReference(_identifier); solAssert(holds_alternative(translated)); return get(std::move(translated)); } private: /// Translates a reference to a local variable, potentially including /// a suffix. Might return a literal, which causes this to be invalid in /// lvalue-context. yul::Expression translateReference(yul::Identifier const& _identifier) { auto const& reference = m_references.at(&_identifier); auto const varDecl = dynamic_cast(reference.declaration); solUnimplementedAssert(varDecl); string const& suffix = reference.suffix; string value; if (suffix.empty() && varDecl->isLocalVariable()) { auto const& var = m_context.localVariable(*varDecl); solAssert(var.type().sizeOnStack() == 1); value = var.commaSeparatedList(); } else if (varDecl->isConstant()) { VariableDeclaration const* variable = rootConstVariableDeclaration(*varDecl); solAssert(variable); if (variable->value()->annotation().type->category() == Type::Category::RationalNumber) { u256 intValue = dynamic_cast(*variable->value()->annotation().type).literalValue(nullptr); if (auto const* bytesType = dynamic_cast(variable->type())) intValue <<= 256 - 8 * bytesType->numBytes(); else solAssert(variable->type()->category() == Type::Category::Integer); value = intValue.str(); } else if (auto const* literal = dynamic_cast(variable->value().get())) { Type const* type = literal->annotation().type; switch (type->category()) { case Type::Category::Bool: case Type::Category::Address: solAssert(type->category() == variable->annotation().type->category()); value = toCompactHexWithPrefix(type->literalValue(literal)); break; case Type::Category::StringLiteral: { auto const& stringLiteral = dynamic_cast(*type); solAssert(variable->type()->category() == Type::Category::FixedBytes); unsigned const numBytes = dynamic_cast(*variable->type()).numBytes(); solAssert(stringLiteral.value().size() <= numBytes); value = formatNumber(u256(h256(stringLiteral.value(), h256::AlignLeft))); break; } default: solAssert(false); } } else solAssert(false, "Invalid constant in inline assembly."); } else if (varDecl->isStateVariable()) { if (suffix == "slot") value = m_context.storageLocationOfStateVariable(*varDecl).first.str(); else if (suffix == "offset") value = to_string(m_context.storageLocationOfStateVariable(*varDecl).second); else solAssert(false); } else if (varDecl->type()->dataStoredIn(DataLocation::Storage)) { solAssert(suffix == "slot" || suffix == "offset"); solAssert(varDecl->isLocalVariable()); solAssert(!varDecl->type()->isValueType()); if (suffix == "slot") value = IRVariable{*varDecl}.part("slot").name(); else { solAssert(!IRVariable{*varDecl}.hasPart("offset")); value = "0"; } } else if (varDecl->type()->dataStoredIn(DataLocation::CallData)) { solAssert(suffix == "offset" || suffix == "length"); value = IRVariable{*varDecl}.part(suffix).name(); } else if ( auto const* functionType = dynamic_cast(varDecl->type()); functionType && functionType->kind() == FunctionType::Kind::External ) { solAssert(suffix == "selector" || suffix == "address"); solAssert(varDecl->type()->sizeOnStack() == 2); if (suffix == "selector") value = IRVariable{*varDecl}.part("functionSelector").name(); else value = IRVariable{*varDecl}.part("address").name(); } else solAssert(false); if (isDigit(value.front())) return yul::Literal{_identifier.debugData, yul::LiteralKind::Number, yul::YulString{value}, {}}; else return yul::Identifier{_identifier.debugData, yul::YulString{value}}; } yul::Dialect const& m_dialect; IRGenerationContext& m_context; ExternalRefsMap const& m_references; }; } string IRGeneratorForStatementsBase::code() const { return m_code.str(); } std::ostringstream& IRGeneratorForStatementsBase::appendCode(bool _addLocationComment) { if ( _addLocationComment && m_currentLocation.isValid() && m_lastLocation != m_currentLocation ) m_code << dispenseLocationComment(m_currentLocation, m_context) << "\n"; m_lastLocation = m_currentLocation; return m_code; } void IRGeneratorForStatementsBase::setLocation(ASTNode const& _node) { m_currentLocation = _node.location(); } string IRGeneratorForStatements::code() const { solAssert(!m_currentLValue, "LValue not reset!"); return IRGeneratorForStatementsBase::code(); } void IRGeneratorForStatements::generate(Block const& _block) { try { _block.accept(*this); } catch (langutil::UnimplementedFeatureError const& _error) { if (!boost::get_error_info(_error)) _error << langutil::errinfo_sourceLocation(m_currentLocation); BOOST_THROW_EXCEPTION(_error); } } void IRGeneratorForStatements::initializeStateVar(VariableDeclaration const& _varDecl) { try { setLocation(_varDecl); solAssert(_varDecl.immutable() || m_context.isStateVariable(_varDecl), "Must be immutable or a state variable."); solAssert(!_varDecl.isConstant()); if (!_varDecl.value()) return; _varDecl.value()->accept(*this); writeToLValue( _varDecl.immutable() ? IRLValue{*_varDecl.annotation().type, IRLValue::Immutable{&_varDecl}} : IRLValue{*_varDecl.annotation().type, IRLValue::Storage{ toCompactHexWithPrefix(m_context.storageLocationOfStateVariable(_varDecl).first), m_context.storageLocationOfStateVariable(_varDecl).second }}, *_varDecl.value() ); } catch (langutil::UnimplementedFeatureError const& _error) { if (!boost::get_error_info(_error)) _error << langutil::errinfo_sourceLocation(m_currentLocation); BOOST_THROW_EXCEPTION(_error); } } void IRGeneratorForStatements::initializeLocalVar(VariableDeclaration const& _varDecl) { try { setLocation(_varDecl); solAssert(m_context.isLocalVariable(_varDecl), "Must be a local variable."); auto const* type = _varDecl.type(); if (dynamic_cast(type)) return; else if (auto const* refType = dynamic_cast(type)) if (refType->dataStoredIn(DataLocation::Storage) && refType->isPointer()) return; IRVariable zero = zeroValue(*type); assign(m_context.localVariable(_varDecl), zero); } catch (langutil::UnimplementedFeatureError const& _error) { if (!boost::get_error_info(_error)) _error << langutil::errinfo_sourceLocation(m_currentLocation); BOOST_THROW_EXCEPTION(_error); } } IRVariable IRGeneratorForStatements::evaluateExpression(Expression const& _expression, Type const& _targetType) { try { setLocation(_expression); _expression.accept(*this); setLocation(_expression); IRVariable variable{m_context.newYulVariable(), _targetType}; define(variable, _expression); return variable; } catch (langutil::UnimplementedFeatureError const& _error) { if (!boost::get_error_info(_error)) _error << langutil::errinfo_sourceLocation(m_currentLocation); BOOST_THROW_EXCEPTION(_error); } } string IRGeneratorForStatements::constantValueFunction(VariableDeclaration const& _constant) { try { string functionName = IRNames::constantValueFunction(_constant); return m_context.functionCollector().createFunction(functionName, [&] { Whiskers templ(R"( function () -> { := } )"); templ("sourceLocationComment", dispenseLocationComment(_constant, m_context)); templ("functionName", functionName); IRGeneratorForStatements generator(m_context, m_utils); solAssert(_constant.value()); Type const& constantType = *_constant.type(); templ("value", generator.evaluateExpression(*_constant.value(), constantType).commaSeparatedList()); templ("code", generator.code()); templ("ret", IRVariable("ret", constantType).commaSeparatedList()); return templ.render(); }); } catch (langutil::UnimplementedFeatureError const& _error) { if (!boost::get_error_info(_error)) _error << langutil::errinfo_sourceLocation(m_currentLocation); BOOST_THROW_EXCEPTION(_error); } } void IRGeneratorForStatements::endVisit(VariableDeclarationStatement const& _varDeclStatement) { setLocation(_varDeclStatement); if (Expression const* expression = _varDeclStatement.initialValue()) { if (_varDeclStatement.declarations().size() > 1) { auto const* tupleType = dynamic_cast(expression->annotation().type); solAssert(tupleType, "Expected expression of tuple type."); solAssert(_varDeclStatement.declarations().size() == tupleType->components().size(), "Invalid number of tuple components."); for (size_t i = 0; i < _varDeclStatement.declarations().size(); ++i) if (auto const& decl = _varDeclStatement.declarations()[i]) { solAssert(tupleType->components()[i]); define(m_context.addLocalVariable(*decl), IRVariable(*expression).tupleComponent(i)); } } else { VariableDeclaration const& varDecl = *_varDeclStatement.declarations().front(); define(m_context.addLocalVariable(varDecl), *expression); } } else for (auto const& decl: _varDeclStatement.declarations()) if (decl) { declare(m_context.addLocalVariable(*decl)); initializeLocalVar(*decl); } } bool IRGeneratorForStatements::visit(Conditional const& _conditional) { _conditional.condition().accept(*this); setLocation(_conditional); string condition = expressionAsType(_conditional.condition(), *TypeProvider::boolean()); declare(_conditional); appendCode() << "switch " << condition << "\n" "case 0 {\n"; _conditional.falseExpression().accept(*this); setLocation(_conditional); assign(_conditional, _conditional.falseExpression()); appendCode() << "}\n" "default {\n"; _conditional.trueExpression().accept(*this); setLocation(_conditional); assign(_conditional, _conditional.trueExpression()); appendCode() << "}\n"; return false; } bool IRGeneratorForStatements::visit(Assignment const& _assignment) { _assignment.rightHandSide().accept(*this); setLocation(_assignment); Token assignmentOperator = _assignment.assignmentOperator(); Token binaryOperator = assignmentOperator == Token::Assign ? assignmentOperator : TokenTraits::AssignmentToBinaryOp(assignmentOperator); if (TokenTraits::isShiftOp(binaryOperator)) solAssert(type(_assignment.rightHandSide()).mobileType()); IRVariable value = type(_assignment.leftHandSide()).isValueType() ? convert( _assignment.rightHandSide(), TokenTraits::isShiftOp(binaryOperator) ? *type(_assignment.rightHandSide()).mobileType() : type(_assignment) ) : _assignment.rightHandSide(); _assignment.leftHandSide().accept(*this); solAssert(!!m_currentLValue, "LValue not retrieved."); setLocation(_assignment); if (assignmentOperator != Token::Assign) { solAssert(type(_assignment.leftHandSide()).isValueType(), "Compound operators only available for value types."); solAssert(binaryOperator != Token::Exp); solAssert(type(_assignment) == type(_assignment.leftHandSide())); IRVariable leftIntermediate = readFromLValue(*m_currentLValue); solAssert(type(_assignment) == leftIntermediate.type()); define(_assignment) << ( TokenTraits::isShiftOp(binaryOperator) ? shiftOperation(binaryOperator, leftIntermediate, value) : binaryOperation(binaryOperator, type(_assignment), leftIntermediate.name(), value.name()) ) << "\n"; writeToLValue(*m_currentLValue, IRVariable(_assignment)); } else { writeToLValue(*m_currentLValue, value); if (dynamic_cast(&m_currentLValue->type)) define(_assignment, readFromLValue(*m_currentLValue)); else if (*_assignment.annotation().type != *TypeProvider::emptyTuple()) define(_assignment, value); } m_currentLValue.reset(); return false; } bool IRGeneratorForStatements::visit(TupleExpression const& _tuple) { setLocation(_tuple); if (_tuple.isInlineArray()) { auto const& arrayType = dynamic_cast(*_tuple.annotation().type); solAssert(!arrayType.isDynamicallySized(), "Cannot create dynamically sized inline array."); define(_tuple) << m_utils.allocateMemoryArrayFunction(arrayType) << "(" << _tuple.components().size() << ")\n"; string mpos = IRVariable(_tuple).part("mpos").name(); Type const& baseType = *arrayType.baseType(); for (size_t i = 0; i < _tuple.components().size(); i++) { Expression const& component = *_tuple.components()[i]; component.accept(*this); setLocation(_tuple); IRVariable converted = convert(component, baseType); appendCode() << m_utils.writeToMemoryFunction(baseType) << "(" << ("add(" + mpos + ", " + to_string(i * arrayType.memoryStride()) + ")") << ", " << converted.commaSeparatedList() << ")\n"; } } else { bool willBeWrittenTo = _tuple.annotation().willBeWrittenTo; if (willBeWrittenTo) solAssert(!m_currentLValue); if (_tuple.components().size() == 1) { solAssert(_tuple.components().front()); _tuple.components().front()->accept(*this); setLocation(_tuple); if (willBeWrittenTo) solAssert(!!m_currentLValue); else define(_tuple, *_tuple.components().front()); } else { vector> lvalues; for (size_t i = 0; i < _tuple.components().size(); ++i) if (auto const& component = _tuple.components()[i]) { component->accept(*this); setLocation(_tuple); if (willBeWrittenTo) { solAssert(!!m_currentLValue); lvalues.emplace_back(std::move(m_currentLValue)); m_currentLValue.reset(); } else define(IRVariable(_tuple).tupleComponent(i), *component); } else if (willBeWrittenTo) lvalues.emplace_back(); if (_tuple.annotation().willBeWrittenTo) m_currentLValue.emplace(IRLValue{ *_tuple.annotation().type, IRLValue::Tuple{std::move(lvalues)} }); } } return false; } bool IRGeneratorForStatements::visit(Block const& _block) { if (_block.unchecked()) { solAssert(m_context.arithmetic() == Arithmetic::Checked); m_context.setArithmetic(Arithmetic::Wrapping); } return true; } void IRGeneratorForStatements::endVisit(Block const& _block) { if (_block.unchecked()) { solAssert(m_context.arithmetic() == Arithmetic::Wrapping); m_context.setArithmetic(Arithmetic::Checked); } } bool IRGeneratorForStatements::visit(IfStatement const& _ifStatement) { _ifStatement.condition().accept(*this); setLocation(_ifStatement); string condition = expressionAsType(_ifStatement.condition(), *TypeProvider::boolean()); if (_ifStatement.falseStatement()) { appendCode() << "switch " << condition << "\n" "case 0 {\n"; _ifStatement.falseStatement()->accept(*this); setLocation(_ifStatement); appendCode() << "}\n" "default {\n"; } else appendCode() << "if " << condition << " {\n"; _ifStatement.trueStatement().accept(*this); setLocation(_ifStatement); appendCode() << "}\n"; return false; } void IRGeneratorForStatements::endVisit(PlaceholderStatement const& _placeholder) { solAssert(m_placeholderCallback); setLocation(_placeholder); appendCode() << m_placeholderCallback(); } bool IRGeneratorForStatements::visit(ForStatement const& _forStatement) { setLocation(_forStatement); generateLoop( _forStatement.body(), _forStatement.condition(), _forStatement.initializationExpression(), _forStatement.loopExpression() ); return false; } bool IRGeneratorForStatements::visit(WhileStatement const& _whileStatement) { setLocation(_whileStatement); generateLoop( _whileStatement.body(), &_whileStatement.condition(), nullptr, nullptr, _whileStatement.isDoWhile() ); return false; } bool IRGeneratorForStatements::visit(Continue const& _continue) { setLocation(_continue); appendCode() << "continue\n"; return false; } bool IRGeneratorForStatements::visit(Break const& _break) { setLocation(_break); appendCode() << "break\n"; return false; } void IRGeneratorForStatements::endVisit(Return const& _return) { setLocation(_return); if (Expression const* value = _return.expression()) { solAssert(_return.annotation().functionReturnParameters, "Invalid return parameters pointer."); vector> const& returnParameters = _return.annotation().functionReturnParameters->parameters(); if (returnParameters.size() > 1) for (size_t i = 0; i < returnParameters.size(); ++i) assign(m_context.localVariable(*returnParameters[i]), IRVariable(*value).tupleComponent(i)); else if (returnParameters.size() == 1) assign(m_context.localVariable(*returnParameters.front()), *value); } appendCode() << "leave\n"; } bool IRGeneratorForStatements::visit(UnaryOperation const& _unaryOperation) { setLocation(_unaryOperation); Type const& resultType = type(_unaryOperation); Token const op = _unaryOperation.getOperator(); if (resultType.category() == Type::Category::RationalNumber) { define(_unaryOperation) << formatNumber(resultType.literalValue(nullptr)) << "\n"; return false; } _unaryOperation.subExpression().accept(*this); setLocation(_unaryOperation); if (op == Token::Delete) { solAssert(!!m_currentLValue, "LValue not retrieved."); std::visit( util::GenericVisitor{ [&](IRLValue::Storage const& _storage) { appendCode() << m_utils.storageSetToZeroFunction(m_currentLValue->type) << "(" << _storage.slot << ", " << _storage.offsetString() << ")\n"; m_currentLValue.reset(); }, [&](auto const&) { IRVariable zeroValue(m_context.newYulVariable(), m_currentLValue->type); define(zeroValue) << m_utils.zeroValueFunction(m_currentLValue->type) << "()\n"; writeToLValue(*m_currentLValue, zeroValue); m_currentLValue.reset(); } }, m_currentLValue->kind ); } else if (resultType.category() == Type::Category::Integer) { solAssert(resultType == type(_unaryOperation.subExpression()), "Result type doesn't match!"); if (op == Token::Inc || op == Token::Dec) { solAssert(!!m_currentLValue, "LValue not retrieved."); IRVariable modifiedValue(m_context.newYulVariable(), resultType); IRVariable originalValue = readFromLValue(*m_currentLValue); bool checked = m_context.arithmetic() == Arithmetic::Checked; define(modifiedValue) << (op == Token::Inc ? (checked ? m_utils.incrementCheckedFunction(resultType) : m_utils.incrementWrappingFunction(resultType)) : (checked ? m_utils.decrementCheckedFunction(resultType) : m_utils.decrementWrappingFunction(resultType)) ) << "(" << originalValue.name() << ")\n"; writeToLValue(*m_currentLValue, modifiedValue); m_currentLValue.reset(); define(_unaryOperation, _unaryOperation.isPrefixOperation() ? modifiedValue : originalValue); } else if (op == Token::BitNot) appendSimpleUnaryOperation(_unaryOperation, _unaryOperation.subExpression()); else if (op == Token::Add) // According to SyntaxChecker... solAssert(false, "Use of unary + is disallowed."); else if (op == Token::Sub) { IntegerType const& intType = *dynamic_cast(&resultType); define(_unaryOperation) << ( m_context.arithmetic() == Arithmetic::Checked ? m_utils.negateNumberCheckedFunction(intType) : m_utils.negateNumberWrappingFunction(intType) ) << "(" << IRVariable(_unaryOperation.subExpression()).name() << ")\n"; } else solUnimplemented("Unary operator not yet implemented"); } else if (resultType.category() == Type::Category::FixedBytes) { solAssert(op == Token::BitNot, "Only bitwise negation is allowed for FixedBytes"); solAssert(resultType == type(_unaryOperation.subExpression()), "Result type doesn't match!"); appendSimpleUnaryOperation(_unaryOperation, _unaryOperation.subExpression()); } else if (resultType.category() == Type::Category::Bool) { solAssert( op != Token::BitNot, "Bitwise Negation can't be done on bool!" ); appendSimpleUnaryOperation(_unaryOperation, _unaryOperation.subExpression()); } else solUnimplemented("Unary operator not yet implemented"); return false; } bool IRGeneratorForStatements::visit(BinaryOperation const& _binOp) { setLocation(_binOp); solAssert(!!_binOp.annotation().commonType); Type const* commonType = _binOp.annotation().commonType; langutil::Token op = _binOp.getOperator(); if (op == Token::And || op == Token::Or) { // This can short-circuit! appendAndOrOperatorCode(_binOp); return false; } if (commonType->category() == Type::Category::RationalNumber) { define(_binOp) << toCompactHexWithPrefix(commonType->literalValue(nullptr)) << "\n"; return false; // skip sub-expressions } _binOp.leftExpression().accept(*this); _binOp.rightExpression().accept(*this); setLocation(_binOp); if (TokenTraits::isCompareOp(op)) { solAssert(commonType->isValueType()); bool isSigned = false; if (auto type = dynamic_cast(commonType)) isSigned = type->isSigned(); string args = expressionAsCleanedType(_binOp.leftExpression(), *commonType); args += ", " + expressionAsCleanedType(_binOp.rightExpression(), *commonType); auto functionType = dynamic_cast(commonType); solAssert(functionType ? (op == Token::Equal || op == Token::NotEqual) : true, "Invalid function pointer comparison!"); string expr; if (functionType && functionType->kind() == FunctionType::Kind::External) { solUnimplementedAssert(functionType->sizeOnStack() == 2, ""); expr = m_utils.externalFunctionPointersEqualFunction() + "(" + IRVariable{_binOp.leftExpression()}.part("address").name() + "," + IRVariable{_binOp.leftExpression()}.part("functionSelector").name() + "," + IRVariable{_binOp.rightExpression()}.part("address").name() + "," + IRVariable{_binOp.rightExpression()}.part("functionSelector").name() + ")"; if (op == Token::NotEqual) expr = "iszero(" + expr + ")"; } else if (op == Token::Equal) expr = "eq(" + std::move(args) + ")"; else if (op == Token::NotEqual) expr = "iszero(eq(" + std::move(args) + "))"; else if (op == Token::GreaterThanOrEqual) expr = "iszero(" + string(isSigned ? "slt(" : "lt(") + std::move(args) + "))"; else if (op == Token::LessThanOrEqual) expr = "iszero(" + string(isSigned ? "sgt(" : "gt(") + std::move(args) + "))"; else if (op == Token::GreaterThan) expr = (isSigned ? "sgt(" : "gt(") + std::move(args) + ")"; else if (op == Token::LessThan) expr = (isSigned ? "slt(" : "lt(") + std::move(args) + ")"; else solAssert(false, "Unknown comparison operator."); define(_binOp) << expr << "\n"; } else if (op == Token::Exp) { IRVariable left = convert(_binOp.leftExpression(), *commonType); IRVariable right = convert(_binOp.rightExpression(), *type(_binOp.rightExpression()).mobileType()); if (m_context.arithmetic() == Arithmetic::Wrapping) define(_binOp) << m_utils.wrappingIntExpFunction( dynamic_cast(left.type()), dynamic_cast(right.type()) ) << "(" << left.name() << ", " << right.name() << ")\n"; else if (auto rationalNumberType = dynamic_cast(_binOp.leftExpression().annotation().type)) { solAssert(rationalNumberType->integerType(), "Invalid literal as the base for exponentiation."); solAssert(dynamic_cast(commonType)); define(_binOp) << m_utils.overflowCheckedIntLiteralExpFunction( *rationalNumberType, dynamic_cast(right.type()), dynamic_cast(*commonType) ) << "(" << right.name() << ")\n"; } else define(_binOp) << m_utils.overflowCheckedIntExpFunction( dynamic_cast(left.type()), dynamic_cast(right.type()) ) << "(" << left.name() << ", " << right.name() << ")\n"; } else if (TokenTraits::isShiftOp(op)) { IRVariable left = convert(_binOp.leftExpression(), *commonType); IRVariable right = convert(_binOp.rightExpression(), *type(_binOp.rightExpression()).mobileType()); define(_binOp) << shiftOperation(_binOp.getOperator(), left, right) << "\n"; } else { string left = expressionAsType(_binOp.leftExpression(), *commonType); string right = expressionAsType(_binOp.rightExpression(), *commonType); define(_binOp) << binaryOperation(_binOp.getOperator(), *commonType, left, right) << "\n"; } return false; } void IRGeneratorForStatements::endVisit(FunctionCall const& _functionCall) { setLocation(_functionCall); auto functionCallKind = *_functionCall.annotation().kind; if (functionCallKind == FunctionCallKind::TypeConversion) { solAssert( _functionCall.expression().annotation().type->category() == Type::Category::TypeType, "Expected category to be TypeType" ); solAssert(_functionCall.arguments().size() == 1, "Expected one argument for type conversion"); define(_functionCall, *_functionCall.arguments().front()); return; } FunctionTypePointer functionType = nullptr; if (functionCallKind == FunctionCallKind::StructConstructorCall) { auto const& type = dynamic_cast(*_functionCall.expression().annotation().type); auto const& structType = dynamic_cast(*type.actualType()); functionType = structType.constructorType(); } else functionType = dynamic_cast(_functionCall.expression().annotation().type); TypePointers parameterTypes = functionType->parameterTypes(); vector> const& arguments = _functionCall.sortedArguments(); if (functionCallKind == FunctionCallKind::StructConstructorCall) { TypeType const& type = dynamic_cast(*_functionCall.expression().annotation().type); auto const& structType = dynamic_cast(*type.actualType()); define(_functionCall) << m_utils.allocateMemoryStructFunction(structType) << "()\n"; MemberList::MemberMap members = structType.nativeMembers(nullptr); solAssert(members.size() == arguments.size(), "Struct parameter mismatch."); for (size_t i = 0; i < arguments.size(); i++) { IRVariable converted = convert(*arguments[i], *parameterTypes[i]); appendCode() << m_utils.writeToMemoryFunction(*functionType->parameterTypes()[i]) << "(add(" << IRVariable(_functionCall).part("mpos").name() << ", " << structType.memoryOffsetOfMember(members[i].name) << "), " << converted.commaSeparatedList() << ")\n"; } return; } switch (functionType->kind()) { case FunctionType::Kind::Declaration: solAssert(false, "Attempted to generate code for calling a function definition."); break; case FunctionType::Kind::Internal: { FunctionDefinition const* functionDef = ASTNode::resolveFunctionCall(_functionCall, &m_context.mostDerivedContract()); solAssert(!functionType->takesArbitraryParameters()); vector args; if (functionType->hasBoundFirstArgument()) args += IRVariable(_functionCall.expression()).part("self").stackSlots(); for (size_t i = 0; i < arguments.size(); ++i) args += convert(*arguments[i], *parameterTypes[i]).stackSlots(); if (functionDef) { solAssert(functionDef->isImplemented()); define(_functionCall) << m_context.enqueueFunctionForCodeGeneration(*functionDef) << "(" << joinHumanReadable(args) << ")\n"; } else { YulArity arity = YulArity::fromType(*functionType); m_context.internalFunctionCalledThroughDispatch(arity); define(_functionCall) << IRNames::internalDispatch(arity) << "(" << IRVariable(_functionCall.expression()).part("functionIdentifier").name() << joinHumanReadablePrefixed(args) << ")\n"; } break; } case FunctionType::Kind::External: case FunctionType::Kind::DelegateCall: appendExternalFunctionCall(_functionCall, arguments); break; case FunctionType::Kind::BareCall: case FunctionType::Kind::BareDelegateCall: case FunctionType::Kind::BareStaticCall: appendBareCall(_functionCall, arguments); break; case FunctionType::Kind::BareCallCode: solAssert(false, "Callcode has been removed."); case FunctionType::Kind::Event: { auto const& event = dynamic_cast(functionType->declaration()); TypePointers paramTypes = functionType->parameterTypes(); ABIFunctions abi(m_context.evmVersion(), m_context.revertStrings(), m_context.functionCollector()); vector indexedArgs; vector nonIndexedArgs; TypePointers nonIndexedArgTypes; TypePointers nonIndexedParamTypes; if (!event.isAnonymous()) define(indexedArgs.emplace_back(m_context.newYulVariable(), *TypeProvider::uint256())) << formatNumber(u256(h256::Arith(keccak256(functionType->externalSignature())))) << "\n"; for (size_t i = 0; i < event.parameters().size(); ++i) { Expression const& arg = *arguments[i]; if (event.parameters()[i]->isIndexed()) { string value; if (auto const& referenceType = dynamic_cast(paramTypes[i])) define(indexedArgs.emplace_back(m_context.newYulVariable(), *TypeProvider::uint256())) << m_utils.packedHashFunction({arg.annotation().type}, {referenceType}) << "(" << IRVariable(arg).commaSeparatedList() << ")\n"; else if (auto functionType = dynamic_cast(paramTypes[i])) { solAssert( IRVariable(arg).type() == *functionType && functionType->kind() == FunctionType::Kind::External && !functionType->hasBoundFirstArgument(), "" ); define(indexedArgs.emplace_back(m_context.newYulVariable(), *TypeProvider::fixedBytes(32))) << m_utils.combineExternalFunctionIdFunction() << "(" << IRVariable(arg).commaSeparatedList() << ")\n"; } else { solAssert(parameterTypes[i]->sizeOnStack() == 1, ""); indexedArgs.emplace_back(convertAndCleanup(arg, *parameterTypes[i])); } } else { nonIndexedArgs += IRVariable(arg).stackSlots(); nonIndexedArgTypes.push_back(arg.annotation().type); nonIndexedParamTypes.push_back(paramTypes[i]); } } solAssert(indexedArgs.size() <= 4, "Too many indexed arguments."); Whiskers templ(R"({ let := () let := ( ) (, sub(, ) ) })"); templ("pos", m_context.newYulVariable()); templ("end", m_context.newYulVariable()); templ("allocateUnbounded", m_utils.allocateUnboundedFunction()); templ("encode", abi.tupleEncoder(nonIndexedArgTypes, nonIndexedParamTypes)); templ("nonIndexedArgs", joinHumanReadablePrefixed(nonIndexedArgs)); templ("log", "log" + to_string(indexedArgs.size())); templ("indexedArgs", joinHumanReadablePrefixed(indexedArgs | ranges::views::transform([&](auto const& _arg) { return _arg.commaSeparatedList(); }))); appendCode() << templ.render(); break; } case FunctionType::Kind::Error: { ErrorDefinition const* error = dynamic_cast(ASTNode::referencedDeclaration(_functionCall.expression())); solAssert(error); revertWithError( error->functionType(true)->externalSignature(), error->functionType(true)->parameterTypes(), _functionCall.sortedArguments() ); break; } case FunctionType::Kind::Wrap: case FunctionType::Kind::Unwrap: { solAssert(arguments.size() == 1); FunctionType::Kind kind = functionType->kind(); if (kind == FunctionType::Kind::Wrap) solAssert( type(*arguments.at(0)).isImplicitlyConvertibleTo( dynamic_cast(type(_functionCall)).underlyingType() ), "" ); else solAssert(type(*arguments.at(0)).category() == Type::Category::UserDefinedValueType); define(_functionCall, *arguments.at(0)); break; } case FunctionType::Kind::Assert: case FunctionType::Kind::Require: { solAssert(arguments.size() > 0, "Expected at least one parameter for require/assert"); solAssert(arguments.size() <= 2, "Expected no more than two parameters for require/assert"); Type const* messageArgumentType = arguments.size() > 1 && m_context.revertStrings() != RevertStrings::Strip ? arguments[1]->annotation().type : nullptr; string requireOrAssertFunction = m_utils.requireOrAssertFunction( functionType->kind() == FunctionType::Kind::Assert, messageArgumentType ); appendCode() << std::move(requireOrAssertFunction) << "(" << IRVariable(*arguments[0]).name(); if (messageArgumentType && messageArgumentType->sizeOnStack() > 0) appendCode() << ", " << IRVariable(*arguments[1]).commaSeparatedList(); appendCode() << ")\n"; break; } case FunctionType::Kind::ABIEncode: case FunctionType::Kind::ABIEncodePacked: case FunctionType::Kind::ABIEncodeWithSelector: case FunctionType::Kind::ABIEncodeCall: case FunctionType::Kind::ABIEncodeWithSignature: { bool const isPacked = functionType->kind() == FunctionType::Kind::ABIEncodePacked; solAssert(functionType->padArguments() != isPacked); bool const hasSelectorOrSignature = functionType->kind() == FunctionType::Kind::ABIEncodeWithSelector || functionType->kind() == FunctionType::Kind::ABIEncodeCall || functionType->kind() == FunctionType::Kind::ABIEncodeWithSignature; TypePointers argumentTypes; TypePointers targetTypes; vector argumentVars; string selector; vector> argumentsOfEncodeFunction; if (functionType->kind() == FunctionType::Kind::ABIEncodeCall) { solAssert(arguments.size() == 2); // Account for tuples with one component which become that component if (type(*arguments[1]).category() == Type::Category::Tuple) { auto const& tupleExpression = dynamic_cast(*arguments[1]); for (auto component: tupleExpression.components()) argumentsOfEncodeFunction.push_back(component); } else argumentsOfEncodeFunction.push_back(arguments[1]); } else for (size_t i = 0; i < arguments.size(); ++i) { // ignore selector if (hasSelectorOrSignature && i == 0) continue; argumentsOfEncodeFunction.push_back(arguments[i]); } for (auto const& argument: argumentsOfEncodeFunction) { argumentTypes.emplace_back(&type(*argument)); argumentVars += IRVariable(*argument).stackSlots(); } if (functionType->kind() == FunctionType::Kind::ABIEncodeCall) { auto encodedFunctionType = dynamic_cast(arguments.front()->annotation().type); solAssert(encodedFunctionType); encodedFunctionType = encodedFunctionType->asExternallyCallableFunction(false); solAssert(encodedFunctionType); targetTypes = encodedFunctionType->parameterTypes(); } else for (auto const& argument: argumentsOfEncodeFunction) targetTypes.emplace_back(type(*argument).fullEncodingType(false, true, isPacked)); if (functionType->kind() == FunctionType::Kind::ABIEncodeCall) { auto const& selectorType = dynamic_cast(type(*arguments.front())); if (selectorType.kind() == FunctionType::Kind::Declaration) { solAssert(selectorType.hasDeclaration()); selector = formatNumber(selectorType.externalIdentifier() << (256 - 32)); } else { selector = convert( IRVariable(*arguments[0]).part("functionSelector"), *TypeProvider::fixedBytes(4) ).name(); } } else if (functionType->kind() == FunctionType::Kind::ABIEncodeWithSignature) { // hash the signature Type const& selectorType = type(*arguments.front()); if (auto const* stringType = dynamic_cast(&selectorType)) selector = formatNumber(util::selectorFromSignatureU256(stringType->value())); else { // Used to reset the free memory pointer later. // TODO This is an abuse of the `allocateUnbounded` function. // We might want to introduce a new set of memory handling functions here // a la "setMemoryCheckPoint" and "freeUntilCheckPoint". string freeMemoryPre = m_context.newYulVariable(); appendCode() << "let " << freeMemoryPre << " := " << m_utils.allocateUnboundedFunction() << "()\n"; IRVariable array = convert(*arguments[0], *TypeProvider::bytesMemory()); IRVariable hashVariable(m_context.newYulVariable(), *TypeProvider::fixedBytes(32)); string dataAreaFunction = m_utils.arrayDataAreaFunction(*TypeProvider::bytesMemory()); string arrayLengthFunction = m_utils.arrayLengthFunction(*TypeProvider::bytesMemory()); define(hashVariable) << "keccak256(" << (dataAreaFunction + "(" + array.commaSeparatedList() + ")") << ", " << (arrayLengthFunction + "(" + array.commaSeparatedList() +")") << ")\n"; IRVariable selectorVariable(m_context.newYulVariable(), *TypeProvider::fixedBytes(4)); define(selectorVariable, hashVariable); selector = selectorVariable.name(); appendCode() << m_utils.finalizeAllocationFunction() << "(" << freeMemoryPre << ", 0)\n"; } } else if (functionType->kind() == FunctionType::Kind::ABIEncodeWithSelector) selector = convert(*arguments.front(), *TypeProvider::fixedBytes(4)).name(); Whiskers templ(R"( let := () let := add(, 0x20) mstore(, ) := add(, 4) let := () mstore(, sub(, add(, 0x20))) (, sub(, )) )"); templ("data", IRVariable(_functionCall).part("mpos").name()); templ("allocateUnbounded", m_utils.allocateUnboundedFunction()); templ("memPtr", m_context.newYulVariable()); templ("mend", m_context.newYulVariable()); templ("selector", selector); templ("encode", isPacked ? m_context.abiFunctions().tupleEncoderPacked(argumentTypes, targetTypes) : m_context.abiFunctions().tupleEncoder(argumentTypes, targetTypes, false) ); templ("arguments", joinHumanReadablePrefixed(argumentVars)); templ("finalizeAllocation", m_utils.finalizeAllocationFunction()); appendCode() << templ.render(); break; } case FunctionType::Kind::ABIDecode: { Whiskers templ(R"( let := (, add(, )) )"); Type const* firstArgType = arguments.front()->annotation().type; TypePointers targetTypes; if (TupleType const* targetTupleType = dynamic_cast(_functionCall.annotation().type)) targetTypes = targetTupleType->components(); else targetTypes = TypePointers{_functionCall.annotation().type}; if ( auto referenceType = dynamic_cast(firstArgType); referenceType && referenceType->dataStoredIn(DataLocation::CallData) ) { solAssert(referenceType->isImplicitlyConvertibleTo(*TypeProvider::bytesCalldata())); IRVariable var = convert(*arguments[0], *TypeProvider::bytesCalldata()); templ("abiDecode", m_context.abiFunctions().tupleDecoder(targetTypes, false)); templ("offset", var.part("offset").name()); templ("length", var.part("length").name()); } else { IRVariable var = convert(*arguments[0], *TypeProvider::bytesMemory()); templ("abiDecode", m_context.abiFunctions().tupleDecoder(targetTypes, true)); templ("offset", "add(" + var.part("mpos").name() + ", 32)"); templ("length", m_utils.arrayLengthFunction(*TypeProvider::bytesMemory()) + "(" + var.part("mpos").name() + ")" ); } templ("retVars", IRVariable(_functionCall).commaSeparatedList()); appendCode() << templ.render(); break; } case FunctionType::Kind::Revert: { solAssert(arguments.size() == parameterTypes.size()); solAssert(arguments.size() <= 1); solAssert( arguments.empty() || arguments.front()->annotation().type->isImplicitlyConvertibleTo(*TypeProvider::stringMemory()), ""); if (m_context.revertStrings() == RevertStrings::Strip || arguments.empty()) appendCode() << "revert(0, 0)\n"; else revertWithError( "Error(string)", {TypeProvider::stringMemory()}, {arguments.front()} ); break; } // Array creation using new case FunctionType::Kind::ObjectCreation: { ArrayType const& arrayType = dynamic_cast(*_functionCall.annotation().type); solAssert(arguments.size() == 1); IRVariable value = convert(*arguments[0], *TypeProvider::uint256()); define(_functionCall) << m_utils.allocateAndInitializeMemoryArrayFunction(arrayType) << "(" << value.commaSeparatedList() << ")\n"; break; } case FunctionType::Kind::KECCAK256: { solAssert(arguments.size() == 1); ArrayType const* arrayType = TypeProvider::bytesMemory(); if (auto const* stringLiteral = dynamic_cast(arguments.front()->annotation().type)) { // Optimization: Compute keccak256 on string literals at compile-time. define(_functionCall) << ("0x" + keccak256(stringLiteral->value()).hex()) << "\n"; } else { auto array = convert(*arguments[0], *arrayType); string dataAreaFunction = m_utils.arrayDataAreaFunction(*arrayType); string arrayLengthFunction = m_utils.arrayLengthFunction(*arrayType); define(_functionCall) << "keccak256(" << (dataAreaFunction + "(" + array.commaSeparatedList() + ")") << ", " << (arrayLengthFunction + "(" + array.commaSeparatedList() +")") << ")\n"; } break; } case FunctionType::Kind::ArrayPop: { solAssert(functionType->hasBoundFirstArgument()); solAssert(functionType->parameterTypes().empty()); ArrayType const* arrayType = dynamic_cast(functionType->selfType()); solAssert(arrayType); define(_functionCall) << m_utils.storageArrayPopFunction(*arrayType) << "(" << IRVariable(_functionCall.expression()).commaSeparatedList() << ")\n"; break; } case FunctionType::Kind::ArrayPush: { ArrayType const* arrayType = dynamic_cast(functionType->selfType()); solAssert(arrayType); if (arguments.empty()) { auto slotName = m_context.newYulVariable(); auto offsetName = m_context.newYulVariable(); appendCode() << "let " << slotName << ", " << offsetName << " := " << m_utils.storageArrayPushZeroFunction(*arrayType) << "(" << IRVariable(_functionCall.expression()).commaSeparatedList() << ")\n"; setLValue(_functionCall, IRLValue{ *arrayType->baseType(), IRLValue::Storage{ slotName, offsetName, } }); } else { IRVariable argument = arrayType->baseType()->isValueType() ? convert(*arguments.front(), *arrayType->baseType()) : *arguments.front(); appendCode() << m_utils.storageArrayPushFunction(*arrayType, &argument.type()) << "(" << IRVariable(_functionCall.expression()).commaSeparatedList() << (argument.stackSlots().empty() ? "" : (", " + argument.commaSeparatedList())) << ")\n"; } break; } case FunctionType::Kind::StringConcat: case FunctionType::Kind::BytesConcat: { TypePointers argumentTypes; vector argumentVars; for (ASTPointer const& argument: arguments) { argumentTypes.emplace_back(&type(*argument)); argumentVars += IRVariable(*argument).stackSlots(); } define(IRVariable(_functionCall)) << m_utils.bytesOrStringConcatFunction(argumentTypes, functionType->kind()) << "(" << joinHumanReadable(argumentVars) << ")\n"; break; } case FunctionType::Kind::MetaType: { break; } case FunctionType::Kind::AddMod: case FunctionType::Kind::MulMod: { static map functions = { {FunctionType::Kind::AddMod, "addmod"}, {FunctionType::Kind::MulMod, "mulmod"}, }; solAssert(functions.find(functionType->kind()) != functions.end()); solAssert(arguments.size() == 3 && parameterTypes.size() == 3); IRVariable modulus(m_context.newYulVariable(), *(parameterTypes[2])); define(modulus, *arguments[2]); Whiskers templ("if iszero() { () }\n"); templ("modulus", modulus.name()); templ("panic", m_utils.panicFunction(PanicCode::DivisionByZero)); appendCode() << templ.render(); string args; for (size_t i = 0; i < 2; ++i) args += expressionAsType(*arguments[i], *(parameterTypes[i])) + ", "; args += modulus.name(); define(_functionCall) << functions[functionType->kind()] << "(" << args << ")\n"; break; } case FunctionType::Kind::GasLeft: case FunctionType::Kind::Selfdestruct: case FunctionType::Kind::BlockHash: { static map functions = { {FunctionType::Kind::GasLeft, "gas"}, {FunctionType::Kind::Selfdestruct, "selfdestruct"}, {FunctionType::Kind::BlockHash, "blockhash"}, }; solAssert(functions.find(functionType->kind()) != functions.end()); string args; for (size_t i = 0; i < arguments.size(); ++i) args += (args.empty() ? "" : ", ") + expressionAsType(*arguments[i], *(parameterTypes[i])); define(_functionCall) << functions[functionType->kind()] << "(" << args << ")\n"; break; } case FunctionType::Kind::Creation: { solAssert(!functionType->gasSet(), "Gas limit set for contract creation."); solAssert( functionType->returnParameterTypes().size() == 1, "Constructor should return only one type" ); TypePointers argumentTypes; vector constructorParams; for (ASTPointer const& arg: arguments) { argumentTypes.push_back(arg->annotation().type); constructorParams += IRVariable{*arg}.stackSlots(); } ContractDefinition const* contract = &dynamic_cast(*functionType->returnParameterTypes().front()).contractDefinition(); m_context.subObjectsCreated().insert(contract); Whiskers t(R"(let := () let := add(, datasize("")) if or(gt(, 0xffffffffffffffff), lt(, )) { () } datacopy(, dataoffset(""), datasize("")) := () let
:= create2(, , sub(, ), ) let
:= create(, , sub(, )) let := iszero(iszero(
)) if iszero(
) { () } )"); t("memPos", m_context.newYulVariable()); t("memEnd", m_context.newYulVariable()); t("allocateUnbounded", m_utils.allocateUnboundedFunction()); t("object", IRNames::creationObject(*contract)); t("panic", m_utils.panicFunction(PanicCode::ResourceError)); t("abiEncode", m_context.abiFunctions().tupleEncoder(argumentTypes, functionType->parameterTypes(), false) ); t("constructorParams", joinHumanReadablePrefixed(constructorParams)); t("value", functionType->valueSet() ? IRVariable(_functionCall.expression()).part("value").name() : "0"); t("saltSet", functionType->saltSet()); if (functionType->saltSet()) t("salt", IRVariable(_functionCall.expression()).part("salt").name()); solAssert(IRVariable(_functionCall).stackSlots().size() == 1); t("address", IRVariable(_functionCall).commaSeparatedList()); t("isTryCall", _functionCall.annotation().tryCall); if (_functionCall.annotation().tryCall) t("success", IRNames::trySuccessConditionVariable(_functionCall)); else t("forwardingRevert", m_utils.forwardingRevertFunction()); appendCode() << t.render(); break; } case FunctionType::Kind::Send: case FunctionType::Kind::Transfer: { solAssert(arguments.size() == 1 && parameterTypes.size() == 1); string address{IRVariable(_functionCall.expression()).part("address").name()}; string value{expressionAsType(*arguments[0], *(parameterTypes[0]))}; Whiskers templ(R"( let := 0 if iszero() { := } let := call(,
, , 0, 0, 0, 0) if iszero() { () } )"); templ("gas", m_context.newYulVariable()); templ("callStipend", toString(evmasm::GasCosts::callStipend)); templ("address", address); templ("value", value); if (functionType->kind() == FunctionType::Kind::Transfer) templ("success", m_context.newYulVariable()); else templ("success", IRVariable(_functionCall).commaSeparatedList()); templ("isTransfer", functionType->kind() == FunctionType::Kind::Transfer); templ("forwardingRevert", m_utils.forwardingRevertFunction()); appendCode() << templ.render(); break; } case FunctionType::Kind::ECRecover: case FunctionType::Kind::RIPEMD160: case FunctionType::Kind::SHA256: { solAssert(!_functionCall.annotation().tryCall); solAssert(!functionType->valueSet()); solAssert(!functionType->gasSet()); solAssert(!functionType->hasBoundFirstArgument()); static map> precompiles = { {FunctionType::Kind::ECRecover, std::make_tuple(1, 0)}, {FunctionType::Kind::SHA256, std::make_tuple(2, 0)}, {FunctionType::Kind::RIPEMD160, std::make_tuple(3, 12)}, }; auto [ address, offset ] = precompiles[functionType->kind()]; TypePointers argumentTypes; vector argumentStrings; for (auto const& arg: arguments) { argumentTypes.emplace_back(&type(*arg)); argumentStrings += IRVariable(*arg).stackSlots(); } Whiskers templ(R"( let := () let := ( ) mstore(0, 0) let := (,
, 0, , sub(, ), 0, 32) if iszero() { () } let := (mload(0)) )"); templ("call", m_context.evmVersion().hasStaticCall() ? "staticcall" : "call"); templ("isCall", !m_context.evmVersion().hasStaticCall()); templ("shl", m_utils.shiftLeftFunction(offset * 8)); templ("allocateUnbounded", m_utils.allocateUnboundedFunction()); templ("pos", m_context.newYulVariable()); templ("end", m_context.newYulVariable()); templ("isECRecover", FunctionType::Kind::ECRecover == functionType->kind()); if (FunctionType::Kind::ECRecover == functionType->kind()) templ("encodeArgs", m_context.abiFunctions().tupleEncoder(argumentTypes, parameterTypes)); else templ("encodeArgs", m_context.abiFunctions().tupleEncoderPacked(argumentTypes, parameterTypes)); templ("argumentString", joinHumanReadablePrefixed(argumentStrings)); templ("address", toString(address)); templ("success", m_context.newYulVariable()); templ("retVars", IRVariable(_functionCall).commaSeparatedList()); templ("forwardingRevert", m_utils.forwardingRevertFunction()); if (m_context.evmVersion().canOverchargeGasForCall()) // Send all gas (requires tangerine whistle EVM) templ("gas", "gas()"); else { // @todo The value 10 is not exact and this could be fine-tuned, // but this has worked for years in the old code generator. u256 gasNeededByCaller = evmasm::GasCosts::callGas(m_context.evmVersion()) + 10 + evmasm::GasCosts::callNewAccountGas; templ("gas", "sub(gas(), " + formatNumber(gasNeededByCaller) + ")"); } appendCode() << templ.render(); break; } default: solUnimplemented("FunctionKind " + toString(static_cast(functionType->kind())) + " not yet implemented"); } } void IRGeneratorForStatements::endVisit(FunctionCallOptions const& _options) { setLocation(_options); FunctionType const& previousType = dynamic_cast(*_options.expression().annotation().type); solUnimplementedAssert(!previousType.hasBoundFirstArgument()); // Copy over existing values. for (auto const& item: previousType.stackItems()) define(IRVariable(_options).part(get<0>(item)), IRVariable(_options.expression()).part(get<0>(item))); for (size_t i = 0; i < _options.names().size(); ++i) { string const& name = *_options.names()[i]; solAssert(name == "salt" || name == "gas" || name == "value"); define(IRVariable(_options).part(name), *_options.options()[i]); } } bool IRGeneratorForStatements::visit(MemberAccess const& _memberAccess) { // A shortcut for
.code.length. We skip visiting
.code and directly visit //
. The actual code is generated in endVisit. if ( auto innerExpression = dynamic_cast(&_memberAccess.expression()); _memberAccess.memberName() == "length" && innerExpression && innerExpression->memberName() == "code" && innerExpression->expression().annotation().type->category() == Type::Category::Address ) { solAssert(innerExpression->annotation().type->category() == Type::Category::Array); // Skip visiting
.code innerExpression->expression().accept(*this); return false; } return true; } void IRGeneratorForStatements::endVisit(MemberAccess const& _memberAccess) { setLocation(_memberAccess); ASTString const& member = _memberAccess.memberName(); auto memberFunctionType = dynamic_cast(_memberAccess.annotation().type); Type::Category objectCategory = _memberAccess.expression().annotation().type->category(); if (memberFunctionType && memberFunctionType->hasBoundFirstArgument()) { define(IRVariable(_memberAccess).part("self"), _memberAccess.expression()); solAssert(*_memberAccess.annotation().requiredLookup == VirtualLookup::Static); if (memberFunctionType->kind() == FunctionType::Kind::Internal) assignInternalFunctionIDIfNotCalledDirectly( _memberAccess, dynamic_cast(memberFunctionType->declaration()) ); else if ( memberFunctionType->kind() == FunctionType::Kind::ArrayPush || memberFunctionType->kind() == FunctionType::Kind::ArrayPop ) { // Nothing to do. } else { auto const& functionDefinition = dynamic_cast(memberFunctionType->declaration()); solAssert(memberFunctionType->kind() == FunctionType::Kind::DelegateCall); auto contract = dynamic_cast(functionDefinition.scope()); solAssert(contract && contract->isLibrary()); define(IRVariable(_memberAccess).part("address")) << linkerSymbol(*contract) << "\n"; define(IRVariable(_memberAccess).part("functionSelector")) << memberFunctionType->externalIdentifier() << "\n"; } return; } switch (objectCategory) { case Type::Category::Contract: { ContractType const& type = dynamic_cast(*_memberAccess.expression().annotation().type); if (type.isSuper()) solAssert(false); // ordinary contract type else if (Declaration const* declaration = _memberAccess.annotation().referencedDeclaration) { u256 identifier; if (auto const* variable = dynamic_cast(declaration)) identifier = FunctionType(*variable).externalIdentifier(); else if (auto const* function = dynamic_cast(declaration)) identifier = FunctionType(*function).externalIdentifier(); else solAssert(false, "Contract member is neither variable nor function."); define(IRVariable(_memberAccess).part("address"), _memberAccess.expression()); define(IRVariable(_memberAccess).part("functionSelector")) << formatNumber(identifier) << "\n"; } else solAssert(false, "Invalid member access in contract"); break; } case Type::Category::Integer: { solAssert(false, "Invalid member access to integer"); break; } case Type::Category::Address: { if (member == "balance") define(_memberAccess) << "balance(" << expressionAsType(_memberAccess.expression(), *TypeProvider::address()) << ")\n"; else if (member == "code") { string externalCodeFunction = m_utils.externalCodeFunction(); define(_memberAccess) << externalCodeFunction << "(" << expressionAsType(_memberAccess.expression(), *TypeProvider::address()) << ")\n"; } else if (member == "codehash") define(_memberAccess) << "extcodehash(" << expressionAsType(_memberAccess.expression(), *TypeProvider::address()) << ")\n"; else if (set{"send", "transfer"}.count(member)) { solAssert(dynamic_cast(*_memberAccess.expression().annotation().type).stateMutability() == StateMutability::Payable); define(IRVariable{_memberAccess}.part("address"), _memberAccess.expression()); } else if (set{"call", "callcode", "delegatecall", "staticcall"}.count(member)) define(IRVariable{_memberAccess}.part("address"), _memberAccess.expression()); else solAssert(false, "Invalid member access to address"); break; } case Type::Category::Function: if (member == "selector") { FunctionType const& functionType = dynamic_cast( *_memberAccess.expression().annotation().type ); if ( functionType.kind() == FunctionType::Kind::External || functionType.kind() == FunctionType::Kind::DelegateCall ) define(IRVariable{_memberAccess}, IRVariable(_memberAccess.expression()).part("functionSelector")); else if ( functionType.kind() == FunctionType::Kind::Declaration || functionType.kind() == FunctionType::Kind::Error || // In some situations, internal function types also provide the "selector" member. // See Types.cpp for details. functionType.kind() == FunctionType::Kind::Internal ) { solAssert(functionType.hasDeclaration()); solAssert( functionType.kind() == FunctionType::Kind::Error || functionType.declaration().isPartOfExternalInterface(), "" ); define(IRVariable{_memberAccess}) << formatNumber( util::selectorFromSignatureU256(functionType.externalSignature()) ) << "\n"; } else if (functionType.kind() == FunctionType::Kind::Event) { solAssert(functionType.hasDeclaration()); solAssert(functionType.kind() == FunctionType::Kind::Event); solAssert( !(dynamic_cast(functionType.declaration()).isAnonymous()) ); define(IRVariable{_memberAccess}) << formatNumber( u256(h256::Arith(util::keccak256(functionType.externalSignature()))) ) << "\n"; } else solAssert(false, "Invalid use of .selector: " + functionType.toString(false)); } else if (member == "address") { solUnimplementedAssert( dynamic_cast(*_memberAccess.expression().annotation().type).kind() == FunctionType::Kind::External ); define(IRVariable{_memberAccess}, IRVariable(_memberAccess.expression()).part("address")); } else solAssert( !!_memberAccess.expression().annotation().type->memberType(member), "Invalid member access to function." ); break; case Type::Category::Magic: // we can ignore the kind of magic and only look at the name of the member if (member == "coinbase") define(_memberAccess) << "coinbase()\n"; else if (member == "timestamp") define(_memberAccess) << "timestamp()\n"; else if (member == "difficulty") define(_memberAccess) << "difficulty()\n"; else if (member == "number") define(_memberAccess) << "number()\n"; else if (member == "gaslimit") define(_memberAccess) << "gaslimit()\n"; else if (member == "sender") define(_memberAccess) << "caller()\n"; else if (member == "value") define(_memberAccess) << "callvalue()\n"; else if (member == "origin") define(_memberAccess) << "origin()\n"; else if (member == "gasprice") define(_memberAccess) << "gasprice()\n"; else if (member == "chainid") define(_memberAccess) << "chainid()\n"; else if (member == "basefee") define(_memberAccess) << "basefee()\n"; else if (member == "data") { IRVariable var(_memberAccess); define(var.part("offset")) << "0\n"; define(var.part("length")) << "calldatasize()\n"; } else if (member == "sig") define(_memberAccess) << "and(calldataload(0), " << formatNumber(u256(0xffffffff) << (256 - 32)) << ")\n"; else if (member == "gas") solAssert(false, "Gas has been removed."); else if (member == "blockhash") solAssert(false, "Blockhash has been removed."); else if (member == "creationCode" || member == "runtimeCode") { Type const* arg = dynamic_cast(*_memberAccess.expression().annotation().type).typeArgument(); auto const& contractType = dynamic_cast(*arg); solAssert(!contractType.isSuper()); ContractDefinition const& contract = contractType.contractDefinition(); m_context.subObjectsCreated().insert(&contract); appendCode() << Whiskers(R"( let := datasize("") let := (add(, 32)) mstore(, ) datacopy(add(, 32), dataoffset(""), ) )") ("allocationFunction", m_utils.allocationFunction()) ("size", m_context.newYulVariable()) ("objectName", IRNames::creationObject(contract) + (member == "runtimeCode" ? "." + IRNames::deployedObject(contract) : "")) ("result", IRVariable(_memberAccess).commaSeparatedList()).render(); } else if (member == "name") { Type const* arg = dynamic_cast(*_memberAccess.expression().annotation().type).typeArgument(); ContractDefinition const& contract = dynamic_cast(*arg).contractDefinition(); define(IRVariable(_memberAccess)) << m_utils.copyLiteralToMemoryFunction(contract.name()) << "()\n"; } else if (member == "interfaceId") { Type const* arg = dynamic_cast(*_memberAccess.expression().annotation().type).typeArgument(); auto const& contractType = dynamic_cast(*arg); solAssert(!contractType.isSuper()); ContractDefinition const& contract = contractType.contractDefinition(); define(_memberAccess) << formatNumber(u256{contract.interfaceId()} << (256 - 32)) << "\n"; } else if (member == "min" || member == "max") { MagicType const* arg = dynamic_cast(_memberAccess.expression().annotation().type); string requestedValue; if (IntegerType const* integerType = dynamic_cast(arg->typeArgument())) { if (member == "min") requestedValue = formatNumber(integerType->min()); else requestedValue = formatNumber(integerType->max()); } else if (EnumType const* enumType = dynamic_cast(arg->typeArgument())) { if (member == "min") requestedValue = to_string(enumType->minValue()); else requestedValue = to_string(enumType->maxValue()); } else solAssert(false, "min/max requested on unexpected type."); define(_memberAccess) << requestedValue << "\n"; } else if (set{"encode", "encodePacked", "encodeWithSelector", "encodeCall", "encodeWithSignature", "decode"}.count(member)) { // no-op } else solAssert(false, "Unknown magic member."); break; case Type::Category::Struct: { auto const& structType = dynamic_cast(*_memberAccess.expression().annotation().type); IRVariable expression(_memberAccess.expression()); switch (structType.location()) { case DataLocation::Storage: { pair const& offsets = structType.storageOffsetsOfMember(member); string slot = m_context.newYulVariable(); appendCode() << "let " << slot << " := " << ("add(" + expression.part("slot").name() + ", " + offsets.first.str() + ")\n"); setLValue(_memberAccess, IRLValue{ type(_memberAccess), IRLValue::Storage{slot, offsets.second} }); break; } case DataLocation::Memory: { string pos = m_context.newYulVariable(); appendCode() << "let " << pos << " := " << ("add(" + expression.part("mpos").name() + ", " + structType.memoryOffsetOfMember(member).str() + ")\n"); setLValue(_memberAccess, IRLValue{ type(_memberAccess), IRLValue::Memory{pos} }); break; } case DataLocation::CallData: { string baseRef = expression.part("offset").name(); string offset = m_context.newYulVariable(); appendCode() << "let " << offset << " := " << "add(" << baseRef << ", " << to_string(structType.calldataOffsetOfMember(member)) << ")\n"; if (_memberAccess.annotation().type->isDynamicallyEncoded()) define(_memberAccess) << m_utils.accessCalldataTailFunction(*_memberAccess.annotation().type) << "(" << baseRef << ", " << offset << ")\n"; else if ( dynamic_cast(_memberAccess.annotation().type) || dynamic_cast(_memberAccess.annotation().type) ) define(_memberAccess) << offset << "\n"; else define(_memberAccess) << m_utils.readFromCalldata(*_memberAccess.annotation().type) << "(" << offset << ")\n"; break; } default: solAssert(false, "Illegal data location for struct."); } break; } case Type::Category::Enum: { EnumType const& type = dynamic_cast(*_memberAccess.expression().annotation().type); define(_memberAccess) << to_string(type.memberValue(_memberAccess.memberName())) << "\n"; break; } case Type::Category::Array: { auto const& type = dynamic_cast(*_memberAccess.expression().annotation().type); if (member == "length") { // shortcut for
.code.length if ( auto innerExpression = dynamic_cast(&_memberAccess.expression()); innerExpression && innerExpression->memberName() == "code" && innerExpression->expression().annotation().type->category() == Type::Category::Address ) define(_memberAccess) << "extcodesize(" << expressionAsType(innerExpression->expression(), *TypeProvider::address()) << ")\n"; else define(_memberAccess) << m_utils.arrayLengthFunction(type) << "(" << IRVariable(_memberAccess.expression()).commaSeparatedList() << ")\n"; } else if (member == "pop" || member == "push") { solAssert(type.location() == DataLocation::Storage); define(IRVariable{_memberAccess}.part("slot"), IRVariable{_memberAccess.expression()}.part("slot")); } else solAssert(false, "Invalid array member access."); break; } case Type::Category::FixedBytes: { auto const& type = dynamic_cast(*_memberAccess.expression().annotation().type); if (member == "length") define(_memberAccess) << to_string(type.numBytes()) << "\n"; else solAssert(false, "Illegal fixed bytes member."); break; } case Type::Category::TypeType: { Type const& actualType = *dynamic_cast( *_memberAccess.expression().annotation().type ).actualType(); if (actualType.category() == Type::Category::Contract) { ContractType const& contractType = dynamic_cast(actualType); if (contractType.isSuper()) { solAssert(!!_memberAccess.annotation().referencedDeclaration, "Referenced declaration not resolved."); ContractDefinition const* super = contractType.contractDefinition().superContract(m_context.mostDerivedContract()); solAssert(super, "Super contract not available."); FunctionDefinition const& resolvedFunctionDef = dynamic_cast( *_memberAccess.annotation().referencedDeclaration ).resolveVirtual(m_context.mostDerivedContract(), super); solAssert(resolvedFunctionDef.functionType(true)); solAssert(resolvedFunctionDef.functionType(true)->kind() == FunctionType::Kind::Internal); assignInternalFunctionIDIfNotCalledDirectly(_memberAccess, resolvedFunctionDef); } else if (auto const* variable = dynamic_cast(_memberAccess.annotation().referencedDeclaration)) handleVariableReference(*variable, _memberAccess); else if (memberFunctionType) { switch (memberFunctionType->kind()) { case FunctionType::Kind::Declaration: break; case FunctionType::Kind::Internal: if (auto const* function = dynamic_cast(_memberAccess.annotation().referencedDeclaration)) assignInternalFunctionIDIfNotCalledDirectly(_memberAccess, *function); else solAssert(false, "Function not found in member access"); break; case FunctionType::Kind::Event: solAssert( dynamic_cast(_memberAccess.annotation().referencedDeclaration), "Event not found" ); // the call will do the resolving break; case FunctionType::Kind::Error: solAssert( dynamic_cast(_memberAccess.annotation().referencedDeclaration), "Error not found" ); // The function call will resolve the selector. break; case FunctionType::Kind::DelegateCall: define(IRVariable(_memberAccess).part("address"), _memberAccess.expression()); define(IRVariable(_memberAccess).part("functionSelector")) << formatNumber(memberFunctionType->externalIdentifier()) << "\n"; break; case FunctionType::Kind::External: case FunctionType::Kind::Creation: case FunctionType::Kind::Send: case FunctionType::Kind::BareCall: case FunctionType::Kind::BareCallCode: case FunctionType::Kind::BareDelegateCall: case FunctionType::Kind::BareStaticCall: case FunctionType::Kind::Transfer: case FunctionType::Kind::ECRecover: case FunctionType::Kind::SHA256: case FunctionType::Kind::RIPEMD160: default: solAssert(false, "unsupported member function"); } } else if (dynamic_cast(_memberAccess.annotation().type)) { // no-op } else // The old code generator had a generic "else" case here // without any specific code being generated, // but it would still be better to have an exhaustive list. solAssert(false); } else if (EnumType const* enumType = dynamic_cast(&actualType)) define(_memberAccess) << to_string(enumType->memberValue(_memberAccess.memberName())) << "\n"; else if (dynamic_cast(&actualType)) solAssert(member == "wrap" || member == "unwrap"); else if (auto const* arrayType = dynamic_cast(&actualType)) solAssert(arrayType->isByteArrayOrString() && member == "concat"); else // The old code generator had a generic "else" case here // without any specific code being generated, // but it would still be better to have an exhaustive list. solAssert(false); break; } case Type::Category::Module: { Type::Category category = _memberAccess.annotation().type->category(); solAssert( dynamic_cast(_memberAccess.annotation().referencedDeclaration) || dynamic_cast(_memberAccess.annotation().referencedDeclaration) || dynamic_cast(_memberAccess.annotation().referencedDeclaration) || category == Type::Category::TypeType || category == Type::Category::Module, "" ); if (auto variable = dynamic_cast(_memberAccess.annotation().referencedDeclaration)) { solAssert(variable->isConstant()); handleVariableReference(*variable, static_cast(_memberAccess)); } else if (auto const* function = dynamic_cast(_memberAccess.annotation().referencedDeclaration)) { auto funType = dynamic_cast(_memberAccess.annotation().type); solAssert(function && function->isFree()); solAssert(function->functionType(true)); solAssert(function->functionType(true)->kind() == FunctionType::Kind::Internal); solAssert(funType->kind() == FunctionType::Kind::Internal); solAssert(*_memberAccess.annotation().requiredLookup == VirtualLookup::Static); assignInternalFunctionIDIfNotCalledDirectly(_memberAccess, *function); } else if (auto const* contract = dynamic_cast(_memberAccess.annotation().referencedDeclaration)) { if (contract->isLibrary()) define(IRVariable(_memberAccess).part("address")) << linkerSymbol(*contract) << "\n"; } break; } default: solAssert(false, "Member access to unknown type."); } } bool IRGeneratorForStatements::visit(InlineAssembly const& _inlineAsm) { setLocation(_inlineAsm); if (*_inlineAsm.annotation().hasMemoryEffects && !_inlineAsm.annotation().markedMemorySafe) m_context.setMemoryUnsafeInlineAssemblySeen(); CopyTranslate bodyCopier{_inlineAsm.dialect(), m_context, _inlineAsm.annotation().externalReferences}; yul::Statement modified = bodyCopier(_inlineAsm.operations()); solAssert(holds_alternative(modified)); // Do not provide dialect so that we get the full type information. appendCode() << yul::AsmPrinter()(std::get(modified)) << "\n"; return false; } void IRGeneratorForStatements::endVisit(IndexAccess const& _indexAccess) { setLocation(_indexAccess); Type const& baseType = *_indexAccess.baseExpression().annotation().type; if (baseType.category() == Type::Category::Mapping) { solAssert(_indexAccess.indexExpression(), "Index expression expected."); MappingType const& mappingType = dynamic_cast(baseType); Type const& keyType = *_indexAccess.indexExpression()->annotation().type; string slot = m_context.newYulVariable(); Whiskers templ("let := (,)\n"); templ("slot", slot); templ("indexAccess", m_utils.mappingIndexAccessFunction(mappingType, keyType)); templ("base", IRVariable(_indexAccess.baseExpression()).commaSeparatedList()); templ("key", IRVariable(*_indexAccess.indexExpression()).commaSeparatedList()); appendCode() << templ.render(); setLValue(_indexAccess, IRLValue{ *_indexAccess.annotation().type, IRLValue::Storage{ slot, 0u } }); } else if (baseType.category() == Type::Category::Array || baseType.category() == Type::Category::ArraySlice) { ArrayType const& arrayType = baseType.category() == Type::Category::Array ? dynamic_cast(baseType) : dynamic_cast(baseType).arrayType(); if (baseType.category() == Type::Category::ArraySlice) solAssert(arrayType.dataStoredIn(DataLocation::CallData) && arrayType.isDynamicallySized()); solAssert(_indexAccess.indexExpression(), "Index expression expected."); switch (arrayType.location()) { case DataLocation::Storage: { string slot = m_context.newYulVariable(); string offset = m_context.newYulVariable(); appendCode() << Whiskers(R"( let , := (, ) )") ("slot", slot) ("offset", offset) ("indexFunc", m_utils.storageArrayIndexAccessFunction(arrayType)) ("array", IRVariable(_indexAccess.baseExpression()).part("slot").name()) ("index", IRVariable(*_indexAccess.indexExpression()).name()) .render(); setLValue(_indexAccess, IRLValue{ *_indexAccess.annotation().type, IRLValue::Storage{slot, offset} }); break; } case DataLocation::Memory: { string const memAddress = m_utils.memoryArrayIndexAccessFunction(arrayType) + "(" + IRVariable(_indexAccess.baseExpression()).part("mpos").name() + ", " + expressionAsType(*_indexAccess.indexExpression(), *TypeProvider::uint256()) + ")"; setLValue(_indexAccess, IRLValue{ *arrayType.baseType(), IRLValue::Memory{memAddress, arrayType.isByteArrayOrString()} }); break; } case DataLocation::CallData: { string indexAccessFunction = m_utils.calldataArrayIndexAccessFunction(arrayType); string const indexAccessFunctionCall = indexAccessFunction + "(" + IRVariable(_indexAccess.baseExpression()).commaSeparatedList() + ", " + expressionAsType(*_indexAccess.indexExpression(), *TypeProvider::uint256()) + ")"; if (arrayType.isByteArrayOrString()) define(_indexAccess) << m_utils.cleanupFunction(*arrayType.baseType()) << "(calldataload(" << indexAccessFunctionCall << "))\n"; else if (arrayType.baseType()->isValueType()) define(_indexAccess) << m_utils.readFromCalldata(*arrayType.baseType()) << "(" << indexAccessFunctionCall << ")\n"; else define(_indexAccess) << indexAccessFunctionCall << "\n"; break; } } } else if (baseType.category() == Type::Category::FixedBytes) { auto const& fixedBytesType = dynamic_cast(baseType); solAssert(_indexAccess.indexExpression(), "Index expression expected."); IRVariable index{m_context.newYulVariable(), *TypeProvider::uint256()}; define(index, *_indexAccess.indexExpression()); appendCode() << Whiskers(R"( if iszero(lt(, )) { () } let := (byte(, )) )") ("index", index.name()) ("length", to_string(fixedBytesType.numBytes())) ("panic", m_utils.panicFunction(PanicCode::ArrayOutOfBounds)) ("array", IRVariable(_indexAccess.baseExpression()).name()) ("shl248", m_utils.shiftLeftFunction(256 - 8)) ("result", IRVariable(_indexAccess).name()) .render(); } else if (baseType.category() == Type::Category::TypeType) { solAssert(baseType.sizeOnStack() == 0); solAssert(_indexAccess.annotation().type->sizeOnStack() == 0); // no-op - this seems to be a lone array type (`structType[];`) } else solAssert(false, "Index access only allowed for mappings or arrays."); } void IRGeneratorForStatements::endVisit(IndexRangeAccess const& _indexRangeAccess) { setLocation(_indexRangeAccess); Type const& baseType = *_indexRangeAccess.baseExpression().annotation().type; solAssert( baseType.category() == Type::Category::Array || baseType.category() == Type::Category::ArraySlice, "Index range accesses is available only on arrays and array slices." ); ArrayType const& arrayType = baseType.category() == Type::Category::Array ? dynamic_cast(baseType) : dynamic_cast(baseType).arrayType(); switch (arrayType.location()) { case DataLocation::CallData: { solAssert(baseType.isDynamicallySized()); IRVariable sliceStart{m_context.newYulVariable(), *TypeProvider::uint256()}; if (_indexRangeAccess.startExpression()) define(sliceStart, IRVariable{*_indexRangeAccess.startExpression()}); else define(sliceStart) << u256(0) << "\n"; IRVariable sliceEnd{ m_context.newYulVariable(), *TypeProvider::uint256() }; if (_indexRangeAccess.endExpression()) define(sliceEnd, IRVariable{*_indexRangeAccess.endExpression()}); else define(sliceEnd, IRVariable{_indexRangeAccess.baseExpression()}.part("length")); IRVariable range{_indexRangeAccess}; define(range) << m_utils.calldataArrayIndexRangeAccess(arrayType) << "(" << IRVariable{_indexRangeAccess.baseExpression()}.commaSeparatedList() << ", " << sliceStart.name() << ", " << sliceEnd.name() << ")\n"; break; } default: solUnimplemented("Index range accesses is implemented only on calldata arrays."); } } void IRGeneratorForStatements::endVisit(Identifier const& _identifier) { setLocation(_identifier); Declaration const* declaration = _identifier.annotation().referencedDeclaration; if (MagicVariableDeclaration const* magicVar = dynamic_cast(declaration)) { switch (magicVar->type()->category()) { case Type::Category::Contract: solAssert(_identifier.name() == "this"); define(_identifier) << "address()\n"; break; case Type::Category::Integer: solAssert(_identifier.name() == "now"); define(_identifier) << "timestamp()\n"; break; case Type::Category::TypeType: { auto typeType = dynamic_cast(magicVar->type()); if (auto contractType = dynamic_cast(typeType->actualType())) solAssert(!contractType->isSuper() || _identifier.name() == "super"); break; } default: break; } return; } else if (FunctionDefinition const* functionDef = dynamic_cast(declaration)) { solAssert(*_identifier.annotation().requiredLookup == VirtualLookup::Virtual); FunctionDefinition const& resolvedFunctionDef = functionDef->resolveVirtual(m_context.mostDerivedContract()); solAssert(resolvedFunctionDef.functionType(true)); solAssert(resolvedFunctionDef.functionType(true)->kind() == FunctionType::Kind::Internal); assignInternalFunctionIDIfNotCalledDirectly(_identifier, resolvedFunctionDef); } else if (VariableDeclaration const* varDecl = dynamic_cast(declaration)) handleVariableReference(*varDecl, _identifier); else if (auto const* contract = dynamic_cast(declaration)) { if (contract->isLibrary()) define(IRVariable(_identifier).part("address")) << linkerSymbol(*contract) << "\n"; } else if (dynamic_cast(declaration)) { // no-op } else if (dynamic_cast(declaration)) { // no-op } else if (dynamic_cast(declaration)) { // no-op } else if (dynamic_cast(declaration)) { // no-op } else if (dynamic_cast(declaration)) { // no-op } else if (dynamic_cast(declaration)) { // no-op } else { solAssert(false, "Identifier type not expected in expression context."); } } bool IRGeneratorForStatements::visit(Literal const& _literal) { setLocation(_literal); Type const& literalType = type(_literal); switch (literalType.category()) { case Type::Category::RationalNumber: case Type::Category::Bool: case Type::Category::Address: define(_literal) << toCompactHexWithPrefix(literalType.literalValue(&_literal)) << "\n"; break; case Type::Category::StringLiteral: break; // will be done during conversion default: solUnimplemented("Only integer, boolean and string literals implemented for now."); } return false; } void IRGeneratorForStatements::handleVariableReference( VariableDeclaration const& _variable, Expression const& _referencingExpression ) { if ((_variable.isStateVariable() || _variable.isFileLevelVariable()) && _variable.isConstant()) define(_referencingExpression) << constantValueFunction(_variable) << "()\n"; else if (_variable.isStateVariable() && _variable.immutable()) setLValue(_referencingExpression, IRLValue{ *_variable.annotation().type, IRLValue::Immutable{&_variable} }); else if (m_context.isLocalVariable(_variable)) setLValue(_referencingExpression, IRLValue{ *_variable.annotation().type, IRLValue::Stack{m_context.localVariable(_variable)} }); else if (m_context.isStateVariable(_variable)) setLValue(_referencingExpression, IRLValue{ *_variable.annotation().type, IRLValue::Storage{ toCompactHexWithPrefix(m_context.storageLocationOfStateVariable(_variable).first), m_context.storageLocationOfStateVariable(_variable).second } }); else solAssert(false, "Invalid variable kind."); } void IRGeneratorForStatements::appendExternalFunctionCall( FunctionCall const& _functionCall, vector> const& _arguments ) { FunctionType const& funType = dynamic_cast(type(_functionCall.expression())); solAssert(!funType.takesArbitraryParameters()); solAssert(_arguments.size() == funType.parameterTypes().size()); solAssert(!funType.isBareCall()); FunctionType::Kind const funKind = funType.kind(); solAssert( funKind == FunctionType::Kind::External || funKind == FunctionType::Kind::DelegateCall, "Can only be used for regular external calls." ); bool const isDelegateCall = funKind == FunctionType::Kind::DelegateCall; bool const useStaticCall = funType.stateMutability() <= StateMutability::View && m_context.evmVersion().hasStaticCall(); ReturnInfo const returnInfo{m_context.evmVersion(), funType}; TypePointers parameterTypes = funType.parameterTypes(); TypePointers argumentTypes; vector argumentStrings; if (funType.hasBoundFirstArgument()) { parameterTypes.insert(parameterTypes.begin(), funType.selfType()); argumentTypes.emplace_back(funType.selfType()); argumentStrings += IRVariable(_functionCall.expression()).part("self").stackSlots(); } for (auto const& arg: _arguments) { argumentTypes.emplace_back(&type(*arg)); argumentStrings += IRVariable(*arg).stackSlots(); } if (!m_context.evmVersion().canOverchargeGasForCall()) { // Touch the end of the output area so that we do not pay for memory resize during the call // (which we would have to subtract from the gas left) // We could also just use MLOAD; POP right before the gas calculation, but the optimizer // would remove that, so we use MSTORE here. if (!funType.gasSet() && returnInfo.estimatedReturnSize > 0) appendCode() << "mstore(add(" << m_utils.allocateUnboundedFunction() << "() , " << to_string(returnInfo.estimatedReturnSize) << "), 0)\n"; } // NOTE: When the expected size of returndata is static, we pass that in to the call opcode and it gets copied automatically. // When it's dynamic, we get zero from estimatedReturnSize() instead and then we need an explicit returndatacopy(). Whiskers templ(R"( if iszero(extcodesize(
)) { () } // storage for arguments and returned data let := () mstore(, ()) let := (add(, 4) ) let := (,
, , , sub(, ), , ) if iszero() { () } let if { let := returndatasize() returndatacopy(, 0, ) let := if gt(, returndatasize()) { := returndatasize() } // update freeMemoryPointer according to dynamic return size (, ) // decode return parameters from external try-call into retVars := (, add(, )) } )"); templ("revertNoCode", m_utils.revertReasonIfDebugFunction("Target contract does not contain code")); // We do not need to check extcodesize if we expect return data: If there is no // code, the call will return empty data and the ABI decoder will revert. size_t encodedHeadSize = 0; for (auto const& t: returnInfo.returnTypes) encodedHeadSize += t->decodingType()->calldataHeadSize(); bool const checkExtcodesize = encodedHeadSize == 0 || !m_context.evmVersion().supportsReturndata() || m_context.revertStrings() >= RevertStrings::Debug; templ("checkExtcodesize", checkExtcodesize); templ("pos", m_context.newYulVariable()); templ("end", m_context.newYulVariable()); if (_functionCall.annotation().tryCall) templ("success", IRNames::trySuccessConditionVariable(_functionCall)); else templ("success", m_context.newYulVariable()); templ("allocateUnbounded", m_utils.allocateUnboundedFunction()); templ("finalizeAllocation", m_utils.finalizeAllocationFunction()); templ("shl28", m_utils.shiftLeftFunction(8 * (32 - 4))); templ("funSel", IRVariable(_functionCall.expression()).part("functionSelector").name()); templ("address", IRVariable(_functionCall.expression()).part("address").name()); if (returnInfo.dynamicReturnSize) solAssert(m_context.evmVersion().supportsReturndata()); templ("returnDataSizeVar", m_context.newYulVariable()); templ("staticReturndataSize", to_string(returnInfo.estimatedReturnSize)); templ("supportsReturnData", m_context.evmVersion().supportsReturndata()); string const retVars = IRVariable(_functionCall).commaSeparatedList(); templ("retVars", retVars); solAssert(retVars.empty() == returnInfo.returnTypes.empty()); templ("abiDecode", m_context.abiFunctions().tupleDecoder(returnInfo.returnTypes, true)); templ("isReturndataSizeDynamic", returnInfo.dynamicReturnSize); templ("noTryCall", !_functionCall.annotation().tryCall); bool encodeForLibraryCall = funKind == FunctionType::Kind::DelegateCall; solAssert(funType.padArguments()); templ("encodeArgs", m_context.abiFunctions().tupleEncoder(argumentTypes, parameterTypes, encodeForLibraryCall)); templ("argumentString", joinHumanReadablePrefixed(argumentStrings)); solAssert(!isDelegateCall || !funType.valueSet(), "Value set for delegatecall"); solAssert(!useStaticCall || !funType.valueSet(), "Value set for staticcall"); templ("hasValue", !isDelegateCall && !useStaticCall); templ("value", funType.valueSet() ? IRVariable(_functionCall.expression()).part("value").name() : "0"); if (funType.gasSet()) templ("gas", IRVariable(_functionCall.expression()).part("gas").name()); else if (m_context.evmVersion().canOverchargeGasForCall()) // Send all gas (requires tangerine whistle EVM) templ("gas", "gas()"); else { // send all gas except the amount needed to execute "SUB" and "CALL" // @todo this retains too much gas for now, needs to be fine-tuned. u256 gasNeededByCaller = evmasm::GasCosts::callGas(m_context.evmVersion()) + 10; if (funType.valueSet()) gasNeededByCaller += evmasm::GasCosts::callValueTransferGas; if (!checkExtcodesize) gasNeededByCaller += evmasm::GasCosts::callNewAccountGas; // we never know templ("gas", "sub(gas(), " + formatNumber(gasNeededByCaller) + ")"); } // Order is important here, STATICCALL might overlap with DELEGATECALL. if (isDelegateCall) templ("call", "delegatecall"); else if (useStaticCall) templ("call", "staticcall"); else templ("call", "call"); templ("forwardingRevert", m_utils.forwardingRevertFunction()); appendCode() << templ.render(); } void IRGeneratorForStatements::appendBareCall( FunctionCall const& _functionCall, vector> const& _arguments ) { FunctionType const& funType = dynamic_cast(type(_functionCall.expression())); solAssert( !funType.hasBoundFirstArgument() && !funType.takesArbitraryParameters() && _arguments.size() == 1 && funType.parameterTypes().size() == 1, "" ); FunctionType::Kind const funKind = funType.kind(); solAssert(funKind != FunctionType::Kind::BareStaticCall || m_context.evmVersion().hasStaticCall()); solAssert(funKind != FunctionType::Kind::BareCallCode, "Callcode has been removed."); solAssert( funKind == FunctionType::Kind::BareCall || funKind == FunctionType::Kind::BareDelegateCall || funKind == FunctionType::Kind::BareStaticCall, "" ); solAssert(!_functionCall.annotation().tryCall); Whiskers templ(R"( let := () let := sub(( , ), ) let := add(, 0x20) let := mload() let := (,
, , , , 0, 0) let := () )"); templ("allocateUnbounded", m_utils.allocateUnboundedFunction()); templ("pos", m_context.newYulVariable()); templ("length", m_context.newYulVariable()); templ("arg", IRVariable(*_arguments.front()).commaSeparatedList()); Type const& argType = type(*_arguments.front()); if (argType == *TypeProvider::bytesMemory() || argType == *TypeProvider::stringMemory()) templ("needsEncoding", false); else { templ("needsEncoding", true); ABIFunctions abi(m_context.evmVersion(), m_context.revertStrings(), m_context.functionCollector()); templ("encode", abi.tupleEncoderPacked({&argType}, {TypeProvider::bytesMemory()})); } templ("success", IRVariable(_functionCall).tupleComponent(0).name()); templ("returndataVar", IRVariable(_functionCall).tupleComponent(1).commaSeparatedList()); templ("extractReturndataFunction", m_utils.extractReturndataFunction()); templ("address", IRVariable(_functionCall.expression()).part("address").name()); if (funKind == FunctionType::Kind::BareCall) { templ("value", funType.valueSet() ? IRVariable(_functionCall.expression()).part("value").name() : "0"); templ("call", "call"); } else { solAssert(!funType.valueSet(), "Value set for delegatecall or staticcall."); templ("value", ""); if (funKind == FunctionType::Kind::BareStaticCall) templ("call", "staticcall"); else templ("call", "delegatecall"); } if (funType.gasSet()) templ("gas", IRVariable(_functionCall.expression()).part("gas").name()); else if (m_context.evmVersion().canOverchargeGasForCall()) // Send all gas (requires tangerine whistle EVM) templ("gas", "gas()"); else { // send all gas except the amount needed to execute "SUB" and "CALL" // @todo this retains too much gas for now, needs to be fine-tuned. u256 gasNeededByCaller = evmasm::GasCosts::callGas(m_context.evmVersion()) + 10; if (funType.valueSet()) gasNeededByCaller += evmasm::GasCosts::callValueTransferGas; gasNeededByCaller += evmasm::GasCosts::callNewAccountGas; // we never know templ("gas", "sub(gas(), " + formatNumber(gasNeededByCaller) + ")"); } appendCode() << templ.render(); } void IRGeneratorForStatements::assignInternalFunctionIDIfNotCalledDirectly( Expression const& _expression, FunctionDefinition const& _referencedFunction ) { solAssert( dynamic_cast(&_expression) || dynamic_cast(&_expression), "" ); if (_expression.annotation().calledDirectly) return; define(IRVariable(_expression).part("functionIdentifier")) << to_string(m_context.internalFunctionID(_referencedFunction, false)) << "\n"; m_context.addToInternalDispatch(_referencedFunction); } IRVariable IRGeneratorForStatements::convert(IRVariable const& _from, Type const& _to) { if (_from.type() == _to) return _from; else { IRVariable converted(m_context.newYulVariable(), _to); define(converted, _from); return converted; } } IRVariable IRGeneratorForStatements::convertAndCleanup(IRVariable const& _from, Type const& _to) { IRVariable converted(m_context.newYulVariable(), _to); defineAndCleanup(converted, _from); return converted; } std::string IRGeneratorForStatements::expressionAsType(Expression const& _expression, Type const& _to) { IRVariable from(_expression); if (from.type() == _to) return from.commaSeparatedList(); else return m_utils.conversionFunction(from.type(), _to) + "(" + from.commaSeparatedList() + ")"; } std::string IRGeneratorForStatements::expressionAsCleanedType(Expression const& _expression, Type const& _to) { IRVariable from(_expression); if (from.type() == _to) return m_utils.cleanupFunction(_to) + "(" + expressionAsType(_expression, _to) + ")"; else return expressionAsType(_expression, _to) ; } std::ostream& IRGeneratorForStatements::define(IRVariable const& _var) { if (_var.type().sizeOnStack() > 0) appendCode() << "let " << _var.commaSeparatedList() << " := "; return appendCode(false); } void IRGeneratorForStatements::declare(IRVariable const& _var) { if (_var.type().sizeOnStack() > 0) appendCode() << "let " << _var.commaSeparatedList() << "\n"; } void IRGeneratorForStatements::declareAssign(IRVariable const& _lhs, IRVariable const& _rhs, bool _declare, bool _forceCleanup) { string output; if (_lhs.type() == _rhs.type() && !_forceCleanup) for (auto const& [stackItemName, stackItemType]: _lhs.type().stackItems()) if (stackItemType) declareAssign(_lhs.part(stackItemName), _rhs.part(stackItemName), _declare); else appendCode() << (_declare ? "let ": "") << _lhs.part(stackItemName).name() << " := " << _rhs.part(stackItemName).name() << "\n"; else { if (_lhs.type().sizeOnStack() > 0) appendCode() << (_declare ? "let ": "") << _lhs.commaSeparatedList() << " := "; appendCode() << m_context.utils().conversionFunction(_rhs.type(), _lhs.type()) << "(" << _rhs.commaSeparatedList() << ")\n"; } } IRVariable IRGeneratorForStatements::zeroValue(Type const& _type, bool _splitFunctionTypes) { IRVariable irVar{IRNames::zeroValue(_type, m_context.newYulVariable()), _type}; define(irVar) << m_utils.zeroValueFunction(_type, _splitFunctionTypes) << "()\n"; return irVar; } void IRGeneratorForStatements::appendSimpleUnaryOperation(UnaryOperation const& _operation, Expression const& _expr) { string func; if (_operation.getOperator() == Token::Not) func = "iszero"; else if (_operation.getOperator() == Token::BitNot) func = "not"; else solAssert(false, "Invalid Token!"); define(_operation) << m_utils.cleanupFunction(type(_expr)) << "(" << func << "(" << IRVariable(_expr).commaSeparatedList() << ")" << ")\n"; } string IRGeneratorForStatements::binaryOperation( langutil::Token _operator, Type const& _type, string const& _left, string const& _right ) { solAssert( !TokenTraits::isShiftOp(_operator), "Have to use specific shift operation function for shifts." ); string fun; if (TokenTraits::isBitOp(_operator)) { solAssert( _type.category() == Type::Category::Integer || _type.category() == Type::Category::FixedBytes, "" ); switch (_operator) { case Token::BitOr: fun = "or"; break; case Token::BitXor: fun = "xor"; break; case Token::BitAnd: fun = "and"; break; default: break; } } else if (TokenTraits::isArithmeticOp(_operator)) { solUnimplementedAssert( _type.category() != Type::Category::FixedPoint, "Not yet implemented - FixedPointType." ); IntegerType const* type = dynamic_cast(&_type); solAssert(type); bool checked = m_context.arithmetic() == Arithmetic::Checked; switch (_operator) { case Token::Add: fun = checked ? m_utils.overflowCheckedIntAddFunction(*type) : m_utils.wrappingIntAddFunction(*type); break; case Token::Sub: fun = checked ? m_utils.overflowCheckedIntSubFunction(*type) : m_utils.wrappingIntSubFunction(*type); break; case Token::Mul: fun = checked ? m_utils.overflowCheckedIntMulFunction(*type) : m_utils.wrappingIntMulFunction(*type); break; case Token::Div: fun = checked ? m_utils.overflowCheckedIntDivFunction(*type) : m_utils.wrappingIntDivFunction(*type); break; case Token::Mod: fun = m_utils.intModFunction(*type); break; default: break; } } solUnimplementedAssert(!fun.empty(), "Type: " + _type.toString()); return fun + "(" + _left + ", " + _right + ")\n"; } std::string IRGeneratorForStatements::shiftOperation( langutil::Token _operator, IRVariable const& _value, IRVariable const& _amountToShift ) { solUnimplementedAssert( _amountToShift.type().category() != Type::Category::FixedPoint && _value.type().category() != Type::Category::FixedPoint, "Not yet implemented - FixedPointType." ); IntegerType const* amountType = dynamic_cast(&_amountToShift.type()); solAssert(amountType); solAssert(_operator == Token::SHL || _operator == Token::SAR); return Whiskers(R"( (, ) )") ("shift", _operator == Token::SHL ? m_utils.typedShiftLeftFunction(_value.type(), *amountType) : m_utils.typedShiftRightFunction(_value.type(), *amountType) ) ("value", _value.name()) ("amount", _amountToShift.name()) .render(); } void IRGeneratorForStatements::appendAndOrOperatorCode(BinaryOperation const& _binOp) { langutil::Token const op = _binOp.getOperator(); solAssert(op == Token::Or || op == Token::And); _binOp.leftExpression().accept(*this); setLocation(_binOp); IRVariable value(_binOp); define(value, _binOp.leftExpression()); if (op == Token::Or) appendCode() << "if iszero(" << value.name() << ") {\n"; else appendCode() << "if " << value.name() << " {\n"; _binOp.rightExpression().accept(*this); setLocation(_binOp); assign(value, _binOp.rightExpression()); appendCode() << "}\n"; } void IRGeneratorForStatements::writeToLValue(IRLValue const& _lvalue, IRVariable const& _value) { std::visit( util::GenericVisitor{ [&](IRLValue::Storage const& _storage) { string offsetArgument; optional offsetStatic; std::visit(GenericVisitor{ [&](unsigned _offset) { offsetStatic = _offset; }, [&](string const& _offset) { offsetArgument = ", " + _offset; } }, _storage.offset); appendCode() << m_utils.updateStorageValueFunction(_value.type(), _lvalue.type, offsetStatic) << "(" << _storage.slot << offsetArgument << _value.commaSeparatedListPrefixed() << ")\n"; }, [&](IRLValue::Memory const& _memory) { if (_lvalue.type.isValueType()) { IRVariable prepared(m_context.newYulVariable(), _lvalue.type); define(prepared, _value); if (_memory.byteArrayElement) { solAssert(_lvalue.type == *TypeProvider::byte()); appendCode() << "mstore8(" + _memory.address + ", byte(0, " + prepared.commaSeparatedList() + "))\n"; } else appendCode() << m_utils.writeToMemoryFunction(_lvalue.type) << "(" << _memory.address << ", " << prepared.commaSeparatedList() << ")\n"; } else if (auto const* literalType = dynamic_cast(&_value.type())) { string writeUInt = m_utils.writeToMemoryFunction(*TypeProvider::uint256()); appendCode() << writeUInt << "(" << _memory.address << ", " << m_utils.copyLiteralToMemoryFunction(literalType->value()) + "()" << ")\n"; } else { solAssert(_lvalue.type.sizeOnStack() == 1); auto const* valueReferenceType = dynamic_cast(&_value.type()); solAssert(valueReferenceType); if (valueReferenceType->dataStoredIn(DataLocation::Memory)) appendCode() << "mstore(" + _memory.address + ", " + _value.part("mpos").name() + ")\n"; else appendCode() << "mstore(" + _memory.address + ", " + m_utils.conversionFunction(_value.type(), _lvalue.type) + "(" + _value.commaSeparatedList() + "))\n"; } }, [&](IRLValue::Stack const& _stack) { assign(_stack.variable, _value); }, [&](IRLValue::Immutable const& _immutable) { solUnimplementedAssert(_lvalue.type.isValueType()); solUnimplementedAssert(_lvalue.type.sizeOnStack() == 1); solAssert(_lvalue.type == *_immutable.variable->type()); size_t memOffset = m_context.immutableMemoryOffset(*_immutable.variable); IRVariable prepared(m_context.newYulVariable(), _lvalue.type); define(prepared, _value); appendCode() << "mstore(" << to_string(memOffset) << ", " << prepared.commaSeparatedList() << ")\n"; }, [&](IRLValue::Tuple const& _tuple) { auto components = std::move(_tuple.components); for (size_t i = 0; i < components.size(); i++) { size_t idx = components.size() - i - 1; if (components[idx]) writeToLValue(*components[idx], _value.tupleComponent(idx)); } } }, _lvalue.kind ); } IRVariable IRGeneratorForStatements::readFromLValue(IRLValue const& _lvalue) { IRVariable result{m_context.newYulVariable(), _lvalue.type}; std::visit(GenericVisitor{ [&](IRLValue::Storage const& _storage) { if (!_lvalue.type.isValueType()) define(result) << _storage.slot << "\n"; else if (std::holds_alternative(_storage.offset)) define(result) << m_utils.readFromStorageDynamic(_lvalue.type, true) << "(" << _storage.slot << ", " << std::get(_storage.offset) << ")\n"; else define(result) << m_utils.readFromStorage(_lvalue.type, std::get(_storage.offset), true) << "(" << _storage.slot << ")\n"; }, [&](IRLValue::Memory const& _memory) { if (_lvalue.type.isValueType()) define(result) << m_utils.readFromMemory(_lvalue.type) << "(" << _memory.address << ")\n"; else define(result) << "mload(" << _memory.address << ")\n"; }, [&](IRLValue::Stack const& _stack) { define(result, _stack.variable); }, [&](IRLValue::Immutable const& _immutable) { solUnimplementedAssert(_lvalue.type.isValueType()); solUnimplementedAssert(_lvalue.type.sizeOnStack() == 1); solAssert(_lvalue.type == *_immutable.variable->type()); if (m_context.executionContext() == IRGenerationContext::ExecutionContext::Creation) { string readFunction = m_utils.readFromMemory(*_immutable.variable->type()); define(result) << readFunction << "(" << to_string(m_context.immutableMemoryOffset(*_immutable.variable)) << ")\n"; } else define(result) << "loadimmutable(\"" << to_string(_immutable.variable->id()) << "\")\n"; }, [&](IRLValue::Tuple const&) { solAssert(false, "Attempted to read from tuple lvalue."); } }, _lvalue.kind); return result; } void IRGeneratorForStatements::setLValue(Expression const& _expression, IRLValue _lvalue) { solAssert(!m_currentLValue); if (_expression.annotation().willBeWrittenTo) { m_currentLValue.emplace(std::move(_lvalue)); if (_lvalue.type.dataStoredIn(DataLocation::CallData)) solAssert(holds_alternative(_lvalue.kind)); } else // Only define the expression, if it will not be written to. define(_expression, readFromLValue(_lvalue)); } void IRGeneratorForStatements::generateLoop( Statement const& _body, Expression const* _conditionExpression, Statement const* _initExpression, ExpressionStatement const* _loopExpression, bool _isDoWhile ) { string firstRun; if (_isDoWhile) { solAssert(_conditionExpression, "Expected condition for doWhile"); firstRun = m_context.newYulVariable(); appendCode() << "let " << firstRun << " := 1\n"; } appendCode() << "for {\n"; if (_initExpression) _initExpression->accept(*this); appendCode() << "} 1 {\n"; if (_loopExpression) _loopExpression->accept(*this); appendCode() << "}\n"; appendCode() << "{\n"; if (_conditionExpression) { if (_isDoWhile) appendCode() << "if iszero(" << firstRun << ") {\n"; _conditionExpression->accept(*this); appendCode() << "if iszero(" << expressionAsType(*_conditionExpression, *TypeProvider::boolean()) << ") { break }\n"; if (_isDoWhile) appendCode() << "}\n" << firstRun << " := 0\n"; } _body.accept(*this); appendCode() << "}\n"; } Type const& IRGeneratorForStatements::type(Expression const& _expression) { solAssert(_expression.annotation().type, "Type of expression not set."); return *_expression.annotation().type; } bool IRGeneratorForStatements::visit(TryStatement const& _tryStatement) { Expression const& externalCall = _tryStatement.externalCall(); externalCall.accept(*this); setLocation(_tryStatement); appendCode() << "switch iszero(" << IRNames::trySuccessConditionVariable(externalCall) << ")\n"; appendCode() << "case 0 { // success case\n"; TryCatchClause const& successClause = *_tryStatement.clauses().front(); if (successClause.parameters()) { size_t i = 0; for (ASTPointer const& varDecl: successClause.parameters()->parameters()) { solAssert(varDecl); define(m_context.addLocalVariable(*varDecl), successClause.parameters()->parameters().size() == 1 ? IRVariable(externalCall) : IRVariable(externalCall).tupleComponent(i++) ); } } successClause.block().accept(*this); setLocation(_tryStatement); appendCode() << "}\n"; appendCode() << "default { // failure case\n"; handleCatch(_tryStatement); appendCode() << "}\n"; return false; } void IRGeneratorForStatements::handleCatch(TryStatement const& _tryStatement) { setLocation(_tryStatement); string const runFallback = m_context.newYulVariable(); appendCode() << "let " << runFallback << " := 1\n"; // This function returns zero on "short returndata". We have to add a success flag // once we implement custom error codes. if (_tryStatement.errorClause() || _tryStatement.panicClause()) appendCode() << "switch " << m_utils.returnDataSelectorFunction() << "()\n"; if (TryCatchClause const* errorClause = _tryStatement.errorClause()) { appendCode() << "case " << selectorFromSignatureU32("Error(string)") << " {\n"; setLocation(*errorClause); string const dataVariable = m_context.newYulVariable(); appendCode() << "let " << dataVariable << " := " << m_utils.tryDecodeErrorMessageFunction() << "()\n"; appendCode() << "if " << dataVariable << " {\n"; appendCode() << runFallback << " := 0\n"; if (errorClause->parameters()) { solAssert(errorClause->parameters()->parameters().size() == 1); IRVariable const& var = m_context.addLocalVariable(*errorClause->parameters()->parameters().front()); define(var) << dataVariable << "\n"; } errorClause->accept(*this); setLocation(*errorClause); appendCode() << "}\n"; setLocation(_tryStatement); appendCode() << "}\n"; } if (TryCatchClause const* panicClause = _tryStatement.panicClause()) { appendCode() << "case " << selectorFromSignatureU32("Panic(uint256)") << " {\n"; setLocation(*panicClause); string const success = m_context.newYulVariable(); string const code = m_context.newYulVariable(); appendCode() << "let " << success << ", " << code << " := " << m_utils.tryDecodePanicDataFunction() << "()\n"; appendCode() << "if " << success << " {\n"; appendCode() << runFallback << " := 0\n"; if (panicClause->parameters()) { solAssert(panicClause->parameters()->parameters().size() == 1); IRVariable const& var = m_context.addLocalVariable(*panicClause->parameters()->parameters().front()); define(var) << code << "\n"; } panicClause->accept(*this); setLocation(*panicClause); appendCode() << "}\n"; setLocation(_tryStatement); appendCode() << "}\n"; } setLocation(_tryStatement); appendCode() << "if " << runFallback << " {\n"; if (_tryStatement.fallbackClause()) handleCatchFallback(*_tryStatement.fallbackClause()); else appendCode() << m_utils.forwardingRevertFunction() << "()\n"; setLocation(_tryStatement); appendCode() << "}\n"; } void IRGeneratorForStatements::handleCatchFallback(TryCatchClause const& _fallback) { setLocation(_fallback); if (_fallback.parameters()) { solAssert(m_context.evmVersion().supportsReturndata()); solAssert( _fallback.parameters()->parameters().size() == 1 && _fallback.parameters()->parameters().front() && *_fallback.parameters()->parameters().front()->annotation().type == *TypeProvider::bytesMemory(), "" ); VariableDeclaration const& paramDecl = *_fallback.parameters()->parameters().front(); define(m_context.addLocalVariable(paramDecl)) << m_utils.extractReturndataFunction() << "()\n"; } _fallback.accept(*this); } void IRGeneratorForStatements::revertWithError( string const& _signature, vector const& _parameterTypes, vector> const& _errorArguments ) { Whiskers templ(R"({ let := () mstore(, ) let := (add(, 4) ) revert(, sub(, )) })"); templ("pos", m_context.newYulVariable()); templ("end", m_context.newYulVariable()); templ("hash", util::selectorFromSignatureU256(_signature).str()); templ("allocateUnbounded", m_utils.allocateUnboundedFunction()); vector errorArgumentVars; vector errorArgumentTypes; for (ASTPointer const& arg: _errorArguments) { errorArgumentVars += IRVariable(*arg).stackSlots(); solAssert(arg->annotation().type); errorArgumentTypes.push_back(arg->annotation().type); } templ("argumentVars", joinHumanReadablePrefixed(errorArgumentVars)); templ("encode", m_context.abiFunctions().tupleEncoder(errorArgumentTypes, _parameterTypes)); appendCode() << templ.render(); } bool IRGeneratorForStatements::visit(TryCatchClause const& _clause) { _clause.block().accept(*this); return false; } string IRGeneratorForStatements::linkerSymbol(ContractDefinition const& _library) const { solAssert(_library.isLibrary()); return "linkersymbol(" + util::escapeAndQuoteString(_library.fullyQualifiedName()) + ")"; }