/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see .
*/
// SPDX-License-Identifier: GPL-3.0
/**
* Optimiser component that removes stores to memory and storage slots that are not used
* or overwritten later on.
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
using namespace solidity;
using namespace solidity::yul;
/// Variable names for special constants that can never appear in actual Yul code.
static string const zero{"@ 0"};
static string const one{"@ 1"};
static string const thirtyTwo{"@ 32"};
void UnusedStoreEliminator::run(OptimiserStepContext& _context, Block& _ast)
{
map functionSideEffects = SideEffectsPropagator::sideEffects(
_context.dialect,
CallGraphGenerator::callGraph(_ast)
);
SSAValueTracker ssaValues;
ssaValues(_ast);
map values;
for (auto const& [name, expression]: ssaValues.values())
values[name] = AssignedValue{expression, {}};
Expression const zeroLiteral{Literal{{}, LiteralKind::Number, YulString{"0"}, {}}};
Expression const oneLiteral{Literal{{}, LiteralKind::Number, YulString{"1"}, {}}};
Expression const thirtyTwoLiteral{Literal{{}, LiteralKind::Number, YulString{"32"}, {}}};
values[YulString{zero}] = AssignedValue{&zeroLiteral, {}};
values[YulString{one}] = AssignedValue{&oneLiteral, {}};
values[YulString{thirtyTwo}] = AssignedValue{&thirtyTwoLiteral, {}};
bool const ignoreMemory = MSizeFinder::containsMSize(_context.dialect, _ast);
UnusedStoreEliminator rse{
_context.dialect,
functionSideEffects,
ControlFlowSideEffectsCollector{_context.dialect, _ast}.functionSideEffectsNamed(),
values,
ignoreMemory
};
rse(_ast);
auto evmDialect = dynamic_cast(&_context.dialect);
if (evmDialect && evmDialect->providesObjectAccess())
rse.clearActive(Location::Memory);
else
rse.markActiveAsUsed(Location::Memory);
rse.markActiveAsUsed(Location::Storage);
rse.m_storesToRemove += rse.m_allStores - rse.m_usedStores;
set toRemove{rse.m_storesToRemove.begin(), rse.m_storesToRemove.end()};
StatementRemover remover{toRemove};
remover(_ast);
}
UnusedStoreEliminator::UnusedStoreEliminator(
Dialect const& _dialect,
map const& _functionSideEffects,
map _controlFlowSideEffects,
map const& _ssaValues,
bool _ignoreMemory
):
UnusedStoreBase(_dialect),
m_ignoreMemory(_ignoreMemory),
m_functionSideEffects(_functionSideEffects),
m_controlFlowSideEffects(_controlFlowSideEffects),
m_ssaValues(_ssaValues),
m_knowledgeBase(_ssaValues)
{}
void UnusedStoreEliminator::operator()(FunctionCall const& _functionCall)
{
UnusedStoreBase::operator()(_functionCall);
for (Operation const& op: operationsFromFunctionCall(_functionCall))
applyOperation(op);
ControlFlowSideEffects sideEffects;
if (auto builtin = m_dialect.builtin(_functionCall.functionName.name))
sideEffects = builtin->controlFlowSideEffects;
else
sideEffects = m_controlFlowSideEffects.at(_functionCall.functionName.name);
if (sideEffects.canTerminate)
markActiveAsUsed(Location::Storage);
if (!sideEffects.canContinue)
{
clearActive(Location::Memory);
if (!sideEffects.canTerminate)
clearActive(Location::Storage);
}
}
void UnusedStoreEliminator::operator()(FunctionDefinition const& _functionDefinition)
{
ScopedSaveAndRestore storeOperations(m_storeOperations, {});
UnusedStoreBase::operator()(_functionDefinition);
}
void UnusedStoreEliminator::operator()(Leave const&)
{
markActiveAsUsed();
}
void UnusedStoreEliminator::visit(Statement const& _statement)
{
using evmasm::Instruction;
UnusedStoreBase::visit(_statement);
auto const* exprStatement = get_if(&_statement);
if (!exprStatement)
return;
FunctionCall const* funCall = get_if(&exprStatement->expression);
yulAssert(funCall);
optional instruction = toEVMInstruction(m_dialect, funCall->functionName.name);
if (!instruction)
return;
if (!ranges::all_of(funCall->arguments, [](Expression const& _expr) -> bool {
return get_if(&_expr) || get_if(&_expr);
}))
return;
// We determine if this is a store instruction without additional side-effects
// both by querying a combination of semantic information and by listing the instructions.
// This way the assert below should be triggered on any change.
using evmasm::SemanticInformation;
bool isStorageWrite = (*instruction == Instruction::SSTORE);
bool isMemoryWrite =
*instruction == Instruction::EXTCODECOPY ||
*instruction == Instruction::CODECOPY ||
*instruction == Instruction::CALLDATACOPY ||
*instruction == Instruction::RETURNDATACOPY ||
*instruction == Instruction::MSTORE ||
*instruction == Instruction::MSTORE8;
bool isCandidateForRemoval =
SemanticInformation::otherState(*instruction) != SemanticInformation::Write && (
SemanticInformation::storage(*instruction) == SemanticInformation::Write ||
(!m_ignoreMemory && SemanticInformation::memory(*instruction) == SemanticInformation::Write)
);
yulAssert(isCandidateForRemoval == (isStorageWrite || (!m_ignoreMemory && isMemoryWrite)));
if (isCandidateForRemoval)
{
if (*instruction == Instruction::RETURNDATACOPY)
{
// Out-of-bounds access to the returndata buffer results in a revert,
// so we are careful not to remove a potentially reverting call to a builtin.
// The only way the Solidity compiler uses `returndatacopy` is
// `returndatacopy(X, 0, returndatasize())`, so we only allow to remove this pattern
// (which is guaranteed to never cause an out-of-bounds revert).
bool allowReturndatacopyToBeRemoved = false;
auto startOffset = identifierNameIfSSA(funCall->arguments.at(1));
auto length = identifierNameIfSSA(funCall->arguments.at(2));
if (length && startOffset)
{
FunctionCall const* lengthCall = get_if(m_ssaValues.at(*length).value);
if (
m_knowledgeBase.knownToBeZero(*startOffset) &&
lengthCall &&
toEVMInstruction(m_dialect, lengthCall->functionName.name) == Instruction::RETURNDATASIZE
)
allowReturndatacopyToBeRemoved = true;
}
if (!allowReturndatacopyToBeRemoved)
return;
}
m_allStores.insert(&_statement);
vector operations = operationsFromFunctionCall(*funCall);
yulAssert(operations.size() == 1, "");
if (operations.front().location == Location::Storage)
activeStorageStores().insert(&_statement);
else
activeMemoryStores().insert(&_statement);
m_storeOperations[&_statement] = std::move(operations.front());
}
}
vector UnusedStoreEliminator::operationsFromFunctionCall(
FunctionCall const& _functionCall
) const
{
using evmasm::Instruction;
YulString functionName = _functionCall.functionName.name;
SideEffects sideEffects;
if (BuiltinFunction const* f = m_dialect.builtin(functionName))
sideEffects = f->sideEffects;
else
sideEffects = m_functionSideEffects.at(functionName);
optional instruction = toEVMInstruction(m_dialect, functionName);
if (!instruction)
{
vector result;
// Unknown read is worse than unknown write.
if (sideEffects.memory != SideEffects::Effect::None)
result.emplace_back(Operation{Location::Memory, Effect::Read, {}, {}});
if (sideEffects.storage != SideEffects::Effect::None)
result.emplace_back(Operation{Location::Storage, Effect::Read, {}, {}});
return result;
}
using evmasm::SemanticInformation;
return util::applyMap(
SemanticInformation::readWriteOperations(*instruction),
[&](SemanticInformation::Operation const& _op) -> Operation
{
yulAssert(!(_op.lengthParameter && _op.lengthConstant));
yulAssert(_op.effect != Effect::None);
Operation ourOp{_op.location, _op.effect, {}, {}};
if (_op.startParameter)
ourOp.start = identifierNameIfSSA(_functionCall.arguments.at(*_op.startParameter));
if (_op.lengthParameter)
ourOp.length = identifierNameIfSSA(_functionCall.arguments.at(*_op.lengthParameter));
if (_op.lengthConstant)
switch (*_op.lengthConstant)
{
case 1: ourOp.length = YulString(one); break;
case 32: ourOp.length = YulString(thirtyTwo); break;
default: yulAssert(false);
}
return ourOp;
}
);
}
void UnusedStoreEliminator::applyOperation(UnusedStoreEliminator::Operation const& _operation)
{
set& active =
_operation.location == Location::Storage ?
activeStorageStores() :
activeMemoryStores();
for (auto it = active.begin(); it != active.end();)
{
Statement const* statement = *it;
Operation const& storeOperation = m_storeOperations.at(statement);
if (_operation.effect == Effect::Read && !knownUnrelated(storeOperation, _operation))
{
// This store is read from, mark it as used and remove it from the active set.
m_usedStores.insert(statement);
it = active.erase(it);
}
else if (_operation.effect == Effect::Write && knownCovered(storeOperation, _operation))
// This store is overwritten before being read, remove it from the active set.
it = active.erase(it);
else
++it;
}
}
bool UnusedStoreEliminator::knownUnrelated(
UnusedStoreEliminator::Operation const& _op1,
UnusedStoreEliminator::Operation const& _op2
) const
{
if (_op1.location != _op2.location)
return true;
if (_op1.location == Location::Storage)
{
if (_op1.start && _op2.start)
{
yulAssert(
_op1.length &&
_op2.length &&
m_knowledgeBase.valueIfKnownConstant(*_op1.length) == 1 &&
m_knowledgeBase.valueIfKnownConstant(*_op2.length) == 1
);
return m_knowledgeBase.knownToBeDifferent(*_op1.start, *_op2.start);
}
}
else
{
yulAssert(_op1.location == Location::Memory, "");
if (
(_op1.length && m_knowledgeBase.knownToBeZero(*_op1.length)) ||
(_op2.length && m_knowledgeBase.knownToBeZero(*_op2.length))
)
return true;
if (_op1.start && _op1.length && _op2.start)
{
optional length1 = m_knowledgeBase.valueIfKnownConstant(*_op1.length);
optional start1 = m_knowledgeBase.valueIfKnownConstant(*_op1.start);
optional start2 = m_knowledgeBase.valueIfKnownConstant(*_op2.start);
if (
(length1 && start1 && start2) &&
*start1 + *length1 >= *start1 && // no overflow
*start1 + *length1 <= *start2
)
return true;
}
if (_op2.start && _op2.length && _op1.start)
{
optional length2 = m_knowledgeBase.valueIfKnownConstant(*_op2.length);
optional start2 = m_knowledgeBase.valueIfKnownConstant(*_op2.start);
optional start1 = m_knowledgeBase.valueIfKnownConstant(*_op1.start);
if (
(length2 && start2 && start1) &&
*start2 + *length2 >= *start2 && // no overflow
*start2 + *length2 <= *start1
)
return true;
}
if (_op1.start && _op1.length && _op2.start && _op2.length)
{
optional length1 = m_knowledgeBase.valueIfKnownConstant(*_op1.length);
optional length2 = m_knowledgeBase.valueIfKnownConstant(*_op2.length);
if (
(length1 && *length1 <= 32) &&
(length2 && *length2 <= 32) &&
m_knowledgeBase.knownToBeDifferentByAtLeast32(*_op1.start, *_op2.start)
)
return true;
}
}
return false;
}
bool UnusedStoreEliminator::knownCovered(
UnusedStoreEliminator::Operation const& _covered,
UnusedStoreEliminator::Operation const& _covering
) const
{
if (_covered.location != _covering.location)
return false;
if (
(_covered.start && _covered.start == _covering.start) &&
(_covered.length && _covered.length == _covering.length)
)
return true;
if (_covered.location == Location::Memory)
{
if (_covered.length && m_knowledgeBase.knownToBeZero(*_covered.length))
return true;
// Condition (i = cover_i_ng, e = cover_e_d):
// i.start <= e.start && e.start + e.length <= i.start + i.length
if (!_covered.start || !_covering.start || !_covered.length || !_covering.length)
return false;
optional coveredLength = m_knowledgeBase.valueIfKnownConstant(*_covered.length);
optional coveringLength = m_knowledgeBase.valueIfKnownConstant(*_covering.length);
if (*_covered.start == *_covering.start)
if (coveredLength && coveringLength && *coveredLength <= *coveringLength)
return true;
optional coveredStart = m_knowledgeBase.valueIfKnownConstant(*_covered.start);
optional coveringStart = m_knowledgeBase.valueIfKnownConstant(*_covering.start);
if (coveredStart && coveringStart && coveredLength && coveringLength)
if (
*coveringStart <= *coveredStart &&
*coveringStart + *coveringLength >= *coveringStart && // no overflow
*coveredStart + *coveredLength >= *coveredStart && // no overflow
*coveredStart + *coveredLength <= *coveringStart + *coveringLength
)
return true;
// TODO for this we probably need a non-overflow assumption as above.
// Condition (i = cover_i_ng, e = cover_e_d):
// i.start <= e.start && e.start + e.length <= i.start + i.length
}
return false;
}
void UnusedStoreEliminator::markActiveAsUsed(
optional _onlyLocation
)
{
if (_onlyLocation == nullopt || _onlyLocation == Location::Memory)
for (Statement const* statement: activeMemoryStores())
m_usedStores.insert(statement);
if (_onlyLocation == nullopt || _onlyLocation == Location::Storage)
for (Statement const* statement: activeStorageStores())
m_usedStores.insert(statement);
clearActive(_onlyLocation);
}
void UnusedStoreEliminator::clearActive(
optional _onlyLocation
)
{
if (_onlyLocation == nullopt || _onlyLocation == Location::Memory)
activeMemoryStores() = {};
if (_onlyLocation == nullopt || _onlyLocation == Location::Storage)
activeStorageStores() = {};
}
optional UnusedStoreEliminator::identifierNameIfSSA(Expression const& _expression) const
{
if (Identifier const* identifier = get_if(&_expression))
if (m_ssaValues.count(identifier->name))
return {identifier->name};
return nullopt;
}