/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** * @author Christian * @date 2014 * Solidity compiler. */ #include #include #include #include #include #include #include #include using namespace std; namespace dev { namespace solidity { void Compiler::compileContract(ContractDefinition const& _contract, vector const& _magicGlobals, map const& _contracts) { m_context = CompilerContext(); // clear it just in case initializeContext(_contract, _magicGlobals, _contracts); for (ASTPointer const& function: _contract.getDefinedFunctions()) if (function->getName() != _contract.getName()) // don't add the constructor here m_context.addFunction(*function); appendFunctionSelector(_contract); for (ASTPointer const& function: _contract.getDefinedFunctions()) if (function->getName() != _contract.getName()) // don't add the constructor here function->accept(*this); // Swap the runtime context with the creation-time context CompilerContext runtimeContext; swap(m_context, runtimeContext); initializeContext(_contract, _magicGlobals, _contracts); packIntoContractCreator(_contract, runtimeContext); } void Compiler::initializeContext(ContractDefinition const& _contract, vector const& _magicGlobals, map const& _contracts) { m_context.setCompiledContracts(_contracts); for (MagicVariableDeclaration const* variable: _magicGlobals) m_context.addMagicGlobal(*variable); registerStateVariables(_contract); } void Compiler::packIntoContractCreator(ContractDefinition const& _contract, CompilerContext const& _runtimeContext) { set neededFunctions; FunctionDefinition const* constructor = _contract.getConstructor(); if (constructor) neededFunctions = getFunctionsNeededByConstructor(*constructor); for (FunctionDefinition const* fun: neededFunctions) m_context.addFunction(*fun); if (constructor) appendConstructorCall(*constructor); eth::AssemblyItem sub = m_context.addSubroutine(_runtimeContext.getAssembly()); // stack contains sub size m_context << eth::Instruction::DUP1 << sub << u256(0) << eth::Instruction::CODECOPY; m_context << u256(0) << eth::Instruction::RETURN; // note that we have to explicitly include all used functions because of absolute jump // labels for (FunctionDefinition const* fun: neededFunctions) fun->accept(*this); } void Compiler::appendConstructorCall(FunctionDefinition const& _constructor) { eth::AssemblyItem returnTag = m_context.pushNewTag(); // copy constructor arguments from code to memory and then to stack, they are supplied after the actual program unsigned argumentSize = 0; for (ASTPointer const& var: _constructor.getParameters()) argumentSize += var->getType()->getCalldataEncodedSize(); if (argumentSize > 0) { m_context << u256(argumentSize); m_context.appendProgramSize(); m_context << u256(1); // copy it to byte one as expected for ABI calls m_context << eth::Instruction::CODECOPY; appendCalldataUnpacker(_constructor, true); } m_context.appendJumpTo(m_context.getFunctionEntryLabel(_constructor)); m_context << returnTag; } set Compiler::getFunctionsNeededByConstructor(FunctionDefinition const& _constructor) { CallGraph callgraph; callgraph.addFunction(_constructor); callgraph.computeCallGraph(); return callgraph.getCalls(); } void Compiler::appendFunctionSelector(ContractDefinition const& _contract) { vector interfaceFunctions = _contract.getInterfaceFunctions(); vector callDataUnpackerEntryPoints; if (interfaceFunctions.size() > 255) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("More than 255 public functions for contract.")); // retrieve the first byte of the call data, which determines the called function // @todo This code had a jump table in a previous version which was more efficient but also // error prone (due to the optimizer and variable length tag addresses) m_context << u256(1) << u256(0) // some constants << eth::dupInstruction(1) << eth::Instruction::CALLDATALOAD << eth::dupInstruction(2) << eth::Instruction::BYTE << eth::dupInstruction(2); // stack here: 1 0 0, stack top will be counted up until it matches funid for (unsigned funid = 0; funid < interfaceFunctions.size(); ++funid) { callDataUnpackerEntryPoints.push_back(m_context.newTag()); m_context << eth::dupInstruction(2) << eth::dupInstruction(2) << eth::Instruction::EQ; m_context.appendConditionalJumpTo(callDataUnpackerEntryPoints.back()); if (funid < interfaceFunctions.size() - 1) m_context << eth::dupInstruction(4) << eth::Instruction::ADD; } m_context << eth::Instruction::STOP; // function not found for (unsigned funid = 0; funid < interfaceFunctions.size(); ++funid) { FunctionDefinition const& function = *interfaceFunctions[funid]; m_context << callDataUnpackerEntryPoints[funid]; eth::AssemblyItem returnTag = m_context.pushNewTag(); appendCalldataUnpacker(function); m_context.appendJumpTo(m_context.getFunctionEntryLabel(function)); m_context << returnTag; appendReturnValuePacker(function); } } unsigned Compiler::appendCalldataUnpacker(FunctionDefinition const& _function, bool _fromMemory) { // We do not check the calldata size, everything is zero-padded. unsigned dataOffset = 1; //@todo this can be done more efficiently, saving some CALLDATALOAD calls for (ASTPointer const& var: _function.getParameters()) { unsigned const numBytes = var->getType()->getCalldataEncodedSize(); if (numBytes > 32) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_sourceLocation(var->getLocation()) << errinfo_comment("Type " + var->getType()->toString() + " not yet supported.")); bool leftAligned = var->getType()->getCategory() == Type::Category::STRING; CompilerUtils(m_context).loadFromMemory(dataOffset, numBytes, leftAligned, !_fromMemory); dataOffset += numBytes; } return dataOffset; } void Compiler::appendReturnValuePacker(FunctionDefinition const& _function) { //@todo this can be also done more efficiently unsigned dataOffset = 0; vector> const& parameters = _function.getReturnParameters(); unsigned stackDepth = CompilerUtils(m_context).getSizeOnStack(parameters); for (unsigned i = 0; i < parameters.size(); ++i) { Type const& paramType = *parameters[i]->getType(); unsigned numBytes = paramType.getCalldataEncodedSize(); if (numBytes > 32) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_sourceLocation(parameters[i]->getLocation()) << errinfo_comment("Type " + paramType.toString() + " not yet supported.")); CompilerUtils(m_context).copyToStackTop(stackDepth, paramType); bool const leftAligned = paramType.getCategory() == Type::Category::STRING; CompilerUtils(m_context).storeInMemory(dataOffset, numBytes, leftAligned); stackDepth -= paramType.getSizeOnStack(); dataOffset += numBytes; } // note that the stack is not cleaned up here m_context << u256(dataOffset) << u256(0) << eth::Instruction::RETURN; } void Compiler::registerStateVariables(ContractDefinition const& _contract) { //@todo sort them? for (ASTPointer const& variable: _contract.getStateVariables()) m_context.addStateVariable(*variable); } bool Compiler::visit(FunctionDefinition const& _function) { //@todo to simplify this, the calling convention could by changed such that // caller puts: [retarg0] ... [retargm] [return address] [arg0] ... [argn] // although note that this reduces the size of the visible stack m_context.startNewFunction(); m_returnTag = m_context.newTag(); m_breakTags.clear(); m_continueTags.clear(); m_context << m_context.getFunctionEntryLabel(_function); // stack upon entry: [return address] [arg0] [arg1] ... [argn] // reserve additional slots: [retarg0] ... [retargm] [localvar0] ... [localvarp] for (ASTPointer const& variable: _function.getParameters()) m_context.addVariable(*variable); for (ASTPointer const& variable: _function.getReturnParameters()) m_context.addAndInitializeVariable(*variable); for (VariableDeclaration const* localVariable: _function.getLocalVariables()) m_context.addAndInitializeVariable(*localVariable); _function.getBody().accept(*this); m_context << m_returnTag; // Now we need to re-shuffle the stack. For this we keep a record of the stack layout // that shows the target positions of the elements, where "-1" denotes that this element needs // to be removed from the stack. // Note that the fact that the return arguments are of increasing index is vital for this // algorithm to work. unsigned const argumentsSize = CompilerUtils::getSizeOnStack(_function.getParameters()); unsigned const returnValuesSize = CompilerUtils::getSizeOnStack(_function.getReturnParameters()); unsigned const localVariablesSize = CompilerUtils::getSizeOnStack(_function.getLocalVariables()); vector stackLayout; stackLayout.push_back(returnValuesSize); // target of return address stackLayout += vector(argumentsSize, -1); // discard all arguments for (unsigned i = 0; i < returnValuesSize; ++i) stackLayout.push_back(i); stackLayout += vector(localVariablesSize, -1); while (stackLayout.back() != int(stackLayout.size() - 1)) if (stackLayout.back() < 0) { m_context << eth::Instruction::POP; stackLayout.pop_back(); } else { m_context << eth::swapInstruction(stackLayout.size() - stackLayout.back() - 1); swap(stackLayout[stackLayout.back()], stackLayout.back()); } //@todo assert that everything is in place now m_context << eth::Instruction::JUMP; return false; } bool Compiler::visit(IfStatement const& _ifStatement) { compileExpression(_ifStatement.getCondition()); eth::AssemblyItem trueTag = m_context.appendConditionalJump(); if (_ifStatement.getFalseStatement()) _ifStatement.getFalseStatement()->accept(*this); eth::AssemblyItem endTag = m_context.appendJumpToNew(); m_context << trueTag; _ifStatement.getTrueStatement().accept(*this); m_context << endTag; return false; } bool Compiler::visit(WhileStatement const& _whileStatement) { eth::AssemblyItem loopStart = m_context.newTag(); eth::AssemblyItem loopEnd = m_context.newTag(); m_continueTags.push_back(loopStart); m_breakTags.push_back(loopEnd); m_context << loopStart; compileExpression(_whileStatement.getCondition()); m_context << eth::Instruction::ISZERO; m_context.appendConditionalJumpTo(loopEnd); _whileStatement.getBody().accept(*this); m_context.appendJumpTo(loopStart); m_context << loopEnd; m_continueTags.pop_back(); m_breakTags.pop_back(); return false; } bool Compiler::visit(ForStatement const& _forStatement) { eth::AssemblyItem loopStart = m_context.newTag(); eth::AssemblyItem loopEnd = m_context.newTag(); m_continueTags.push_back(loopStart); m_breakTags.push_back(loopEnd); if (_forStatement.getInitializationExpression()) _forStatement.getInitializationExpression()->accept(*this); m_context << loopStart; // if there is no terminating condition in for, default is to always be true if (_forStatement.getCondition()) { compileExpression(*_forStatement.getCondition()); m_context << eth::Instruction::ISZERO; m_context.appendConditionalJumpTo(loopEnd); } _forStatement.getBody().accept(*this); // for's loop expression if existing if (_forStatement.getLoopExpression()) _forStatement.getLoopExpression()->accept(*this); m_context.appendJumpTo(loopStart); m_context << loopEnd; m_continueTags.pop_back(); m_breakTags.pop_back(); return false; } bool Compiler::visit(Continue const&) { if (!m_continueTags.empty()) m_context.appendJumpTo(m_continueTags.back()); return false; } bool Compiler::visit(Break const&) { if (!m_breakTags.empty()) m_context.appendJumpTo(m_breakTags.back()); return false; } bool Compiler::visit(Return const& _return) { //@todo modifications are needed to make this work with functions returning multiple values if (Expression const* expression = _return.getExpression()) { compileExpression(*expression); VariableDeclaration const& firstVariable = *_return.getFunctionReturnParameters().getParameters().front(); ExpressionCompiler::appendTypeConversion(m_context, *expression->getType(), *firstVariable.getType()); CompilerUtils(m_context).moveToStackVariable(firstVariable); } m_context.appendJumpTo(m_returnTag); return false; } bool Compiler::visit(VariableDefinition const& _variableDefinition) { if (Expression const* expression = _variableDefinition.getExpression()) { compileExpression(*expression); ExpressionCompiler::appendTypeConversion(m_context, *expression->getType(), *_variableDefinition.getDeclaration().getType()); CompilerUtils(m_context).moveToStackVariable(_variableDefinition.getDeclaration()); } return false; } bool Compiler::visit(ExpressionStatement const& _expressionStatement) { Expression const& expression = _expressionStatement.getExpression(); compileExpression(expression); CompilerUtils(m_context).popStackElement(*expression.getType()); return false; } void Compiler::compileExpression(Expression const& _expression) { ExpressionCompiler::compileExpression(m_context, _expression, m_optimize); } } }