/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** * @author Christian * @author Gav Wood * @date 2014 * Solidity AST to EVM bytecode compiler for expressions. */ #include #include #include #include #include #include #include #include namespace dev { namespace eth { class AssemblyItem; // forward } namespace solidity { // forward declarations class CompilerContext; class Type; class IntegerType; class ArrayType; /** * Compiler for expressions, i.e. converts an AST tree whose root is an Expression into a stream * of EVM instructions. It needs a compiler context that is the same for the whole compilation * unit. */ class ExpressionCompiler: private ASTConstVisitor { public: /// Appends code for a State Variable accessor function static void appendStateVariableAccessor(CompilerContext& _context, VariableDeclaration const& _varDecl, bool _optimize = false); explicit ExpressionCompiler(CompilerContext& _compilerContext, bool _optimize = false): m_optimize(_optimize), m_context(_compilerContext) {} /// Compile the given @a _expression and leave its value on the stack. void compile(Expression const& _expression); /// Appends code to set a state variable to its initial value/expression. void appendStateVariableInitialization(VariableDeclaration const& _varDecl); /// Appends code for a State Variable accessor function void appendStateVariableAccessor(VariableDeclaration const& _varDecl); /// Appends an implicit or explicit type conversion. For now this comprises only erasing /// higher-order bits (@see appendHighBitCleanup) when widening integer. /// If @a _cleanupNeeded, high order bits cleanup is also done if no type conversion would be /// necessary. void appendTypeConversion(Type const& _typeOnStack, Type const& _targetType, bool _cleanupNeeded = false); private: virtual bool visit(Assignment const& _assignment) override; virtual bool visit(UnaryOperation const& _unaryOperation) override; virtual bool visit(BinaryOperation const& _binaryOperation) override; virtual bool visit(FunctionCall const& _functionCall) override; virtual bool visit(NewExpression const& _newExpression) override; virtual void endVisit(MemberAccess const& _memberAccess) override; virtual bool visit(IndexAccess const& _indexAccess) override; virtual void endVisit(Identifier const& _identifier) override; virtual void endVisit(Literal const& _literal) override; ///@{ ///@name Append code for various operator types void appendAndOrOperatorCode(BinaryOperation const& _binaryOperation); void appendCompareOperatorCode(Token::Value _operator, Type const& _type); void appendOrdinaryBinaryOperatorCode(Token::Value _operator, Type const& _type); void appendArithmeticOperatorCode(Token::Value _operator, Type const& _type); void appendBitOperatorCode(Token::Value _operator); void appendShiftOperatorCode(Token::Value _operator); /// @} //// Appends code that cleans higher-order bits for integer types. void appendHighBitsCleanup(IntegerType const& _typeOnStack); /// Appends code to call a function of the given type with the given arguments. void appendExternalFunctionCall(FunctionType const& _functionType, std::vector> const& _arguments); /// Appends code that evaluates the given arguments and moves the result to memory encoded as /// specified by the ABI. The memory offset is expected to be on the stack and is updated by /// this call. If @a _padToWordBoundaries is set to false, all values are concatenated without /// padding. If @a _copyDynamicDataInPlace is set, dynamic types is stored (without length) /// together with fixed-length data. void appendArgumentsCopyToMemory( std::vector> const& _arguments, TypePointers const& _types = {}, bool _padToWordBoundaries = true, bool _padExceptionIfFourBytes = false, bool _copyDynamicDataInPlace = false ); /// Appends code that moves a stack element of the given type to memory. The memory offset is /// expected below the stack element and is updated by this call. void appendTypeMoveToMemory(Type const& _type, bool _padToWordBoundaries = true); /// Appends code that evaluates a single expression and moves the result to memory. The memory offset is /// expected to be on the stack and is updated by this call. void appendExpressionCopyToMemory(Type const& _expectedType, Expression const& _expression); /// Sets the current LValue to a new one (of the appropriate type) from the given declaration. /// Also retrieves the value if it was not requested by @a _expression. void setLValueFromDeclaration(Declaration const& _declaration, Expression const& _expression); /// Sets the current LValue to a StorageItem holding the type of @a _expression. The reference is assumed /// to be on the stack. /// Also retrieves the value if it was not requested by @a _expression. void setLValueToStorageItem(Expression const& _expression); /// Sets the current LValue to a new LValue constructed from the arguments. /// Also retrieves the value if it was not requested by @a _expression. template void setLValue(Expression const& _expression, _Arguments const&... _arguments); bool m_optimize; CompilerContext& m_context; std::unique_ptr m_currentLValue; }; template void ExpressionCompiler::setLValue(Expression const& _expression, _Arguments const&... _arguments) { solAssert(!m_currentLValue, "Current LValue not reset before trying to set new one."); std::unique_ptr<_LValueType> lvalue(new _LValueType(m_context, _arguments...)); if (_expression.lvalueRequested()) m_currentLValue = move(lvalue); else lvalue->retrieveValue(_expression.getLocation(), true); } } }