/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ #include #include #include #include #include #include #include #include #include using namespace std; using namespace dev; using namespace langutil; using namespace dev::solidity; SMTChecker::SMTChecker(ErrorReporter& _errorReporter, map const& _smtlib2Responses): m_interface(make_shared(_smtlib2Responses)), m_errorReporterReference(_errorReporter), m_errorReporter(m_smtErrors), m_context(*m_interface) { #if defined (HAVE_Z3) || defined (HAVE_CVC4) if (!_smtlib2Responses.empty()) m_errorReporter.warning( "SMT-LIB2 query responses were given in the auxiliary input, " "but this Solidity binary uses an SMT solver (Z3/CVC4) directly." "These responses will be ignored." "Consider disabling Z3/CVC4 at compilation time in order to use SMT-LIB2 responses." ); #endif } void SMTChecker::analyze(SourceUnit const& _source, shared_ptr const& _scanner) { m_scanner = _scanner; if (_source.annotation().experimentalFeatures.count(ExperimentalFeature::SMTChecker)) _source.accept(*this); solAssert(m_interface->solvers() > 0, ""); // If this check is true, Z3 and CVC4 are not available // and the query answers were not provided, since SMTPortfolio // guarantees that SmtLib2Interface is the first solver. if (!m_interface->unhandledQueries().empty() && m_interface->solvers() == 1) { if (!m_noSolverWarning) { m_noSolverWarning = true; m_errorReporterReference.warning( SourceLocation(), "SMTChecker analysis was not possible since no integrated SMT solver (Z3 or CVC4) was found." ); } } else m_errorReporterReference.append(m_errorReporter.errors()); m_errorReporter.clear(); } bool SMTChecker::visit(ContractDefinition const& _contract) { for (auto const& contract: _contract.annotation().linearizedBaseContracts) for (auto var : contract->stateVariables()) if (*contract == _contract || var->isVisibleInDerivedContracts()) createVariable(*var); return true; } void SMTChecker::endVisit(ContractDefinition const&) { m_variables.clear(); } void SMTChecker::endVisit(VariableDeclaration const& _varDecl) { if (_varDecl.isLocalVariable() && _varDecl.type()->isValueType() &&_varDecl.value()) assignment(_varDecl, *_varDecl.value(), _varDecl.location()); } bool SMTChecker::visit(ModifierDefinition const&) { return false; } bool SMTChecker::visit(FunctionDefinition const& _function) { m_functionPath.push_back(&_function); m_modifierDepthStack.push_back(-1); if (_function.isConstructor()) { m_errorReporter.warning( _function.location(), "Assertion checker does not yet support constructors." ); return false; } // Not visited by a function call if (isRootFunction()) { m_interface->reset(); m_context.reset(); m_pathConditions.clear(); m_callStack.clear(); m_expressions.clear(); m_globalContext.clear(); m_uninterpretedTerms.clear(); m_overflowTargets.clear(); resetStateVariables(); initializeLocalVariables(_function); m_loopExecutionHappened = false; m_arrayAssignmentHappened = false; m_externalFunctionCallHappened = false; } _function.parameterList().accept(*this); if (_function.returnParameterList()) _function.returnParameterList()->accept(*this); visitFunctionOrModifier(); return false; } void SMTChecker::visitFunctionOrModifier() { solAssert(!m_functionPath.empty(), ""); solAssert(!m_modifierDepthStack.empty(), ""); ++m_modifierDepthStack.back(); FunctionDefinition const& function = *m_functionPath.back(); if (m_modifierDepthStack.back() == int(function.modifiers().size())) { if (function.isImplemented()) function.body().accept(*this); } else { solAssert(m_modifierDepthStack.back() < int(function.modifiers().size()), ""); ASTPointer const& modifierInvocation = function.modifiers()[m_modifierDepthStack.back()]; solAssert(modifierInvocation, ""); modifierInvocation->accept(*this); auto const& modifierDef = dynamic_cast( *modifierInvocation->name()->annotation().referencedDeclaration ); vector modifierArgsExpr; if (modifierInvocation->arguments()) for (auto arg: *modifierInvocation->arguments()) modifierArgsExpr.push_back(expr(*arg)); initializeFunctionCallParameters(modifierDef, modifierArgsExpr); pushCallStack(modifierInvocation.get()); modifierDef.body().accept(*this); popCallStack(); } --m_modifierDepthStack.back(); } bool SMTChecker::visit(PlaceholderStatement const&) { solAssert(!m_functionPath.empty(), ""); ASTNode const* lastCall = popCallStack(); visitFunctionOrModifier(); pushCallStack(lastCall); return true; } void SMTChecker::endVisit(FunctionDefinition const&) { // If _function was visited from a function call we don't remove // the local variables just yet, since we might need them for // future calls. // Otherwise we remove any local variables from the context and // keep the state variables. if (isRootFunction()) { checkUnderOverflow(); removeLocalVariables(); solAssert(m_callStack.empty(), ""); } m_functionPath.pop_back(); solAssert(m_modifierDepthStack.back() == -1, ""); m_modifierDepthStack.pop_back(); } bool SMTChecker::visit(InlineAssembly const& _inlineAsm) { m_errorReporter.warning( _inlineAsm.location(), "Assertion checker does not support inline assembly." ); return false; } bool SMTChecker::visit(IfStatement const& _node) { _node.condition().accept(*this); // We ignore called functions here because they have // specific input values. if (isRootFunction()) checkBooleanNotConstant(_node.condition(), "Condition is always $VALUE."); auto indicesEndTrue = visitBranch(&_node.trueStatement(), expr(_node.condition())); auto touchedVars = touchedVariables(_node.trueStatement()); decltype(indicesEndTrue) indicesEndFalse; if (_node.falseStatement()) { indicesEndFalse = visitBranch(_node.falseStatement(), !expr(_node.condition())); touchedVars += touchedVariables(*_node.falseStatement()); } else indicesEndFalse = copyVariableIndices(); mergeVariables(touchedVars, expr(_node.condition()), indicesEndTrue, indicesEndFalse); return false; } // Here we consider the execution of two branches: // Branch 1 assumes the loop condition to be true and executes the loop once, // after resetting touched variables. // Branch 2 assumes the loop condition to be false and skips the loop after // visiting the condition (it might contain side-effects, they need to be considered) // and does not erase knowledge. // If the loop is a do-while, condition side-effects are lost since the body, // executed once before the condition, might reassign variables. // Variables touched by the loop are merged with Branch 2. bool SMTChecker::visit(WhileStatement const& _node) { auto indicesBeforeLoop = copyVariableIndices(); auto touchedVars = touchedVariables(_node); resetVariables(touchedVars); decltype(indicesBeforeLoop) indicesAfterLoop; if (_node.isDoWhile()) { indicesAfterLoop = visitBranch(&_node.body()); // TODO the assertions generated in the body should still be active in the condition _node.condition().accept(*this); if (isRootFunction()) checkBooleanNotConstant(_node.condition(), "Do-while loop condition is always $VALUE."); } else { _node.condition().accept(*this); if (isRootFunction()) checkBooleanNotConstant(_node.condition(), "While loop condition is always $VALUE."); indicesAfterLoop = visitBranch(&_node.body(), expr(_node.condition())); } // We reset the execution to before the loop // and visit the condition in case it's not a do-while. // A do-while's body might have non-precise information // in its first run about variables that are touched. resetVariableIndices(indicesBeforeLoop); if (!_node.isDoWhile()) _node.condition().accept(*this); mergeVariables(touchedVars, expr(_node.condition()), indicesAfterLoop, copyVariableIndices()); m_loopExecutionHappened = true; return false; } // Here we consider the execution of two branches similar to WhileStatement. bool SMTChecker::visit(ForStatement const& _node) { if (_node.initializationExpression()) _node.initializationExpression()->accept(*this); auto indicesBeforeLoop = copyVariableIndices(); // Do not reset the init expression part. auto touchedVars = touchedVariables(_node.body()); if (_node.condition()) touchedVars += touchedVariables(*_node.condition()); if (_node.loopExpression()) touchedVars += touchedVariables(*_node.loopExpression()); resetVariables(touchedVars); if (_node.condition()) { _node.condition()->accept(*this); if (isRootFunction()) checkBooleanNotConstant(*_node.condition(), "For loop condition is always $VALUE."); } m_interface->push(); if (_node.condition()) m_interface->addAssertion(expr(*_node.condition())); _node.body().accept(*this); if (_node.loopExpression()) _node.loopExpression()->accept(*this); m_interface->pop(); auto indicesAfterLoop = copyVariableIndices(); // We reset the execution to before the loop // and visit the condition. resetVariableIndices(indicesBeforeLoop); if (_node.condition()) _node.condition()->accept(*this); auto forCondition = _node.condition() ? expr(*_node.condition()) : smt::Expression(true); mergeVariables(touchedVars, forCondition, indicesAfterLoop, copyVariableIndices()); m_loopExecutionHappened = true; return false; } void SMTChecker::endVisit(VariableDeclarationStatement const& _varDecl) { if (_varDecl.declarations().size() != 1) { if (auto init = _varDecl.initialValue()) { auto symbTuple = dynamic_pointer_cast(m_expressions[init]); /// symbTuple == nullptr if it is the return of a non-inlined function call. if (symbTuple) { auto const& components = symbTuple->components(); auto const& declarations = _varDecl.declarations(); for (unsigned i = 0; i < declarations.size(); ++i) { solAssert(components.at(i), ""); if (declarations.at(i) && knownVariable(*declarations.at(i))) assignment(*declarations.at(i), components.at(i)->currentValue(), declarations.at(i)->location()); } } } } else if (knownVariable(*_varDecl.declarations().front())) { if (_varDecl.initialValue()) assignment(*_varDecl.declarations().front(), *_varDecl.initialValue(), _varDecl.location()); } else m_errorReporter.warning( _varDecl.location(), "Assertion checker does not yet implement such variable declarations." ); } void SMTChecker::endVisit(Assignment const& _assignment) { static set const compoundOps{ Token::AssignAdd, Token::AssignSub, Token::AssignMul, Token::AssignDiv, Token::AssignMod }; Token op = _assignment.assignmentOperator(); if (op != Token::Assign && !compoundOps.count(op)) m_errorReporter.warning( _assignment.location(), "Assertion checker does not yet implement this assignment operator." ); else if (!isSupportedType(_assignment.annotation().type->category())) { m_errorReporter.warning( _assignment.location(), "Assertion checker does not yet implement type " + _assignment.annotation().type->toString() ); // Give it a new index anyway to keep the SSA scheme sound. if (auto varDecl = identifierToVariable(_assignment.leftHandSide())) newValue(*varDecl); } else { vector rightArguments; if (_assignment.rightHandSide().annotation().type->category() == Type::Category::Tuple) { auto const& symbTuple = dynamic_pointer_cast(m_expressions[&_assignment.rightHandSide()]); solAssert(symbTuple, ""); for (auto const& component: symbTuple->components()) { /// Right hand side tuple component cannot be empty. solAssert(component, ""); rightArguments.push_back(component->currentValue()); } } else { auto rightHandSide = compoundOps.count(op) ? compoundAssignment(_assignment) : expr(_assignment.rightHandSide()); defineExpr(_assignment, rightHandSide); rightArguments.push_back(expr(_assignment)); } assignment( _assignment.leftHandSide(), rightArguments, _assignment.annotation().type, _assignment.location() ); } } void SMTChecker::endVisit(TupleExpression const& _tuple) { if (_tuple.isInlineArray()) m_errorReporter.warning( _tuple.location(), "Assertion checker does not yet implement inline arrays." ); else if (_tuple.annotation().type->category() == Type::Category::Tuple) { createExpr(_tuple); vector> components; for (auto const& component: _tuple.components()) if (component) { if (auto varDecl = identifierToVariable(*component)) components.push_back(m_variables[varDecl]); else { solAssert(knownExpr(*component), ""); components.push_back(m_expressions[component.get()]); } } else components.push_back(nullptr); solAssert(components.size() == _tuple.components().size(), ""); auto const& symbTuple = dynamic_pointer_cast(m_expressions[&_tuple]); solAssert(symbTuple, ""); symbTuple->setComponents(move(components)); } else { /// Parenthesized expressions are also TupleExpression regardless their type. auto const& components = _tuple.components(); solAssert(components.size() == 1, ""); if (isSupportedType(components.front()->annotation().type->category())) defineExpr(_tuple, expr(*components.front())); } } void SMTChecker::addOverflowTarget( OverflowTarget::Type _type, TypePointer _intType, smt::Expression _value, SourceLocation const& _location ) { m_overflowTargets.emplace_back( _type, std::move(_intType), std::move(_value), currentPathConditions(), _location, m_callStack ); } void SMTChecker::checkUnderOverflow() { for (auto& target: m_overflowTargets) { swap(m_callStack, target.callStack); if (target.type != OverflowTarget::Type::Overflow) checkUnderflow(target); if (target.type != OverflowTarget::Type::Underflow) checkOverflow(target); swap(m_callStack, target.callStack); } } void SMTChecker::checkUnderflow(OverflowTarget& _target) { solAssert(_target.type != OverflowTarget::Type::Overflow, ""); auto intType = dynamic_cast(_target.intType); checkCondition( _target.path && _target.value < minValue(*intType), _target.location, "Underflow (resulting value less than " + formatNumberReadable(intType->minValue()) + ")", "", &_target.value ); } void SMTChecker::checkOverflow(OverflowTarget& _target) { solAssert(_target.type != OverflowTarget::Type::Underflow, ""); auto intType = dynamic_cast(_target.intType); checkCondition( _target.path && _target.value > maxValue(*intType), _target.location, "Overflow (resulting value larger than " + formatNumberReadable(intType->maxValue()) + ")", "", &_target.value ); } void SMTChecker::endVisit(UnaryOperation const& _op) { if (_op.annotation().type->category() == Type::Category::RationalNumber) return; switch (_op.getOperator()) { case Token::Not: // ! { solAssert(isBool(_op.annotation().type->category()), ""); defineExpr(_op, !expr(_op.subExpression())); break; } case Token::Inc: // ++ (pre- or postfix) case Token::Dec: // -- (pre- or postfix) { solAssert(isInteger(_op.annotation().type->category()), ""); solAssert(_op.subExpression().annotation().lValueRequested, ""); if (auto identifier = dynamic_cast(&_op.subExpression())) { auto decl = identifierToVariable(*identifier); solAssert(decl, ""); auto innerValue = currentValue(*decl); auto newValue = _op.getOperator() == Token::Inc ? innerValue + 1 : innerValue - 1; defineExpr(_op, _op.isPrefixOperation() ? newValue : innerValue); assignment(*decl, newValue, _op.location()); } else if (dynamic_cast(&_op.subExpression())) { auto innerValue = expr(_op.subExpression()); auto newValue = _op.getOperator() == Token::Inc ? innerValue + 1 : innerValue - 1; defineExpr(_op, _op.isPrefixOperation() ? newValue : innerValue); arrayIndexAssignment(_op.subExpression(), newValue); } else m_errorReporter.warning( _op.location(), "Assertion checker does not yet implement such increments / decrements." ); break; } case Token::Sub: // - { defineExpr(_op, 0 - expr(_op.subExpression())); if (_op.annotation().type->category() == Type::Category::Integer) addOverflowTarget( OverflowTarget::Type::All, _op.annotation().type, expr(_op), _op.location() ); break; } case Token::Delete: { auto const& subExpr = _op.subExpression(); if (auto decl = identifierToVariable(subExpr)) { newValue(*decl); setZeroValue(*decl); } else { solAssert(knownExpr(subExpr), ""); auto const& symbVar = m_expressions[&subExpr]; symbVar->increaseIndex(); setZeroValue(*symbVar); if (dynamic_cast(&_op.subExpression())) arrayIndexAssignment(_op.subExpression(), symbVar->currentValue()); else m_errorReporter.warning( _op.location(), "Assertion checker does not yet implement \"delete\" for this expression." ); } break; } default: m_errorReporter.warning( _op.location(), "Assertion checker does not yet implement this operator." ); } } bool SMTChecker::visit(UnaryOperation const& _op) { return !shortcutRationalNumber(_op); } bool SMTChecker::visit(BinaryOperation const& _op) { if (shortcutRationalNumber(_op)) return false; if (TokenTraits::isBooleanOp(_op.getOperator())) { booleanOperation(_op); return false; } return true; } void SMTChecker::endVisit(BinaryOperation const& _op) { if (_op.annotation().type->category() == Type::Category::RationalNumber) return; if (TokenTraits::isBooleanOp(_op.getOperator())) return; if (TokenTraits::isArithmeticOp(_op.getOperator())) arithmeticOperation(_op); else if (TokenTraits::isCompareOp(_op.getOperator())) compareOperation(_op); else m_errorReporter.warning( _op.location(), "Assertion checker does not yet implement this operator." ); } void SMTChecker::endVisit(FunctionCall const& _funCall) { solAssert(_funCall.annotation().kind != FunctionCallKind::Unset, ""); if (_funCall.annotation().kind == FunctionCallKind::StructConstructorCall) { m_errorReporter.warning( _funCall.location(), "Assertion checker does not yet implement this expression." ); return; } if (_funCall.annotation().kind == FunctionCallKind::TypeConversion) { visitTypeConversion(_funCall); return; } FunctionType const& funType = dynamic_cast(*_funCall.expression().annotation().type); std::vector> const args = _funCall.arguments(); switch (funType.kind()) { case FunctionType::Kind::Assert: visitAssert(_funCall); break; case FunctionType::Kind::Require: visitRequire(_funCall); break; case FunctionType::Kind::GasLeft: visitGasLeft(_funCall); break; case FunctionType::Kind::Internal: pushCallStack(&_funCall); inlineFunctionCall(_funCall); popCallStack(); break; case FunctionType::Kind::External: case FunctionType::Kind::DelegateCall: case FunctionType::Kind::BareCall: case FunctionType::Kind::BareCallCode: case FunctionType::Kind::BareDelegateCall: case FunctionType::Kind::BareStaticCall: case FunctionType::Kind::Creation: m_externalFunctionCallHappened = true; resetStateVariables(); resetStorageReferences(); break; case FunctionType::Kind::KECCAK256: case FunctionType::Kind::ECRecover: case FunctionType::Kind::SHA256: case FunctionType::Kind::RIPEMD160: case FunctionType::Kind::BlockHash: case FunctionType::Kind::AddMod: case FunctionType::Kind::MulMod: abstractFunctionCall(_funCall); break; case FunctionType::Kind::Send: case FunctionType::Kind::Transfer: { auto const& memberAccess = dynamic_cast(_funCall.expression()); auto const& address = memberAccess.expression(); auto const& value = args.at(0); solAssert(value, ""); smt::Expression thisBalance = m_context.balance(); setSymbolicUnknownValue(thisBalance, TypeProvider::uint256(), *m_interface); checkCondition(thisBalance < expr(*value), _funCall.location(), "Insufficient funds", "address(this).balance", &thisBalance); m_context.transfer(m_context.thisAddress(), expr(address), expr(*value)); createExpr(_funCall); break; } default: m_errorReporter.warning( _funCall.location(), "Assertion checker does not yet implement this type of function call." ); } } void SMTChecker::visitAssert(FunctionCall const& _funCall) { auto const& args = _funCall.arguments(); solAssert(args.size() == 1, ""); solAssert(args[0]->annotation().type->category() == Type::Category::Bool, ""); checkCondition(!(expr(*args[0])), _funCall.location(), "Assertion violation"); addPathImpliedExpression(expr(*args[0])); } void SMTChecker::visitRequire(FunctionCall const& _funCall) { auto const& args = _funCall.arguments(); solAssert(args.size() == 1, ""); solAssert(args[0]->annotation().type->category() == Type::Category::Bool, ""); if (isRootFunction()) checkBooleanNotConstant(*args[0], "Condition is always $VALUE."); addPathImpliedExpression(expr(*args[0])); } void SMTChecker::visitGasLeft(FunctionCall const& _funCall) { string gasLeft = "gasleft()"; // We increase the variable index since gasleft changes // inside a tx. defineGlobalVariable(gasLeft, _funCall, true); auto const& symbolicVar = m_globalContext.at(gasLeft); unsigned index = symbolicVar->index(); // We set the current value to unknown anyway to add type constraints. setUnknownValue(*symbolicVar); if (index > 0) m_interface->addAssertion(symbolicVar->currentValue() <= symbolicVar->valueAtIndex(index - 1)); } void SMTChecker::inlineFunctionCall(FunctionCall const& _funCall) { FunctionDefinition const* funDef = inlinedFunctionCallToDefinition(_funCall); if (!funDef) { m_errorReporter.warning( _funCall.location(), "Assertion checker does not yet implement this type of function call." ); return; } if (visitedFunction(funDef)) m_errorReporter.warning( _funCall.location(), "Assertion checker does not support recursive function calls.", SecondarySourceLocation().append("Starting from function:", funDef->location()) ); else { vector funArgs; Expression const* calledExpr = &_funCall.expression(); auto const& funType = dynamic_cast(calledExpr->annotation().type); solAssert(funType, ""); if (funType->bound()) { auto const& boundFunction = dynamic_cast(calledExpr); solAssert(boundFunction, ""); funArgs.push_back(expr(boundFunction->expression())); } for (auto arg: _funCall.arguments()) funArgs.push_back(expr(*arg)); initializeFunctionCallParameters(*funDef, funArgs); funDef->accept(*this); createExpr(_funCall); auto const& returnParams = funDef->returnParameters(); if (returnParams.size() > 1) { vector> components; for (auto param: returnParams) { solAssert(m_variables[param.get()], ""); components.push_back(m_variables[param.get()]); } auto const& symbTuple = dynamic_pointer_cast(m_expressions[&_funCall]); solAssert(symbTuple, ""); symbTuple->setComponents(move(components)); } else if (returnParams.size() == 1) defineExpr(_funCall, currentValue(*returnParams.front())); } } void SMTChecker::abstractFunctionCall(FunctionCall const& _funCall) { vector smtArguments; for (auto const& arg: _funCall.arguments()) smtArguments.push_back(expr(*arg)); defineExpr(_funCall, (*m_expressions.at(&_funCall.expression()))(smtArguments)); m_uninterpretedTerms.insert(&_funCall); setSymbolicUnknownValue(expr(_funCall), _funCall.annotation().type, *m_interface); } void SMTChecker::endVisit(Identifier const& _identifier) { if (_identifier.annotation().lValueRequested) { // Will be translated as part of the node that requested the lvalue. } else if (_identifier.annotation().type->category() == Type::Category::Function) visitFunctionIdentifier(_identifier); else if (isSupportedType(_identifier.annotation().type->category())) { if (auto decl = identifierToVariable(_identifier)) defineExpr(_identifier, currentValue(*decl)); else if (_identifier.name() == "now") defineGlobalVariable(_identifier.name(), _identifier); else if (_identifier.name() == "this") { defineExpr(_identifier, m_context.thisAddress()); m_uninterpretedTerms.insert(&_identifier); } else // TODO: handle MagicVariableDeclaration here m_errorReporter.warning( _identifier.location(), "Assertion checker does not yet support the type of this variable." ); } } void SMTChecker::visitTypeConversion(FunctionCall const& _funCall) { solAssert(_funCall.annotation().kind == FunctionCallKind::TypeConversion, ""); solAssert(_funCall.arguments().size() == 1, ""); auto argument = _funCall.arguments().at(0); unsigned argSize = argument->annotation().type->storageBytes(); unsigned castSize = _funCall.annotation().type->storageBytes(); if (argSize == castSize) defineExpr(_funCall, expr(*argument)); else { createExpr(_funCall); setUnknownValue(*m_expressions.at(&_funCall)); auto const& funCallCategory = _funCall.annotation().type->category(); // TODO: truncating and bytesX needs a different approach because of right padding. if (funCallCategory == Type::Category::Integer || funCallCategory == Type::Category::Address) { if (argSize < castSize) defineExpr(_funCall, expr(*argument)); else { auto const& intType = dynamic_cast(*m_expressions.at(&_funCall)->type()); defineExpr(_funCall, smt::Expression::ite( expr(*argument) >= minValue(intType) && expr(*argument) <= maxValue(intType), expr(*argument), expr(_funCall) )); } } m_errorReporter.warning( _funCall.location(), "Type conversion is not yet fully supported and might yield false positives." ); } } void SMTChecker::visitFunctionIdentifier(Identifier const& _identifier) { auto const& fType = dynamic_cast(*_identifier.annotation().type); if (fType.returnParameterTypes().size() == 1) { defineGlobalFunction(fType.richIdentifier(), _identifier); m_expressions.emplace(&_identifier, m_globalContext.at(fType.richIdentifier())); } } void SMTChecker::endVisit(Literal const& _literal) { solAssert(_literal.annotation().type, "Expected type for AST node"); Type const& type = *_literal.annotation().type; if (isNumber(type.category())) defineExpr(_literal, smt::Expression(type.literalValue(&_literal))); else if (isBool(type.category())) defineExpr(_literal, smt::Expression(_literal.token() == Token::TrueLiteral ? true : false)); else { if (type.category() == Type::Category::StringLiteral) { auto stringType = TypeProvider::stringMemory(); auto stringLit = dynamic_cast(_literal.annotation().type); solAssert(stringLit, ""); auto result = newSymbolicVariable(*stringType, stringLit->richIdentifier(), *m_interface); m_expressions.emplace(&_literal, result.second); } m_errorReporter.warning( _literal.location(), "Assertion checker does not yet support the type of this literal (" + _literal.annotation().type->toString() + ")." ); } } void SMTChecker::endVisit(Return const& _return) { if (_return.expression() && knownExpr(*_return.expression())) { auto returnParams = m_functionPath.back()->returnParameters(); if (returnParams.size() > 1) { auto tuple = dynamic_cast(_return.expression()); solAssert(tuple, ""); auto const& components = tuple->components(); solAssert(components.size() == returnParams.size(), ""); for (unsigned i = 0; i < returnParams.size(); ++i) if (components.at(i)) m_interface->addAssertion(expr(*components.at(i)) == newValue(*returnParams.at(i))); } else if (returnParams.size() == 1) m_interface->addAssertion(expr(*_return.expression()) == newValue(*returnParams.front())); } } bool SMTChecker::visit(MemberAccess const& _memberAccess) { auto const& accessType = _memberAccess.annotation().type; if (accessType->category() == Type::Category::Function) return true; auto const& exprType = _memberAccess.expression().annotation().type; solAssert(exprType, ""); auto identifier = dynamic_cast(&_memberAccess.expression()); if (exprType->category() == Type::Category::Magic) { string accessedName; if (identifier) accessedName = identifier->name(); else m_errorReporter.warning( _memberAccess.location(), "Assertion checker does not yet support this expression." ); defineGlobalVariable(accessedName + "." + _memberAccess.memberName(), _memberAccess); return false; } else if (exprType->category() == Type::Category::TypeType) { if (identifier && dynamic_cast(identifier->annotation().referencedDeclaration)) { auto enumType = dynamic_cast(accessType); solAssert(enumType, ""); defineExpr(_memberAccess, enumType->memberValue(_memberAccess.memberName())); } return false; } else if (exprType->category() == Type::Category::Address) { _memberAccess.expression().accept(*this); if (_memberAccess.memberName() == "balance") { defineExpr(_memberAccess, m_context.balance(expr(_memberAccess.expression()))); setSymbolicUnknownValue(*m_expressions[&_memberAccess], *m_interface); m_uninterpretedTerms.insert(&_memberAccess); return false; } } else m_errorReporter.warning( _memberAccess.location(), "Assertion checker does not yet support this expression." ); createExpr(_memberAccess); return true; } void SMTChecker::endVisit(IndexAccess const& _indexAccess) { shared_ptr array; if (auto const& id = dynamic_cast(&_indexAccess.baseExpression())) { auto varDecl = identifierToVariable(*id); solAssert(varDecl, ""); array = m_variables[varDecl]; } else if (auto const& innerAccess = dynamic_cast(&_indexAccess.baseExpression())) { solAssert(knownExpr(*innerAccess), ""); array = m_expressions[innerAccess]; } else { m_errorReporter.warning( _indexAccess.location(), "Assertion checker does not yet implement this expression." ); return; } solAssert(array, ""); defineExpr(_indexAccess, smt::Expression::select( array->currentValue(), expr(*_indexAccess.indexExpression()) )); setSymbolicUnknownValue( expr(_indexAccess), _indexAccess.annotation().type, *m_interface ); m_uninterpretedTerms.insert(&_indexAccess); } void SMTChecker::arrayAssignment() { m_arrayAssignmentHappened = true; } void SMTChecker::arrayIndexAssignment(Expression const& _expr, smt::Expression const& _rightHandSide) { auto const& indexAccess = dynamic_cast(_expr); if (auto const& id = dynamic_cast(&indexAccess.baseExpression())) { auto varDecl = identifierToVariable(*id); solAssert(varDecl, ""); if (varDecl->hasReferenceOrMappingType()) resetVariables([&](VariableDeclaration const& _var) { if (_var == *varDecl) return false; TypePointer prefix = _var.type(); TypePointer originalType = typeWithoutPointer(varDecl->type()); while ( prefix->category() == Type::Category::Mapping || prefix->category() == Type::Category::Array ) { if (*originalType == *typeWithoutPointer(prefix)) return true; if (prefix->category() == Type::Category::Mapping) { auto mapPrefix = dynamic_cast(prefix); solAssert(mapPrefix, ""); prefix = mapPrefix->valueType(); } else { auto arrayPrefix = dynamic_cast(prefix); solAssert(arrayPrefix, ""); prefix = arrayPrefix->baseType(); } } return false; }); smt::Expression store = smt::Expression::store( m_variables[varDecl]->currentValue(), expr(*indexAccess.indexExpression()), _rightHandSide ); m_interface->addAssertion(newValue(*varDecl) == store); // Update the SMT select value after the assignment, // necessary for sound models. defineExpr(indexAccess, smt::Expression::select( m_variables[varDecl]->currentValue(), expr(*indexAccess.indexExpression()) )); } else if (dynamic_cast(&indexAccess.baseExpression())) m_errorReporter.warning( indexAccess.location(), "Assertion checker does not yet implement assignments to multi-dimensional mappings or arrays." ); else m_errorReporter.warning( _expr.location(), "Assertion checker does not yet implement this expression." ); } void SMTChecker::defineGlobalVariable(string const& _name, Expression const& _expr, bool _increaseIndex) { if (!knownGlobalSymbol(_name)) { auto result = newSymbolicVariable(*_expr.annotation().type, _name, *m_interface); m_globalContext.emplace(_name, result.second); setUnknownValue(*result.second); if (result.first) m_errorReporter.warning( _expr.location(), "Assertion checker does not yet support this global variable." ); } else if (_increaseIndex) m_globalContext.at(_name)->increaseIndex(); // The default behavior is not to increase the index since // most of the global values stay the same throughout a tx. if (isSupportedType(_expr.annotation().type->category())) defineExpr(_expr, m_globalContext.at(_name)->currentValue()); } void SMTChecker::defineGlobalFunction(string const& _name, Expression const& _expr) { if (!knownGlobalSymbol(_name)) { auto result = newSymbolicVariable(*_expr.annotation().type, _name, *m_interface); m_globalContext.emplace(_name, result.second); if (result.first) m_errorReporter.warning( _expr.location(), "Assertion checker does not yet support the type of this function." ); } } bool SMTChecker::shortcutRationalNumber(Expression const& _expr) { if (_expr.annotation().type->category() == Type::Category::RationalNumber) { auto rationalType = dynamic_cast(_expr.annotation().type); solAssert(rationalType, ""); if (rationalType->isNegative()) defineExpr(_expr, smt::Expression(u2s(rationalType->literalValue(nullptr)))); else defineExpr(_expr, smt::Expression(rationalType->literalValue(nullptr))); return true; } return false; } void SMTChecker::arithmeticOperation(BinaryOperation const& _op) { auto type = _op.annotation().commonType; solAssert(type, ""); if (type->category() == Type::Category::Integer) { switch (_op.getOperator()) { case Token::Add: case Token::Sub: case Token::Mul: case Token::Div: case Token::Mod: { defineExpr(_op, arithmeticOperation( _op.getOperator(), expr(_op.leftExpression()), expr(_op.rightExpression()), _op.annotation().commonType, _op.location() )); break; } default: m_errorReporter.warning( _op.location(), "Assertion checker does not yet implement this operator." ); } } else m_errorReporter.warning( _op.location(), "Assertion checker does not yet implement this operator for type " + type->richIdentifier() + "." ); } smt::Expression SMTChecker::arithmeticOperation( Token _op, smt::Expression const& _left, smt::Expression const& _right, TypePointer const& _commonType, langutil::SourceLocation const& _location ) { static set validOperators{ Token::Add, Token::Sub, Token::Mul, Token::Div, Token::Mod }; solAssert(validOperators.count(_op), ""); solAssert(_commonType, ""); solAssert(_commonType->category() == Type::Category::Integer, ""); auto const& intType = dynamic_cast(*_commonType); smt::Expression value( _op == Token::Add ? _left + _right : _op == Token::Sub ? _left - _right : _op == Token::Div ? division(_left, _right, intType) : _op == Token::Mul ? _left * _right : /*_op == Token::Mod*/ _left % _right ); if (_op == Token::Div || _op == Token::Mod) { checkCondition(_right == 0, _location, "Division by zero", "", &_right); m_interface->addAssertion(_right != 0); } addOverflowTarget( OverflowTarget::Type::All, _commonType, value, _location ); smt::Expression intValueRange = (0 - minValue(intType)) + maxValue(intType) + 1; value = smt::Expression::ite( value > maxValue(intType) || value < minValue(intType), value % intValueRange, value ); if (intType.isSigned()) { value = smt::Expression::ite( value > maxValue(intType), value - intValueRange, value ); } return value; } void SMTChecker::compareOperation(BinaryOperation const& _op) { solAssert(_op.annotation().commonType, ""); if (isSupportedType(_op.annotation().commonType->category())) { smt::Expression left(expr(_op.leftExpression())); smt::Expression right(expr(_op.rightExpression())); Token op = _op.getOperator(); shared_ptr value; if (isNumber(_op.annotation().commonType->category())) { value = make_shared( op == Token::Equal ? (left == right) : op == Token::NotEqual ? (left != right) : op == Token::LessThan ? (left < right) : op == Token::LessThanOrEqual ? (left <= right) : op == Token::GreaterThan ? (left > right) : /*op == Token::GreaterThanOrEqual*/ (left >= right) ); } else // Bool { solUnimplementedAssert(isBool(_op.annotation().commonType->category()), "Operation not yet supported"); value = make_shared( op == Token::Equal ? (left == right) : /*op == Token::NotEqual*/ (left != right) ); } // TODO: check that other values for op are not possible. defineExpr(_op, *value); } else m_errorReporter.warning( _op.location(), "Assertion checker does not yet implement the type " + _op.annotation().commonType->toString() + " for comparisons" ); } void SMTChecker::booleanOperation(BinaryOperation const& _op) { solAssert(_op.getOperator() == Token::And || _op.getOperator() == Token::Or, ""); solAssert(_op.annotation().commonType, ""); if (_op.annotation().commonType->category() == Type::Category::Bool) { // @TODO check that both of them are not constant _op.leftExpression().accept(*this); if (_op.getOperator() == Token::And) { auto indicesAfterSecond = visitBranch(&_op.rightExpression(), expr(_op.leftExpression())); mergeVariables(touchedVariables(_op.rightExpression()), !expr(_op.leftExpression()), copyVariableIndices(), indicesAfterSecond); defineExpr(_op, expr(_op.leftExpression()) && expr(_op.rightExpression())); } else { auto indicesAfterSecond = visitBranch(&_op.rightExpression(), !expr(_op.leftExpression())); mergeVariables(touchedVariables(_op.rightExpression()), expr(_op.leftExpression()), copyVariableIndices(), indicesAfterSecond); defineExpr(_op, expr(_op.leftExpression()) || expr(_op.rightExpression())); } } else m_errorReporter.warning( _op.location(), "Assertion checker does not yet implement the type " + _op.annotation().commonType->toString() + " for boolean operations" ); } smt::Expression SMTChecker::division(smt::Expression _left, smt::Expression _right, IntegerType const& _type) { // Signed division in SMTLIB2 rounds differently for negative division. if (_type.isSigned()) return (smt::Expression::ite( _left >= 0, smt::Expression::ite(_right >= 0, _left / _right, 0 - (_left / (0 - _right))), smt::Expression::ite(_right >= 0, 0 - ((0 - _left) / _right), (0 - _left) / (0 - _right)) )); else return _left / _right; } void SMTChecker::assignment( Expression const& _left, vector const& _right, TypePointer const& _type, langutil::SourceLocation const& _location ) { if (!isSupportedType(_type->category())) m_errorReporter.warning( _location, "Assertion checker does not yet implement type " + _type->toString() ); else if (auto varDecl = identifierToVariable(_left)) { solAssert(_right.size() == 1, ""); assignment(*varDecl, _right.front(), _location); } else if (dynamic_cast(&_left)) { solAssert(_right.size() == 1, ""); arrayIndexAssignment(_left, _right.front()); } else if (auto tuple = dynamic_cast(&_left)) { auto const& components = tuple->components(); solAssert(_right.size() == components.size(), ""); for (unsigned i = 0; i < _right.size(); ++i) if (auto component = components.at(i)) assignment(*component, {_right.at(i)}, component->annotation().type, component->location()); } else m_errorReporter.warning( _location, "Assertion checker does not yet implement such assignments." ); } smt::Expression SMTChecker::compoundAssignment(Assignment const& _assignment) { static map const compoundToArithmetic{ {Token::AssignAdd, Token::Add}, {Token::AssignSub, Token::Sub}, {Token::AssignMul, Token::Mul}, {Token::AssignDiv, Token::Div}, {Token::AssignMod, Token::Mod} }; Token op = _assignment.assignmentOperator(); solAssert(compoundToArithmetic.count(op), ""); auto decl = identifierToVariable(_assignment.leftHandSide()); return arithmeticOperation( compoundToArithmetic.at(op), decl ? currentValue(*decl) : expr(_assignment.leftHandSide()), expr(_assignment.rightHandSide()), _assignment.annotation().type, _assignment.location() ); } void SMTChecker::assignment(VariableDeclaration const& _variable, Expression const& _value, SourceLocation const& _location) { assignment(_variable, expr(_value), _location); } void SMTChecker::assignment(VariableDeclaration const& _variable, smt::Expression const& _value, SourceLocation const& _location) { TypePointer type = _variable.type(); if (type->category() == Type::Category::Integer) addOverflowTarget(OverflowTarget::Type::All, type, _value, _location); else if (type->category() == Type::Category::Address) addOverflowTarget(OverflowTarget::Type::All, TypeProvider::uint(160), _value, _location); else if (type->category() == Type::Category::Mapping) arrayAssignment(); m_interface->addAssertion(newValue(_variable) == _value); } SMTChecker::VariableIndices SMTChecker::visitBranch(ASTNode const* _statement, smt::Expression _condition) { return visitBranch(_statement, &_condition); } SMTChecker::VariableIndices SMTChecker::visitBranch(ASTNode const* _statement, smt::Expression const* _condition) { auto indicesBeforeBranch = copyVariableIndices(); if (_condition) pushPathCondition(*_condition); _statement->accept(*this); if (_condition) popPathCondition(); auto indicesAfterBranch = copyVariableIndices(); resetVariableIndices(indicesBeforeBranch); return indicesAfterBranch; } void SMTChecker::checkCondition( smt::Expression _condition, SourceLocation const& _location, string const& _description, string const& _additionalValueName, smt::Expression const* _additionalValue ) { m_interface->push(); addPathConjoinedExpression(_condition); vector expressionsToEvaluate; vector expressionNames; if (m_functionPath.size()) { solAssert(m_scanner, ""); if (_additionalValue) { expressionsToEvaluate.emplace_back(*_additionalValue); expressionNames.push_back(_additionalValueName); } for (auto const& var: m_variables) { if (var.first->type()->isValueType()) { expressionsToEvaluate.emplace_back(currentValue(*var.first)); expressionNames.push_back(var.first->name()); } } for (auto const& var: m_globalContext) { auto const& type = var.second->type(); if ( type->isValueType() && smtKind(type->category()) != smt::Kind::Function ) { expressionsToEvaluate.emplace_back(var.second->currentValue()); expressionNames.push_back(var.first); } } for (auto const& uf: m_uninterpretedTerms) { if (uf->annotation().type->isValueType()) { expressionsToEvaluate.emplace_back(expr(*uf)); expressionNames.push_back(m_scanner->sourceAt(uf->location())); } } } smt::CheckResult result; vector values; tie(result, values) = checkSatisfiableAndGenerateModel(expressionsToEvaluate); string extraComment; if (m_loopExecutionHappened) extraComment = "\nNote that some information is erased after the execution of loops.\n" "You can re-introduce information using require()."; if (m_arrayAssignmentHappened) extraComment += "\nNote that array aliasing is not supported," " therefore all mapping information is erased after" " a mapping local variable/parameter is assigned.\n" "You can re-introduce information using require()."; if (m_externalFunctionCallHappened) extraComment += "\nNote that external function calls are not inlined," " even if the source code of the function is available." " This is due to the possibility that the actual called contract" " has the same ABI but implements the function differently."; SecondarySourceLocation secondaryLocation{}; secondaryLocation.append(extraComment, SourceLocation{}); switch (result) { case smt::CheckResult::SATISFIABLE: { std::ostringstream message; message << _description << " happens here"; if (m_functionPath.size()) { std::ostringstream modelMessage; modelMessage << " for:\n"; solAssert(values.size() == expressionNames.size(), ""); map sortedModel; for (size_t i = 0; i < values.size(); ++i) if (expressionsToEvaluate.at(i).name != values.at(i)) sortedModel[expressionNames.at(i)] = values.at(i); for (auto const& eval: sortedModel) modelMessage << " " << eval.first << " = " << eval.second << "\n"; m_errorReporter.warning( _location, message.str(), SecondarySourceLocation().append(modelMessage.str(), SourceLocation{}) .append(currentCallStack()) .append(move(secondaryLocation)) ); } else { message << "."; m_errorReporter.warning(_location, message.str(), secondaryLocation); } break; } case smt::CheckResult::UNSATISFIABLE: break; case smt::CheckResult::UNKNOWN: m_errorReporter.warning(_location, _description + " might happen here.", secondaryLocation); break; case smt::CheckResult::CONFLICTING: m_errorReporter.warning(_location, "At least two SMT solvers provided conflicting answers. Results might not be sound."); break; case smt::CheckResult::ERROR: m_errorReporter.warning(_location, "Error trying to invoke SMT solver."); break; } m_interface->pop(); } void SMTChecker::checkBooleanNotConstant(Expression const& _condition, string const& _description) { // Do not check for const-ness if this is a constant. if (dynamic_cast(&_condition)) return; m_interface->push(); addPathConjoinedExpression(expr(_condition)); auto positiveResult = checkSatisfiable(); m_interface->pop(); m_interface->push(); addPathConjoinedExpression(!expr(_condition)); auto negatedResult = checkSatisfiable(); m_interface->pop(); if (positiveResult == smt::CheckResult::ERROR || negatedResult == smt::CheckResult::ERROR) m_errorReporter.warning(_condition.location(), "Error trying to invoke SMT solver."); else if (positiveResult == smt::CheckResult::CONFLICTING || negatedResult == smt::CheckResult::CONFLICTING) m_errorReporter.warning(_condition.location(), "At least two SMT solvers provided conflicting answers. Results might not be sound."); else if (positiveResult == smt::CheckResult::SATISFIABLE && negatedResult == smt::CheckResult::SATISFIABLE) { // everything fine. } else if (positiveResult == smt::CheckResult::UNKNOWN || negatedResult == smt::CheckResult::UNKNOWN) { // can't do anything. } else if (positiveResult == smt::CheckResult::UNSATISFIABLE && negatedResult == smt::CheckResult::UNSATISFIABLE) m_errorReporter.warning(_condition.location(), "Condition unreachable.", currentCallStack()); else { string value; if (positiveResult == smt::CheckResult::SATISFIABLE) { solAssert(negatedResult == smt::CheckResult::UNSATISFIABLE, ""); value = "true"; } else { solAssert(positiveResult == smt::CheckResult::UNSATISFIABLE, ""); solAssert(negatedResult == smt::CheckResult::SATISFIABLE, ""); value = "false"; } m_errorReporter.warning( _condition.location(), boost::algorithm::replace_all_copy(_description, "$VALUE", value), currentCallStack() ); } } pair> SMTChecker::checkSatisfiableAndGenerateModel(vector const& _expressionsToEvaluate) { smt::CheckResult result; vector values; try { tie(result, values) = m_interface->check(_expressionsToEvaluate); } catch (smt::SolverError const& _e) { string description("Error querying SMT solver"); if (_e.comment()) description += ": " + *_e.comment(); m_errorReporter.warning(description); result = smt::CheckResult::ERROR; } for (string& value: values) { try { // Parse and re-format nicely value = formatNumberReadable(bigint(value)); } catch (...) { } } return make_pair(result, values); } smt::CheckResult SMTChecker::checkSatisfiable() { return checkSatisfiableAndGenerateModel({}).first; } void SMTChecker::initializeFunctionCallParameters(CallableDeclaration const& _function, vector const& _callArgs) { auto const& funParams = _function.parameters(); solAssert(funParams.size() == _callArgs.size(), ""); for (unsigned i = 0; i < funParams.size(); ++i) if (createVariable(*funParams[i])) { m_interface->addAssertion(_callArgs[i] == newValue(*funParams[i])); if (funParams[i]->annotation().type->category() == Type::Category::Mapping) m_arrayAssignmentHappened = true; } for (auto const& variable: _function.localVariables()) if (createVariable(*variable)) { newValue(*variable); setZeroValue(*variable); } if (_function.returnParameterList()) for (auto const& retParam: _function.returnParameters()) if (createVariable(*retParam)) { newValue(*retParam); setZeroValue(*retParam); } } void SMTChecker::initializeLocalVariables(FunctionDefinition const& _function) { for (auto const& variable: _function.localVariables()) if (createVariable(*variable)) setZeroValue(*variable); for (auto const& param: _function.parameters()) if (createVariable(*param)) setUnknownValue(*param); if (_function.returnParameterList()) for (auto const& retParam: _function.returnParameters()) if (createVariable(*retParam)) setZeroValue(*retParam); } void SMTChecker::removeLocalVariables() { for (auto it = m_variables.begin(); it != m_variables.end(); ) { if (it->first->isLocalVariable()) it = m_variables.erase(it); else ++it; } } void SMTChecker::resetVariable(VariableDeclaration const& _variable) { newValue(_variable); setUnknownValue(_variable); } void SMTChecker::resetStateVariables() { resetVariables([&](VariableDeclaration const& _variable) { return _variable.isStateVariable(); }); } void SMTChecker::resetStorageReferences() { resetVariables([&](VariableDeclaration const& _variable) { return _variable.hasReferenceOrMappingType(); }); } void SMTChecker::resetVariables(set const& _variables) { for (auto const* decl: _variables) resetVariable(*decl); } void SMTChecker::resetVariables(function const& _filter) { for_each(begin(m_variables), end(m_variables), [&](auto _variable) { if (_filter(*_variable.first)) this->resetVariable(*_variable.first); }); } TypePointer SMTChecker::typeWithoutPointer(TypePointer const& _type) { if (auto refType = dynamic_cast(_type)) return TypeProvider::withLocationIfReference(refType->location(), _type); return _type; } void SMTChecker::mergeVariables(set const& _variables, smt::Expression const& _condition, VariableIndices const& _indicesEndTrue, VariableIndices const& _indicesEndFalse) { auto cmp = [] (VariableDeclaration const* var1, VariableDeclaration const* var2) { return var1->id() < var2->id(); }; set sortedVars(begin(_variables), end(_variables), cmp); for (auto const* decl: sortedVars) { solAssert(_indicesEndTrue.count(decl) && _indicesEndFalse.count(decl), ""); int trueIndex = _indicesEndTrue.at(decl); int falseIndex = _indicesEndFalse.at(decl); solAssert(trueIndex != falseIndex, ""); m_interface->addAssertion(newValue(*decl) == smt::Expression::ite( _condition, valueAtIndex(*decl, trueIndex), valueAtIndex(*decl, falseIndex)) ); } } bool SMTChecker::createVariable(VariableDeclaration const& _varDecl) { // This might be the case for multiple calls to the same function. if (knownVariable(_varDecl)) return true; auto const& type = _varDecl.type(); solAssert(m_variables.count(&_varDecl) == 0, ""); auto result = newSymbolicVariable(*type, _varDecl.name() + "_" + to_string(_varDecl.id()), *m_interface); m_variables.emplace(&_varDecl, result.second); if (result.first) { m_errorReporter.warning( _varDecl.location(), "Assertion checker does not yet support the type of this variable." ); return false; } return true; } bool SMTChecker::knownVariable(VariableDeclaration const& _decl) { return m_variables.count(&_decl); } smt::Expression SMTChecker::currentValue(VariableDeclaration const& _decl) { solAssert(knownVariable(_decl), ""); return m_variables.at(&_decl)->currentValue(); } smt::Expression SMTChecker::valueAtIndex(VariableDeclaration const& _decl, int _index) { solAssert(knownVariable(_decl), ""); return m_variables.at(&_decl)->valueAtIndex(_index); } smt::Expression SMTChecker::newValue(VariableDeclaration const& _decl) { solAssert(knownVariable(_decl), ""); return m_variables.at(&_decl)->increaseIndex(); } void SMTChecker::setZeroValue(VariableDeclaration const& _decl) { solAssert(knownVariable(_decl), ""); setZeroValue(*m_variables.at(&_decl)); } void SMTChecker::setZeroValue(SymbolicVariable& _variable) { smt::setSymbolicZeroValue(_variable, *m_interface); } void SMTChecker::setUnknownValue(VariableDeclaration const& _decl) { solAssert(knownVariable(_decl), ""); setUnknownValue(*m_variables.at(&_decl)); } void SMTChecker::setUnknownValue(SymbolicVariable& _variable) { smt::setSymbolicUnknownValue(_variable, *m_interface); } smt::Expression SMTChecker::expr(Expression const& _e) { if (!knownExpr(_e)) { m_errorReporter.warning(_e.location(), "Internal error: Expression undefined for SMT solver." ); createExpr(_e); } return m_expressions.at(&_e)->currentValue(); } bool SMTChecker::knownExpr(Expression const& _e) const { return m_expressions.count(&_e); } bool SMTChecker::knownGlobalSymbol(string const& _var) const { return m_globalContext.count(_var); } void SMTChecker::createExpr(Expression const& _e) { solAssert(_e.annotation().type, ""); if (knownExpr(_e)) m_expressions.at(&_e)->increaseIndex(); else { auto result = newSymbolicVariable(*_e.annotation().type, "expr_" + to_string(_e.id()), *m_interface); m_expressions.emplace(&_e, result.second); if (result.first) m_errorReporter.warning( _e.location(), "Assertion checker does not yet implement this type." ); } } void SMTChecker::defineExpr(Expression const& _e, smt::Expression _value) { createExpr(_e); solAssert(smtKind(_e.annotation().type->category()) != smt::Kind::Function, "Equality operator applied to type that is not fully supported"); m_interface->addAssertion(expr(_e) == _value); } void SMTChecker::popPathCondition() { solAssert(m_pathConditions.size() > 0, "Cannot pop path condition, empty."); m_pathConditions.pop_back(); } void SMTChecker::pushPathCondition(smt::Expression const& _e) { m_pathConditions.push_back(currentPathConditions() && _e); } smt::Expression SMTChecker::currentPathConditions() { if (m_pathConditions.empty()) return smt::Expression(true); return m_pathConditions.back(); } SecondarySourceLocation SMTChecker::currentCallStack() { SecondarySourceLocation callStackLocation; if (m_callStack.empty()) return callStackLocation; callStackLocation.append("Callstack: ", SourceLocation()); for (auto const& call: m_callStack | boost::adaptors::reversed) callStackLocation.append("", call->location()); return callStackLocation; } ASTNode const* SMTChecker::popCallStack() { solAssert(!m_callStack.empty(), ""); ASTNode const* lastCalled = m_callStack.back(); m_callStack.pop_back(); return lastCalled; } void SMTChecker::pushCallStack(ASTNode const* _node) { m_callStack.push_back(_node); } void SMTChecker::addPathConjoinedExpression(smt::Expression const& _e) { m_interface->addAssertion(currentPathConditions() && _e); } void SMTChecker::addPathImpliedExpression(smt::Expression const& _e) { m_interface->addAssertion(smt::Expression::implies(currentPathConditions(), _e)); } bool SMTChecker::isRootFunction() { return m_functionPath.size() == 1; } bool SMTChecker::visitedFunction(FunctionDefinition const* _funDef) { return contains(m_functionPath, _funDef); } SMTChecker::VariableIndices SMTChecker::copyVariableIndices() { VariableIndices indices; for (auto const& var: m_variables) indices.emplace(var.first, var.second->index()); return indices; } void SMTChecker::resetVariableIndices(VariableIndices const& _indices) { for (auto const& var: _indices) m_variables.at(var.first)->index() = var.second; } FunctionDefinition const* SMTChecker::inlinedFunctionCallToDefinition(FunctionCall const& _funCall) { if (_funCall.annotation().kind != FunctionCallKind::FunctionCall) return nullptr; FunctionType const& funType = dynamic_cast(*_funCall.expression().annotation().type); if (funType.kind() != FunctionType::Kind::Internal) return nullptr; FunctionDefinition const* funDef = nullptr; Expression const* calledExpr = &_funCall.expression(); if (TupleExpression const* fun = dynamic_cast(&_funCall.expression())) { solAssert(fun->components().size() == 1, ""); calledExpr = fun->components().front().get(); } if (Identifier const* fun = dynamic_cast(calledExpr)) funDef = dynamic_cast(fun->annotation().referencedDeclaration); else if (MemberAccess const* fun = dynamic_cast(calledExpr)) funDef = dynamic_cast(fun->annotation().referencedDeclaration); if (funDef && funDef->isImplemented()) return funDef; return nullptr; } set SMTChecker::touchedVariables(ASTNode const& _node) { solAssert(!m_functionPath.empty(), ""); return m_variableUsage.touchedVariables(_node, m_functionPath); } VariableDeclaration const* SMTChecker::identifierToVariable(Expression const& _expr) { if (auto identifier = dynamic_cast(&_expr)) { if (auto decl = dynamic_cast(identifier->annotation().referencedDeclaration)) { solAssert(knownVariable(*decl), ""); return decl; } } return nullptr; }