/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ /** * @author Christian * @author Gav Wood * @date 2014 * Full-stack compiler that converts a source code string to bytecode. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace dev; using namespace langutil; using namespace dev::solidity; boost::optional CompilerStack::parseRemapping(string const& _remapping) { auto eq = find(_remapping.begin(), _remapping.end(), '='); if (eq == _remapping.end()) return {}; auto colon = find(_remapping.begin(), eq, ':'); Remapping r; r.context = colon == eq ? string() : string(_remapping.begin(), colon); r.prefix = colon == eq ? string(_remapping.begin(), eq) : string(colon + 1, eq); r.target = string(eq + 1, _remapping.end()); if (r.prefix.empty()) return {}; return r; } void CompilerStack::setRemappings(vector const& _remappings) { for (auto const& remapping: _remappings) solAssert(!remapping.prefix.empty(), ""); m_remappings = _remappings; } void CompilerStack::setEVMVersion(EVMVersion _version) { solAssert(m_stackState < State::ParsingSuccessful, "Set EVM version after parsing."); m_evmVersion = _version; } void CompilerStack::reset(bool _keepSources) { if (_keepSources) { m_stackState = SourcesSet; for (auto sourcePair: m_sources) sourcePair.second.reset(); } else { m_stackState = Empty; m_sources.clear(); } m_smtlib2Responses.clear(); m_unhandledSMTLib2Queries.clear(); m_libraries.clear(); m_evmVersion = EVMVersion(); m_optimize = false; m_optimizeRuns = 200; m_globalContext.reset(); m_scopes.clear(); m_sourceOrder.clear(); m_contracts.clear(); m_errorReporter.clear(); } bool CompilerStack::addSource(string const& _name, string const& _content, bool _isLibrary) { bool existed = m_sources.count(_name) != 0; reset(true); m_sources[_name].scanner = make_shared(CharStream(_content, _name)); m_sources[_name].isLibrary = _isLibrary; m_stackState = SourcesSet; return existed; } bool CompilerStack::parse() { //reset if (m_stackState != SourcesSet) return false; m_errorReporter.clear(); ASTNode::resetID(); if (SemVerVersion{string(VersionString)}.isPrerelease()) m_errorReporter.warning("This is a pre-release compiler version, please do not use it in production."); vector sourcesToParse; for (auto const& s: m_sources) sourcesToParse.push_back(s.first); for (size_t i = 0; i < sourcesToParse.size(); ++i) { string const& path = sourcesToParse[i]; Source& source = m_sources[path]; source.scanner->reset(); source.ast = Parser(m_errorReporter).parse(source.scanner); if (!source.ast) solAssert(!Error::containsOnlyWarnings(m_errorReporter.errors()), "Parser returned null but did not report error."); else { source.ast->annotation().path = path; for (auto const& newSource: loadMissingSources(*source.ast, path)) { string const& newPath = newSource.first; string const& newContents = newSource.second; m_sources[newPath].scanner = make_shared(CharStream(newContents, newPath)); sourcesToParse.push_back(newPath); } } } if (Error::containsOnlyWarnings(m_errorReporter.errors())) { m_stackState = ParsingSuccessful; return true; } else return false; } bool CompilerStack::analyze() { if (m_stackState != ParsingSuccessful) return false; resolveImports(); bool noErrors = true; try { SyntaxChecker syntaxChecker(m_errorReporter); for (Source const* source: m_sourceOrder) if (!syntaxChecker.checkSyntax(*source->ast)) noErrors = false; DocStringAnalyser docStringAnalyser(m_errorReporter); for (Source const* source: m_sourceOrder) if (!docStringAnalyser.analyseDocStrings(*source->ast)) noErrors = false; m_globalContext = make_shared(); NameAndTypeResolver resolver(m_globalContext->declarations(), m_scopes, m_errorReporter); for (Source const* source: m_sourceOrder) if (!resolver.registerDeclarations(*source->ast)) return false; map sourceUnitsByName; for (auto& source: m_sources) sourceUnitsByName[source.first] = source.second.ast.get(); for (Source const* source: m_sourceOrder) if (!resolver.performImports(*source->ast, sourceUnitsByName)) return false; // This is the main name and type resolution loop. Needs to be run for every contract, because // the special variables "this" and "super" must be set appropriately. for (Source const* source: m_sourceOrder) for (ASTPointer const& node: source->ast->nodes()) if (ContractDefinition* contract = dynamic_cast(node.get())) { m_globalContext->setCurrentContract(*contract); if (!resolver.updateDeclaration(*m_globalContext->currentThis())) return false; if (!resolver.updateDeclaration(*m_globalContext->currentSuper())) return false; if (!resolver.resolveNamesAndTypes(*contract)) return false; // Note that we now reference contracts by their fully qualified names, and // thus contracts can only conflict if declared in the same source file. This // already causes a double-declaration error elsewhere, so we do not report // an error here and instead silently drop any additional contracts we find. if (m_contracts.find(contract->fullyQualifiedName()) == m_contracts.end()) m_contracts[contract->fullyQualifiedName()].contract = contract; } // Next, we check inheritance, overrides, function collisions and other things at // contract or function level. // This also calculates whether a contract is abstract, which is needed by the // type checker. ContractLevelChecker contractLevelChecker(m_errorReporter); for (Source const* source: m_sourceOrder) for (ASTPointer const& node: source->ast->nodes()) if (ContractDefinition* contract = dynamic_cast(node.get())) if (!contractLevelChecker.check(*contract)) noErrors = false; // New we run full type checks that go down to the expression level. This // cannot be done earlier, because we need cross-contract types and information // about whether a contract is abstract for the `new` expression. // This populates the `type` annotation for all expressions. // // Note: this does not resolve overloaded functions. In order to do that, types of arguments are needed, // which is only done one step later. TypeChecker typeChecker(m_evmVersion, m_errorReporter); for (Source const* source: m_sourceOrder) for (ASTPointer const& node: source->ast->nodes()) if (ContractDefinition* contract = dynamic_cast(node.get())) if (!typeChecker.checkTypeRequirements(*contract)) noErrors = false; if (noErrors) { // Checks that can only be done when all types of all AST nodes are known. PostTypeChecker postTypeChecker(m_errorReporter); for (Source const* source: m_sourceOrder) if (!postTypeChecker.check(*source->ast)) noErrors = false; } if (noErrors) { // Control flow graph generator and analyzer. It can check for issues such as // variable is used before it is assigned to. CFG cfg(m_errorReporter); for (Source const* source: m_sourceOrder) if (!cfg.constructFlow(*source->ast)) noErrors = false; if (noErrors) { ControlFlowAnalyzer controlFlowAnalyzer(cfg, m_errorReporter); for (Source const* source: m_sourceOrder) if (!controlFlowAnalyzer.analyze(*source->ast)) noErrors = false; } } if (noErrors) { // Checks for common mistakes. Only generates warnings. StaticAnalyzer staticAnalyzer(m_errorReporter); for (Source const* source: m_sourceOrder) if (!staticAnalyzer.analyze(*source->ast)) noErrors = false; } if (noErrors) { // Check for state mutability in every function. vector> ast; for (Source const* source: m_sourceOrder) ast.push_back(source->ast); if (!ViewPureChecker(ast, m_errorReporter).check()) noErrors = false; } if (noErrors) { SMTChecker smtChecker(m_errorReporter, m_smtlib2Responses); for (Source const* source: m_sourceOrder) smtChecker.analyze(*source->ast, source->scanner); m_unhandledSMTLib2Queries += smtChecker.unhandledQueries(); } } catch(FatalError const&) { if (m_errorReporter.errors().empty()) throw; // Something is weird here, rather throw again. noErrors = false; } if (noErrors) { m_stackState = AnalysisSuccessful; return true; } else return false; } bool CompilerStack::parseAndAnalyze() { return parse() && analyze(); } bool CompilerStack::isRequestedContract(ContractDefinition const& _contract) const { return m_requestedContractNames.empty() || m_requestedContractNames.count(_contract.fullyQualifiedName()) || m_requestedContractNames.count(_contract.name()); } bool CompilerStack::compile() { if (m_stackState < AnalysisSuccessful) if (!parseAndAnalyze()) return false; // Only compile contracts individually which have been requested. map compiledContracts; for (Source const* source: m_sourceOrder) for (ASTPointer const& node: source->ast->nodes()) if (auto contract = dynamic_cast(node.get())) if (isRequestedContract(*contract)) compileContract(*contract, compiledContracts); m_stackState = CompilationSuccessful; this->link(); return true; } void CompilerStack::link() { solAssert(m_stackState >= CompilationSuccessful, ""); for (auto& contract: m_contracts) { contract.second.object.link(m_libraries); contract.second.runtimeObject.link(m_libraries); } } vector CompilerStack::contractNames() const { if (m_stackState < AnalysisSuccessful) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Parsing was not successful.")); vector contractNames; for (auto const& contract: m_contracts) contractNames.push_back(contract.first); return contractNames; } string const CompilerStack::lastContractName() const { if (m_stackState < AnalysisSuccessful) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Parsing was not successful.")); // try to find some user-supplied contract string contractName; for (auto const& it: m_sources) for (ASTPointer const& node: it.second.ast->nodes()) if (auto contract = dynamic_cast(node.get())) contractName = contract->fullyQualifiedName(); return contractName; } eth::AssemblyItems const* CompilerStack::assemblyItems(string const& _contractName) const { Contract const& currentContract = contract(_contractName); return currentContract.compiler ? &contract(_contractName).compiler->assemblyItems() : nullptr; } eth::AssemblyItems const* CompilerStack::runtimeAssemblyItems(string const& _contractName) const { Contract const& currentContract = contract(_contractName); return currentContract.compiler ? &contract(_contractName).compiler->runtimeAssemblyItems() : nullptr; } string const* CompilerStack::sourceMapping(string const& _contractName) const { Contract const& c = contract(_contractName); if (!c.sourceMapping) { if (auto items = assemblyItems(_contractName)) c.sourceMapping.reset(new string(computeSourceMapping(*items))); } return c.sourceMapping.get(); } string const* CompilerStack::runtimeSourceMapping(string const& _contractName) const { Contract const& c = contract(_contractName); if (!c.runtimeSourceMapping) { if (auto items = runtimeAssemblyItems(_contractName)) c.runtimeSourceMapping.reset(new string(computeSourceMapping(*items))); } return c.runtimeSourceMapping.get(); } std::string const CompilerStack::filesystemFriendlyName(string const& _contractName) const { if (m_stackState < AnalysisSuccessful) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("No compiled contracts found.")); // Look up the contract (by its fully-qualified name) Contract const& matchContract = m_contracts.at(_contractName); // Check to see if it could collide on name for (auto const& contract: m_contracts) { if (contract.second.contract->name() == matchContract.contract->name() && contract.second.contract != matchContract.contract) { // If it does, then return its fully-qualified name, made fs-friendly std::string friendlyName = boost::algorithm::replace_all_copy(_contractName, "/", "_"); boost::algorithm::replace_all(friendlyName, ":", "_"); boost::algorithm::replace_all(friendlyName, ".", "_"); return friendlyName; } } // If no collision, return the contract's name return matchContract.contract->name(); } eth::LinkerObject const& CompilerStack::object(string const& _contractName) const { return contract(_contractName).object; } eth::LinkerObject const& CompilerStack::runtimeObject(string const& _contractName) const { return contract(_contractName).runtimeObject; } /// FIXME: cache this string string CompilerStack::assemblyString(string const& _contractName, StringMap _sourceCodes) const { Contract const& currentContract = contract(_contractName); if (currentContract.compiler) return currentContract.compiler->assemblyString(_sourceCodes); else return string(); } /// FIXME: cache the JSON Json::Value CompilerStack::assemblyJSON(string const& _contractName, StringMap _sourceCodes) const { Contract const& currentContract = contract(_contractName); if (currentContract.compiler) return currentContract.compiler->assemblyJSON(_sourceCodes); else return Json::Value(); } vector CompilerStack::sourceNames() const { vector names; for (auto const& s: m_sources) names.push_back(s.first); return names; } map CompilerStack::sourceIndices() const { map indices; unsigned index = 0; for (auto const& s: m_sources) indices[s.first] = index++; return indices; } Json::Value const& CompilerStack::contractABI(string const& _contractName) const { return contractABI(contract(_contractName)); } Json::Value const& CompilerStack::contractABI(Contract const& _contract) const { if (m_stackState < AnalysisSuccessful) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Parsing was not successful.")); solAssert(_contract.contract, ""); // caches the result if (!_contract.abi) _contract.abi.reset(new Json::Value(ABI::generate(*_contract.contract))); return *_contract.abi; } Json::Value const& CompilerStack::natspecUser(string const& _contractName) const { return natspecUser(contract(_contractName)); } Json::Value const& CompilerStack::natspecUser(Contract const& _contract) const { if (m_stackState < AnalysisSuccessful) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Parsing was not successful.")); solAssert(_contract.contract, ""); // caches the result if (!_contract.userDocumentation) _contract.userDocumentation.reset(new Json::Value(Natspec::userDocumentation(*_contract.contract))); return *_contract.userDocumentation; } Json::Value const& CompilerStack::natspecDev(string const& _contractName) const { return natspecDev(contract(_contractName)); } Json::Value const& CompilerStack::natspecDev(Contract const& _contract) const { if (m_stackState < AnalysisSuccessful) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Parsing was not successful.")); solAssert(_contract.contract, ""); // caches the result if (!_contract.devDocumentation) _contract.devDocumentation.reset(new Json::Value(Natspec::devDocumentation(*_contract.contract))); return *_contract.devDocumentation; } Json::Value CompilerStack::methodIdentifiers(string const& _contractName) const { Json::Value methodIdentifiers(Json::objectValue); for (auto const& it: contractDefinition(_contractName).interfaceFunctions()) methodIdentifiers[it.second->externalSignature()] = it.first.hex(); return methodIdentifiers; } string const& CompilerStack::metadata(string const& _contractName) const { if (m_stackState != CompilationSuccessful) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful.")); return contract(_contractName).metadata; } Scanner const& CompilerStack::scanner(string const& _sourceName) const { if (m_stackState < SourcesSet) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("No sources set.")); return *source(_sourceName).scanner; } SourceUnit const& CompilerStack::ast(string const& _sourceName) const { if (m_stackState < ParsingSuccessful) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Parsing was not successful.")); return *source(_sourceName).ast; } ContractDefinition const& CompilerStack::contractDefinition(string const& _contractName) const { if (m_stackState != CompilationSuccessful) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Compilation was not successful.")); return *contract(_contractName).contract; } size_t CompilerStack::functionEntryPoint( std::string const& _contractName, FunctionDefinition const& _function ) const { shared_ptr const& compiler = contract(_contractName).compiler; if (!compiler) return 0; eth::AssemblyItem tag = compiler->functionEntryLabel(_function); if (tag.type() == eth::UndefinedItem) return 0; eth::AssemblyItems const& items = compiler->runtimeAssemblyItems(); for (size_t i = 0; i < items.size(); ++i) if (items.at(i).type() == eth::Tag && items.at(i).data() == tag.data()) return i; return 0; } tuple CompilerStack::positionFromSourceLocation(SourceLocation const& _sourceLocation) const { int startLine; int startColumn; int endLine; int endColumn; tie(startLine, startColumn) = scanner(_sourceLocation.source->name()).translatePositionToLineColumn(_sourceLocation.start); tie(endLine, endColumn) = scanner(_sourceLocation.source->name()).translatePositionToLineColumn(_sourceLocation.end); return make_tuple(++startLine, ++startColumn, ++endLine, ++endColumn); } StringMap CompilerStack::loadMissingSources(SourceUnit const& _ast, std::string const& _sourcePath) { solAssert(m_stackState < ParsingSuccessful, ""); StringMap newSources; for (auto const& node: _ast.nodes()) if (ImportDirective const* import = dynamic_cast(node.get())) { string importPath = dev::absolutePath(import->path(), _sourcePath); // The current value of `path` is the absolute path as seen from this source file. // We first have to apply remappings before we can store the actual absolute path // as seen globally. importPath = applyRemapping(importPath, _sourcePath); import->annotation().absolutePath = importPath; if (m_sources.count(importPath) || newSources.count(importPath)) continue; ReadCallback::Result result{false, string("File not supplied initially.")}; if (m_readFile) result = m_readFile(importPath); if (result.success) newSources[importPath] = result.responseOrErrorMessage; else { m_errorReporter.parserError( import->location(), string("Source \"" + importPath + "\" not found: " + result.responseOrErrorMessage) ); continue; } } return newSources; } string CompilerStack::applyRemapping(string const& _path, string const& _context) { solAssert(m_stackState < ParsingSuccessful, ""); // Try to find the longest prefix match in all remappings that are active in the current context. auto isPrefixOf = [](string const& _a, string const& _b) { if (_a.length() > _b.length()) return false; return std::equal(_a.begin(), _a.end(), _b.begin()); }; size_t longestPrefix = 0; size_t longestContext = 0; string bestMatchTarget; for (auto const& redir: m_remappings) { string context = dev::sanitizePath(redir.context); string prefix = dev::sanitizePath(redir.prefix); // Skip if current context is closer if (context.length() < longestContext) continue; // Skip if redir.context is not a prefix of _context if (!isPrefixOf(context, _context)) continue; // Skip if we already have a closer prefix match. if (prefix.length() < longestPrefix && context.length() == longestContext) continue; // Skip if the prefix does not match. if (!isPrefixOf(prefix, _path)) continue; longestContext = context.length(); longestPrefix = prefix.length(); bestMatchTarget = dev::sanitizePath(redir.target); } string path = bestMatchTarget; path.append(_path.begin() + longestPrefix, _path.end()); return path; } void CompilerStack::resolveImports() { solAssert(m_stackState == ParsingSuccessful, ""); // topological sorting (depth first search) of the import graph, cutting potential cycles vector sourceOrder; set sourcesSeen; function toposort = [&](Source const* _source) { if (sourcesSeen.count(_source)) return; sourcesSeen.insert(_source); for (ASTPointer const& node: _source->ast->nodes()) if (ImportDirective const* import = dynamic_cast(node.get())) { string const& path = import->annotation().absolutePath; solAssert(!path.empty(), ""); solAssert(m_sources.count(path), ""); import->annotation().sourceUnit = m_sources[path].ast.get(); toposort(&m_sources[path]); } sourceOrder.push_back(_source); }; for (auto const& sourcePair: m_sources) if (!sourcePair.second.isLibrary) toposort(&sourcePair.second); swap(m_sourceOrder, sourceOrder); } namespace { bool onlySafeExperimentalFeaturesActivated(set const& features) { for (auto const feature: features) if (!ExperimentalFeatureOnlyAnalysis.count(feature)) return false; return true; } } void CompilerStack::compileContract( ContractDefinition const& _contract, map& _compiledContracts ) { solAssert(m_stackState >= AnalysisSuccessful, ""); if ( _compiledContracts.count(&_contract) || !_contract.annotation().unimplementedFunctions.empty() || !_contract.constructorIsPublic() ) return; for (auto const* dependency: _contract.annotation().contractDependencies) compileContract(*dependency, _compiledContracts); Contract& compiledContract = m_contracts.at(_contract.fullyQualifiedName()); shared_ptr compiler = make_shared(m_evmVersion, m_optimize, m_optimizeRuns); compiledContract.compiler = compiler; string metadata = createMetadata(compiledContract); compiledContract.metadata = metadata; bytes cborEncodedMetadata = createCBORMetadata( metadata, !onlySafeExperimentalFeaturesActivated(_contract.sourceUnit().annotation().experimentalFeatures) ); try { // Run optimiser and compile the contract. compiler->compileContract(_contract, _compiledContracts, cborEncodedMetadata); } catch(eth::OptimizerException const&) { solAssert(false, "Optimizer exception during compilation"); } try { // Assemble deployment (incl. runtime) object. compiledContract.object = compiler->assembledObject(); } catch(eth::AssemblyException const&) { solAssert(false, "Assembly exception for bytecode"); } try { // Assemble runtime object. compiledContract.runtimeObject = compiler->runtimeObject(); } catch(eth::AssemblyException const&) { solAssert(false, "Assembly exception for deployed bytecode"); } _compiledContracts[compiledContract.contract] = &compiler->assembly(); } CompilerStack::Contract const& CompilerStack::contract(string const& _contractName) const { solAssert(m_stackState >= AnalysisSuccessful, ""); auto it = m_contracts.find(_contractName); if (it != m_contracts.end()) return it->second; // To provide a measure of backward-compatibility, if a contract is not located by its // fully-qualified name, a lookup will be attempted purely on the contract's name to see // if anything will satisfy. if (_contractName.find(':') == string::npos) { for (auto const& contractEntry: m_contracts) { stringstream ss; ss.str(contractEntry.first); // All entries are : string source; string foundName; getline(ss, source, ':'); getline(ss, foundName, ':'); if (foundName == _contractName) return contractEntry.second; } } // If we get here, both lookup methods failed. BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Contract \"" + _contractName + "\" not found.")); } CompilerStack::Source const& CompilerStack::source(string const& _sourceName) const { auto it = m_sources.find(_sourceName); if (it == m_sources.end()) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Given source file not found.")); return it->second; } string CompilerStack::createMetadata(Contract const& _contract) const { Json::Value meta; meta["version"] = 1; meta["language"] = "Solidity"; meta["compiler"]["version"] = VersionStringStrict; /// All the source files (including self), which should be included in the metadata. set referencedSources; referencedSources.insert(_contract.contract->sourceUnit().annotation().path); for (auto const sourceUnit: _contract.contract->sourceUnit().referencedSourceUnits(true)) referencedSources.insert(sourceUnit->annotation().path); meta["sources"] = Json::objectValue; for (auto const& s: m_sources) { if (!referencedSources.count(s.first)) continue; solAssert(s.second.scanner, "Scanner not available"); meta["sources"][s.first]["keccak256"] = "0x" + toHex(dev::keccak256(s.second.scanner->source()).asBytes()); if (m_metadataLiteralSources) meta["sources"][s.first]["content"] = s.second.scanner->source(); else { meta["sources"][s.first]["urls"] = Json::arrayValue; meta["sources"][s.first]["urls"].append( "bzzr://" + toHex(dev::swarmHash(s.second.scanner->source()).asBytes()) ); } } meta["settings"]["optimizer"]["enabled"] = m_optimize; meta["settings"]["optimizer"]["runs"] = m_optimizeRuns; meta["settings"]["evmVersion"] = m_evmVersion.name(); meta["settings"]["compilationTarget"][_contract.contract->sourceUnitName()] = _contract.contract->annotation().canonicalName; meta["settings"]["remappings"] = Json::arrayValue; set remappings; for (auto const& r: m_remappings) remappings.insert(r.context + ":" + r.prefix + "=" + r.target); for (auto const& r: remappings) meta["settings"]["remappings"].append(r); meta["settings"]["libraries"] = Json::objectValue; for (auto const& library: m_libraries) meta["settings"]["libraries"][library.first] = "0x" + toHex(library.second.asBytes()); meta["output"]["abi"] = contractABI(_contract); meta["output"]["userdoc"] = natspecUser(_contract); meta["output"]["devdoc"] = natspecDev(_contract); return jsonCompactPrint(meta); } bytes CompilerStack::createCBORMetadata(string _metadata, bool _experimentalMode) { bytes cborEncodedHash = // CBOR-encoding of the key "bzzr0" bytes{0x65, 'b', 'z', 'z', 'r', '0'}+ // CBOR-encoding of the hash bytes{0x58, 0x20} + dev::swarmHash(_metadata).asBytes(); bytes cborEncodedMetadata; if (_experimentalMode) cborEncodedMetadata = // CBOR-encoding of {"bzzr0": dev::swarmHash(metadata), "experimental": true} bytes{0xa2} + cborEncodedHash + bytes{0x6c, 'e', 'x', 'p', 'e', 'r', 'i', 'm', 'e', 'n', 't', 'a', 'l', 0xf5}; else cborEncodedMetadata = // CBOR-encoding of {"bzzr0": dev::swarmHash(metadata)} bytes{0xa1} + cborEncodedHash; solAssert(cborEncodedMetadata.size() <= 0xffff, "Metadata too large"); // 16-bit big endian length cborEncodedMetadata += toCompactBigEndian(cborEncodedMetadata.size(), 2); return cborEncodedMetadata; } string CompilerStack::computeSourceMapping(eth::AssemblyItems const& _items) const { string ret; map sourceIndicesMap = sourceIndices(); int prevStart = -1; int prevLength = -1; int prevSourceIndex = -1; char prevJump = 0; for (auto const& item: _items) { if (!ret.empty()) ret += ";"; SourceLocation const& location = item.location(); int length = location.start != -1 && location.end != -1 ? location.end - location.start : -1; int sourceIndex = location.source && sourceIndicesMap.count(location.source->name()) ? sourceIndicesMap.at(location.source->name()) : -1; char jump = '-'; if (item.getJumpType() == eth::AssemblyItem::JumpType::IntoFunction) jump = 'i'; else if (item.getJumpType() == eth::AssemblyItem::JumpType::OutOfFunction) jump = 'o'; unsigned components = 4; if (jump == prevJump) { components--; if (sourceIndex == prevSourceIndex) { components--; if (length == prevLength) { components--; if (location.start == prevStart) components--; } } } if (components-- > 0) { if (location.start != prevStart) ret += to_string(location.start); if (components-- > 0) { ret += ':'; if (length != prevLength) ret += to_string(length); if (components-- > 0) { ret += ':'; if (sourceIndex != prevSourceIndex) ret += to_string(sourceIndex); if (components-- > 0) { ret += ':'; if (jump != prevJump) ret += jump; } } } } prevStart = location.start; prevLength = length; prevSourceIndex = sourceIndex; prevJump = jump; } return ret; } namespace { Json::Value gasToJson(GasEstimator::GasConsumption const& _gas) { if (_gas.isInfinite) return Json::Value("infinite"); else return Json::Value(toString(_gas.value)); } } Json::Value CompilerStack::gasEstimates(string const& _contractName) const { if (!assemblyItems(_contractName) && !runtimeAssemblyItems(_contractName)) return Json::Value(); using Gas = GasEstimator::GasConsumption; GasEstimator gasEstimator(m_evmVersion); Json::Value output(Json::objectValue); if (eth::AssemblyItems const* items = assemblyItems(_contractName)) { Gas executionGas = gasEstimator.functionalEstimation(*items); Gas codeDepositGas{eth::GasMeter::dataGas(runtimeObject(_contractName).bytecode, false)}; Json::Value creation(Json::objectValue); creation["codeDepositCost"] = gasToJson(codeDepositGas); creation["executionCost"] = gasToJson(executionGas); /// TODO: implement + overload to avoid the need of += executionGas += codeDepositGas; creation["totalCost"] = gasToJson(executionGas); output["creation"] = creation; } if (eth::AssemblyItems const* items = runtimeAssemblyItems(_contractName)) { /// External functions ContractDefinition const& contract = contractDefinition(_contractName); Json::Value externalFunctions(Json::objectValue); for (auto it: contract.interfaceFunctions()) { string sig = it.second->externalSignature(); externalFunctions[sig] = gasToJson(gasEstimator.functionalEstimation(*items, sig)); } if (contract.fallbackFunction()) /// This needs to be set to an invalid signature in order to trigger the fallback, /// without the shortcut (of CALLDATSIZE == 0), and therefore to receive the upper bound. /// An empty string ("") would work to trigger the shortcut only. externalFunctions[""] = gasToJson(gasEstimator.functionalEstimation(*items, "INVALID")); if (!externalFunctions.empty()) output["external"] = externalFunctions; /// Internal functions Json::Value internalFunctions(Json::objectValue); for (auto const& it: contract.definedFunctions()) { /// Exclude externally visible functions, constructor and the fallback function if (it->isPartOfExternalInterface() || it->isConstructor() || it->isFallback()) continue; size_t entry = functionEntryPoint(_contractName, *it); GasEstimator::GasConsumption gas = GasEstimator::GasConsumption::infinite(); if (entry > 0) gas = gasEstimator.functionalEstimation(*items, entry, *it); /// TODO: This could move into a method shared with externalSignature() FunctionType type(*it); string sig = it->name() + "("; auto paramTypes = type.parameterTypes(); for (auto it = paramTypes.begin(); it != paramTypes.end(); ++it) sig += (*it)->toString() + (it + 1 == paramTypes.end() ? "" : ","); sig += ")"; internalFunctions[sig] = gasToJson(gas); } if (!internalFunctions.empty()) output["internal"] = internalFunctions; } return output; }