/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ // SPDX-License-Identifier: GPL-3.0 #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace solidity; using namespace solidity::util; using namespace solidity::frontend; using namespace solidity::frontend::experimental; using namespace std::string_literals; std::string IRGeneratorForStatements::generate(ASTNode const& _node) { _node.accept(*this); return m_code.str(); } namespace { struct CopyTranslate: public yul::ASTCopier { CopyTranslate( IRGenerationContext const& _context, yul::Dialect const& _dialect, map _references ): m_context(_context), m_dialect(_dialect), m_references(std::move(_references)) {} using ASTCopier::operator(); yul::Expression operator()(yul::Identifier const& _identifier) override { // The operator() function is only called in lvalue context. In rvalue context, // only translate(yul::Identifier) is called. if (m_references.count(&_identifier)) return translateReference(_identifier); else return ASTCopier::operator()(_identifier); } yul::YulString translateIdentifier(yul::YulString _name) override { if (m_dialect.builtin(_name)) return _name; else return yul::YulString{"usr$" + _name.str()}; } yul::Identifier translate(yul::Identifier const& _identifier) override { if (!m_references.count(&_identifier)) return ASTCopier::translate(_identifier); yul::Expression translated = translateReference(_identifier); solAssert(holds_alternative(translated)); return get(std::move(translated)); } private: /// Translates a reference to a local variable, potentially including /// a suffix. Might return a literal, which causes this to be invalid in /// lvalue-context. yul::Expression translateReference(yul::Identifier const& _identifier) { auto const& reference = m_references.at(&_identifier); auto const varDecl = dynamic_cast(reference.declaration); solAssert(varDecl, "External reference in inline assembly to something that is not a variable declaration."); auto type = m_context.analysis.annotation(*varDecl).type; solAssert(type); solAssert(m_context.env->typeEquals(*type, m_context.analysis.typeSystem().type(BuiltinType::Word, {}))); string value = IRNames::localVariable(*varDecl); return yul::Identifier{_identifier.debugData, yul::YulString{value}}; } IRGenerationContext const& m_context; yul::Dialect const& m_dialect; map m_references; }; } bool IRGeneratorForStatements::visit(InlineAssembly const& _assembly) { CopyTranslate bodyCopier{m_context, _assembly.dialect(), _assembly.annotation().externalReferences}; yul::Statement modified = bodyCopier(_assembly.operations()); solAssert(holds_alternative(modified)); m_code << yul::AsmPrinter()(std::get(modified)) << "\n"; return false; } bool IRGeneratorForStatements::visit(VariableDeclarationStatement const& _variableDeclarationStatement) { if (_variableDeclarationStatement.initialValue()) _variableDeclarationStatement.initialValue()->accept(*this); solAssert(_variableDeclarationStatement.declarations().size() == 1, "multi variable declarations not supported"); VariableDeclaration const* variableDeclaration = _variableDeclarationStatement.declarations().front().get(); solAssert(variableDeclaration); // TODO: check the type of the variable; register local variable; initialize m_code << "let " << IRNames::localVariable(*variableDeclaration); if (_variableDeclarationStatement.initialValue()) m_code << " := " << IRNames::localVariable(*_variableDeclarationStatement.initialValue()); m_code << "\n"; return false; } bool IRGeneratorForStatements::visit(ExpressionStatement const&) { return true; } bool IRGeneratorForStatements::visit(Identifier const& _identifier) { if (auto const* var = dynamic_cast(_identifier.annotation().referencedDeclaration)) { m_code << "let " << IRNames::localVariable(_identifier) << " := " << IRNames::localVariable(*var) << "\n"; } else if (auto const* function = dynamic_cast(_identifier.annotation().referencedDeclaration)) solAssert(m_expressionDeclaration.emplace(&_identifier, function).second); else if (auto const* typeClass = dynamic_cast(_identifier.annotation().referencedDeclaration)) solAssert(m_expressionDeclaration.emplace(&_identifier, typeClass).second); else if (auto const* typeDefinition = dynamic_cast(_identifier.annotation().referencedDeclaration)) solAssert(m_expressionDeclaration.emplace(&_identifier, typeDefinition).second); else solAssert(false, "Unsupported Identifier"); return false; } void IRGeneratorForStatements::endVisit(Return const& _return) { if (Expression const* value = _return.expression()) { solAssert(_return.annotation().functionReturnParameters, "Invalid return parameters pointer."); vector> const& returnParameters = _return.annotation().functionReturnParameters->parameters(); solAssert(returnParameters.size() == 1, "Returning tuples not yet supported."); m_code << IRNames::localVariable(*returnParameters.front()) << " := " << IRNames::localVariable(*value) << "\n"; } m_code << "leave\n"; } experimental::Type IRGeneratorForStatements::type(ASTNode const& _node) const { auto type = m_context.analysis.annotation(_node).type; solAssert(type); return *type; } void IRGeneratorForStatements::endVisit(BinaryOperation const& _binaryOperation) { TypeSystemHelpers helper{m_context.analysis.typeSystem()}; Type leftType = type(_binaryOperation.leftExpression()); Type rightType = type(_binaryOperation.rightExpression()); Type resultType = type(_binaryOperation); Type functionType = helper.functionType(helper.tupleType({leftType, rightType}), resultType); auto [typeClass, memberName] = m_context.analysis.annotation().operators.at(_binaryOperation.getOperator()); auto const& functionDefinition = resolveTypeClassFunction(typeClass, memberName, functionType); // TODO: deduplicate with FunctionCall // TODO: get around resolveRecursive by passing the environment further down? functionType = m_context.env->resolveRecursive(functionType); m_context.enqueueFunctionDefinition(&functionDefinition, functionType); // TODO: account for return stack size m_code << "let " << IRNames::localVariable(_binaryOperation) << " := " << IRNames::function(*m_context.env, functionDefinition, functionType) << "(" << IRNames::localVariable(_binaryOperation.leftExpression()) << ", " << IRNames::localVariable(_binaryOperation.rightExpression()) << ")\n"; } namespace { TypeRegistration::TypeClassInstantiations const& typeClassInstantiations(IRGenerationContext const& _context, TypeClass _class) { return std::visit(util::GenericVisitor{ [&](BuiltinClass _builtinClass) -> auto const& { return _context.analysis.annotation().builtinClassInstantiations.at(_builtinClass); }, [&](TypeClassDefinition const* _classDefinition) -> auto const& { return _context.analysis.annotation(*_classDefinition).instantiations; } }, _class.declaration); } } FunctionDefinition const& IRGeneratorForStatements::resolveTypeClassFunction(TypeClass _class, string _name, Type _type) { TypeSystemHelpers helper{m_context.analysis.typeSystem()}; auto const* typeClassInfo = m_context.analysis.typeSystem().typeClassInfo(_class); solAssert(typeClassInfo); Type genericFunctionType = typeClassInfo->functions.at(_name); TypeEnvironment env = m_context.env->clone(); auto typeVars = helper.typeVars(genericFunctionType); solAssert(typeVars.size() == 1); solAssert(env.unify(genericFunctionType, _type).empty()); auto typeClassInstantiation = get<0>(helper.destTypeConstant(env.resolve(typeVars.front()))); auto const& instantiations = typeClassInstantiations(m_context, _class); TypeClassInstantiation const* instantiation = instantiations.at(typeClassInstantiation); FunctionDefinition const* functionDefinition = nullptr; for (auto const& node: instantiation->subNodes()) { auto const* def = dynamic_cast(node.get()); solAssert(def); if (def->name() == _name) { functionDefinition = def; break; } } solAssert(functionDefinition); return *functionDefinition; } void IRGeneratorForStatements::endVisit(MemberAccess const& _memberAccess) { TypeSystemHelpers helper{m_context.analysis.typeSystem()}; auto expressionType = type(_memberAccess.expression()); // TODO: avoid kind destruction if (helper.isKindType(expressionType)) expressionType = helper.destKindType(expressionType); auto constructor = std::get<0>(helper.destTypeConstant(expressionType)); auto memberAccessType = type(_memberAccess); std::visit(util::GenericVisitor{ [](BuiltinType) { solAssert(false); }, [&](Declaration const *_declaration) { if (auto const* typeClass = dynamic_cast(_declaration)) solAssert(m_expressionDeclaration.emplace( &_memberAccess, &resolveTypeClassFunction(TypeClass{typeClass}, _memberAccess.memberName(), memberAccessType) ).second); else if (dynamic_cast(_declaration)) { if (_memberAccess.memberName() == "abs" || _memberAccess.memberName() == "rep") solAssert(m_expressionDeclaration.emplace(&_memberAccess, Builtins::Identity).second); else solAssert(false); } else solAssert(false); } }, constructor); } void IRGeneratorForStatements::endVisit(FunctionCall const& _functionCall) { Type functionType = type(_functionCall.expression()); auto declaration = m_expressionDeclaration.at(&_functionCall.expression()); if (auto builtin = get_if(&declaration)) { switch(*builtin) { case Builtins::Identity: solAssert(_functionCall.arguments().size() == 1); m_code << "let " << IRNames::localVariable(_functionCall) << " := " << IRNames::localVariable(*_functionCall.arguments().front()) << "\n"; return; } solAssert(false); } FunctionDefinition const* functionDefinition = dynamic_cast(get(declaration)); solAssert(functionDefinition); // TODO: get around resolveRecursive by passing the environment further down? functionType = m_context.env->resolveRecursive(functionType); m_context.enqueueFunctionDefinition(functionDefinition, functionType); // TODO: account for return stack size m_code << "let " << IRNames::localVariable(_functionCall) << " := " << IRNames::function(*m_context.env, *functionDefinition, functionType) << "("; auto const& arguments = _functionCall.arguments(); if (arguments.size() > 1) for (auto arg: arguments | ranges::views::drop_last(1)) m_code << IRNames::localVariable(*arg) << ", "; if (!arguments.empty()) m_code << IRNames::localVariable(*arguments.back()); m_code << ")\n"; } bool IRGeneratorForStatements::visit(FunctionCall const&) { return true; } bool IRGeneratorForStatements::visit(Assignment const& _assignment) { _assignment.rightHandSide().accept(*this); auto const* lhs = dynamic_cast(&_assignment.leftHandSide()); solAssert(lhs, "Can only assign to identifiers."); auto const* lhsVar = dynamic_cast(lhs->annotation().referencedDeclaration); solAssert(lhsVar, "Can only assign to identifiers referring to variables."); m_code << IRNames::localVariable(*lhsVar) << " := " << IRNames::localVariable(_assignment.rightHandSide()) << "\n"; m_code << "let " << IRNames::localVariable(_assignment) << " := " << IRNames::localVariable(*lhsVar) << "\n"; return false; } bool IRGeneratorForStatements::visitNode(ASTNode const&) { solAssert(false, "Unsupported AST node during statement code generation."); }