/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ /** * Unit tests for Solidity's ABI encoder. */ #include #include #include #include #include #include using namespace std; using namespace std::placeholders; using namespace dev::test; namespace dev { namespace solidity { namespace test { #define REQUIRE_LOG_DATA(DATA) do { \ BOOST_REQUIRE_EQUAL(m_logs.size(), 1); \ BOOST_CHECK_EQUAL(m_logs[0].address, m_contractAddress); \ BOOST_CHECK_EQUAL(toHex(m_logs[0].data), toHex(DATA)); \ } while (false) static string const NewEncoderPragma = "pragma experimental ABIEncoderV2;\n"; #define NEW_ENCODER(CODE) \ { \ sourceCode = NewEncoderPragma + sourceCode; \ { CODE } \ } #define BOTH_ENCODERS(CODE) \ { \ { CODE } \ NEW_ENCODER(CODE) \ } BOOST_FIXTURE_TEST_SUITE(ABIEncoderTest, SolidityExecutionFramework) BOOST_AUTO_TEST_CASE(both_encoders_macro) { // This tests that the "both encoders macro" at least runs twice and // modifies the source. string sourceCode; int runs = 0; BOTH_ENCODERS(runs++;) BOOST_CHECK(sourceCode == NewEncoderPragma); BOOST_CHECK_EQUAL(runs, 2); } BOOST_AUTO_TEST_CASE(value_types) { string sourceCode = R"( contract C { event E(uint a, uint16 b, uint24 c, int24 d, bytes3 x, bool, C); function f() { bytes6 x = hex"1bababababa2"; bool b; assembly { b := 7 } C c; assembly { c := sub(0, 5) } E(10, uint16(uint256(-2)), uint24(0x12121212), int24(int256(-1)), bytes3(x), b, c); } } )"; BOTH_ENCODERS( compileAndRun(sourceCode); callContractFunction("f()"); REQUIRE_LOG_DATA(encodeArgs( 10, u256(65534), u256(0x121212), u256(-1), string("\x1b\xab\xab"), true, u160(u256(-5)) )); ) } BOOST_AUTO_TEST_CASE(string_literal) { string sourceCode = R"( contract C { event E(string, bytes20, string); function f() { E("abcdef", "abcde", "abcdefabcdefgehabcabcasdfjklabcdefabcedefghabcabcasdfjklabcdefabcdefghabcabcasdfjklabcdeefabcdefghabcabcasdefjklabcdefabcdefghabcabcasdfjkl"); } } )"; BOTH_ENCODERS( compileAndRun(sourceCode); callContractFunction("f()"); REQUIRE_LOG_DATA(encodeArgs( 0x60, string("abcde"), 0xa0, 6, string("abcdef"), 0x8b, string("abcdefabcdefgehabcabcasdfjklabcdefabcedefghabcabcasdfjklabcdefabcdefghabcabcasdfjklabcdeefabcdefghabcabcasdefjklabcdefabcdefghabcabcasdfjkl") )); ) } BOOST_AUTO_TEST_CASE(enum_type_cleanup) { string sourceCode = R"( contract C { enum E { A, B } function f(uint x) returns (E en) { assembly { en := x } } } )"; BOTH_ENCODERS( compileAndRun(sourceCode); BOOST_CHECK(callContractFunction("f(uint256)", 0) == encodeArgs(0)); BOOST_CHECK(callContractFunction("f(uint256)", 1) == encodeArgs(1)); BOOST_CHECK(callContractFunction("f(uint256)", 2) == encodeArgs()); ) } BOOST_AUTO_TEST_CASE(conversion) { string sourceCode = R"( contract C { event E(bytes4, bytes4, uint16, uint8, int16, int8); function f() { bytes2 x; assembly { x := 0xf1f2f3f400000000000000000000000000000000000000000000000000000000 } uint8 a; uint16 b = 0x1ff; int8 c; int16 d; assembly { a := sub(0, 1) c := 0x0101ff d := 0xff01 } E(10, x, a, uint8(b), c, int8(d)); } } )"; BOTH_ENCODERS( compileAndRun(sourceCode); callContractFunction("f()"); REQUIRE_LOG_DATA(encodeArgs( string(3, 0) + string("\x0a"), string("\xf1\xf2"), 0xff, 0xff, u256(-1), u256(1) )); ) } BOOST_AUTO_TEST_CASE(memory_array_one_dim) { string sourceCode = R"( contract C { event E(uint a, int16[] b, uint c); function f() { int16[] memory x = new int16[](3); assembly { for { let i := 0 } lt(i, 3) { i := add(i, 1) } { mstore(add(x, mul(add(i, 1), 0x20)), add(0xfffffffe, i)) } } E(10, x, 11); } } )"; compileAndRun(sourceCode); callContractFunction("f()"); // The old encoder does not clean array elements. REQUIRE_LOG_DATA(encodeArgs(10, 0x60, 11, 3, u256("0xfffffffe"), u256("0xffffffff"), u256("0x100000000"))); compileAndRun(NewEncoderPragma + sourceCode); callContractFunction("f()"); REQUIRE_LOG_DATA(encodeArgs(10, 0x60, 11, 3, u256(-2), u256(-1), u256(0))); } BOOST_AUTO_TEST_CASE(memory_array_two_dim) { string sourceCode = R"( contract C { event E(uint a, int16[][2] b, uint c); function f() { int16[][2] memory x; x[0] = new int16[](3); x[1] = new int16[](2); x[0][0] = 7; x[0][1] = int16(0x010203040506); x[0][2] = -1; x[1][0] = 4; x[1][1] = 5; E(10, x, 11); } } )"; NEW_ENCODER( compileAndRun(sourceCode); callContractFunction("f()"); REQUIRE_LOG_DATA(encodeArgs(10, 0x60, 11, 0x40, 0xc0, 3, 7, 0x0506, u256(-1), 2, 4, 5)); ) } BOOST_AUTO_TEST_CASE(memory_byte_array) { string sourceCode = R"( contract C { event E(uint a, bytes[] b, uint c); function f() { bytes[] memory x = new bytes[](2); x[0] = "abcabcdefghjklmnopqrsuvwabcdefgijklmnopqrstuwabcdefgijklmnoprstuvw"; x[1] = "abcdefghijklmnopqrtuvwabcfghijklmnopqstuvwabcdeghijklmopqrstuvw"; E(10, x, 11); } } )"; NEW_ENCODER( compileAndRun(sourceCode); callContractFunction("f()"); REQUIRE_LOG_DATA(encodeArgs( 10, 0x60, 11, 2, 0x40, 0xc0, 66, string("abcabcdefghjklmnopqrsuvwabcdefgijklmnopqrstuwabcdefgijklmnoprstuvw"), 63, string("abcdefghijklmnopqrtuvwabcfghijklmnopqstuvwabcdeghijklmopqrstuvw") )); ) } BOOST_AUTO_TEST_CASE(storage_byte_array) { string sourceCode = R"( contract C { bytes short; bytes long; event E(bytes s, bytes l); function f() { short = "123456789012345678901234567890a"; long = "ffff123456789012345678901234567890afffffffff123456789012345678901234567890a"; E(short, long); } } )"; BOTH_ENCODERS( compileAndRun(sourceCode); callContractFunction("f()"); REQUIRE_LOG_DATA(encodeArgs( 0x40, 0x80, 31, string("123456789012345678901234567890a"), 75, string("ffff123456789012345678901234567890afffffffff123456789012345678901234567890a") )); ) } BOOST_AUTO_TEST_CASE(storage_array) { string sourceCode = R"( contract C { address[3] addr; event E(address[3] a); function f() { assembly { sstore(0, sub(0, 1)) sstore(1, sub(0, 2)) sstore(2, sub(0, 3)) } E(addr); } } )"; BOTH_ENCODERS( compileAndRun(sourceCode); callContractFunction("f()"); REQUIRE_LOG_DATA(encodeArgs(u160(-1), u160(-2), u160(-3))); ) } BOOST_AUTO_TEST_CASE(storage_array_dyn) { string sourceCode = R"( contract C { address[] addr; event E(address[] a); function f() { addr.push(1); addr.push(2); addr.push(3); E(addr); } } )"; BOTH_ENCODERS( compileAndRun(sourceCode); callContractFunction("f()"); REQUIRE_LOG_DATA(encodeArgs(0x20, 3, u160(1), u160(2), u160(3))); ) } BOOST_AUTO_TEST_CASE(storage_array_compact) { string sourceCode = R"( contract C { int72[] x; event E(int72[]); function f() { x.push(-1); x.push(2); x.push(-3); x.push(4); x.push(-5); x.push(6); x.push(-7); x.push(8); E(x); } } )"; BOTH_ENCODERS( compileAndRun(sourceCode); callContractFunction("f()"); REQUIRE_LOG_DATA(encodeArgs( 0x20, 8, u256(-1), 2, u256(-3), 4, u256(-5), 6, u256(-7), 8 )); ) } BOOST_AUTO_TEST_CASE(external_function) { string sourceCode = R"( contract C { event E(function(uint) external returns (uint), function(uint) external returns (uint)); function(uint) external returns (uint) g; function f(uint) returns (uint) { g = this.f; E(this.f, g); } } )"; BOTH_ENCODERS( compileAndRun(sourceCode); callContractFunction("f(uint256)"); string functionIdF = asString(m_contractAddress.ref()) + asString(FixedHash<4>(dev::keccak256("f(uint256)")).ref()); REQUIRE_LOG_DATA(encodeArgs(functionIdF, functionIdF)); ) } BOOST_AUTO_TEST_CASE(external_function_cleanup) { string sourceCode = R"( contract C { event E(function(uint) external returns (uint), function(uint) external returns (uint)); // This test relies on the fact that g is stored in slot zero. function(uint) external returns (uint) g; function f(uint) returns (uint) { function(uint) external returns (uint)[1] memory h; assembly { sstore(0, sub(0, 1)) mstore(h, sub(0, 1)) } E(h[0], g); } } )"; BOTH_ENCODERS( compileAndRun(sourceCode); callContractFunction("f(uint256)"); REQUIRE_LOG_DATA(encodeArgs(string(24, char(-1)), string(24, char(-1)))); ) } BOOST_AUTO_TEST_CASE(calldata) { string sourceCode = R"( contract C { event E(bytes); function f(bytes a) external { E(a); } } )"; string s("abcdef"); string t("abcdefgggggggggggggggggggggggggggggggggggggggghhheeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeggg"); bool newEncoder = false; BOTH_ENCODERS( compileAndRun(sourceCode); callContractFunction("f(bytes)", 0x20, s.size(), s); // The old encoder did not pad to multiples of 32 bytes REQUIRE_LOG_DATA(encodeArgs(0x20, s.size()) + (newEncoder ? encodeArgs(s) : asBytes(s))); callContractFunction("f(bytes)", 0x20, t.size(), t); REQUIRE_LOG_DATA(encodeArgs(0x20, t.size()) + (newEncoder ? encodeArgs(t) : asBytes(t))); newEncoder = true; ) } BOOST_AUTO_TEST_CASE(function_name_collision) { // This tests a collision between a function name used by inline assembly // and by the ABI encoder string sourceCode = R"( contract C { function f(uint x) returns (uint) { assembly { function abi_encode_t_uint256_to_t_uint256() { mstore(0, 7) return(0, 0x20) } switch x case 0 { abi_encode_t_uint256_to_t_uint256() } } return 1; } } )"; BOTH_ENCODERS( compileAndRun(sourceCode); BOOST_CHECK(callContractFunction("f(uint256)", encodeArgs(0)) == encodeArgs(7)); BOOST_CHECK(callContractFunction("f(uint256)", encodeArgs(1)) == encodeArgs(1)); ) } BOOST_AUTO_TEST_CASE(structs) { string sourceCode = R"( contract C { struct S { uint16 a; uint16 b; T[] sub; uint16 c; } struct T { uint64[2] x; } S s; event e(uint16, S); function f() returns (uint, S) { uint16 x = 7; s.a = 8; s.b = 9; s.c = 10; s.sub.length = 3; s.sub[0].x[0] = 11; s.sub[1].x[0] = 12; s.sub[2].x[1] = 13; e(x, s); return (x, s); } } )"; NEW_ENCODER( compileAndRun(sourceCode, 0, "C"); bytes encoded = encodeArgs( u256(7), 0x40, 8, 9, 0x80, 10, 3, 11, 0, 12, 0, 0, 13 ); BOOST_CHECK(callContractFunction("f()") == encoded); REQUIRE_LOG_DATA(encoded); ) } BOOST_AUTO_TEST_SUITE_END() } } } // end namespaces