/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see .
*/
// SPDX-License-Identifier: GPL-3.0
/**
* Definition of u256 and similar types and helper functions.
*/
#pragma once
#include
#include
#include
// TODO: do this only conditionally as soon as a boost version with gcc 12 support is released.
#if defined(__GNUC__) && !defined(__clang__) && (__GNUC__ >= 12)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
#pragma GCC diagnostic ignored "-Warray-bounds"
#pragma GCC diagnostic ignored "-Wstringop-overread"
#pragma GCC diagnostic ignored "-Waggressive-loop-optimizations"
#endif
#include
#if defined(__GNUC__) && !defined(__clang__) && (__GNUC__ >= 12)
#pragma GCC diagnostic pop
#endif
#include
namespace solidity
{
// Numeric types.
using bigint = boost::multiprecision::number>;
using u256 = boost::multiprecision::number>;
using s256 = boost::multiprecision::number>;
/// Interprets @a _u as a two's complement signed number and returns the resulting s256.
inline s256 u2s(u256 _u)
{
static bigint const c_end = bigint(1) << 256;
if (boost::multiprecision::bit_test(_u, 255))
return s256(-(c_end - _u));
else
return s256(_u);
}
/// @returns the two's complement signed representation of the signed number _u.
inline u256 s2u(s256 _u)
{
static bigint const c_end = bigint(1) << 256;
if (_u >= 0)
return u256(_u);
else
return u256(c_end + _u);
}
inline u256 exp256(u256 _base, u256 _exponent)
{
using boost::multiprecision::limb_type;
u256 result = 1;
while (_exponent)
{
if (boost::multiprecision::bit_test(_exponent, 0))
result *= _base;
_base *= _base;
_exponent >>= 1;
}
return result;
}
/// Checks whether _mantissa * (X ** _exp) fits into 4096 bits,
/// where X is given indirectly via _log2OfBase = log2(X).
bool fitsPrecisionBaseX(bigint const& _mantissa, double _log2OfBase, uint32_t _exp);
// Big-endian to/from host endian conversion functions.
/// Converts a templated integer value to the big-endian byte-stream represented on a templated collection.
/// The size of the collection object will be unchanged. If it is too small, it will not represent the
/// value properly, if too big then the additional elements will be zeroed out.
/// @a Out will typically be either std::string or bytes.
/// @a T will typically by unsigned, u160, u256 or bigint.
template
inline void toBigEndian(T _val, Out& o_out)
{
static_assert(std::is_same::value || !std::numeric_limits::is_signed, "only unsigned types or bigint supported"); //bigint does not carry sign bit on shift
for (auto i = o_out.size(); i != 0; _val >>= 8, i--)
{
T v = _val & (T)0xff;
o_out[i - 1] = (typename Out::value_type)(uint8_t)v;
}
}
/// Converts a big-endian byte-stream represented on a templated collection to a templated integer value.
/// @a In will typically be either std::string or bytes.
/// @a T will typically by unsigned, u256 or bigint.
template
inline T fromBigEndian(In const& _bytes)
{
T ret = (T)0;
for (auto i: _bytes)
ret = (T)((ret << 8) | (uint8_t)(typename std::make_unsigned::type)i);
return ret;
}
inline bytes toBigEndian(u256 _val) { bytes ret(32); toBigEndian(_val, ret); return ret; }
/// Convenience function for toBigEndian.
/// @returns a byte array just big enough to represent @a _val.
template
inline bytes toCompactBigEndian(T _val, unsigned _min = 0)
{
static_assert(std::is_same::value || !std::numeric_limits::is_signed, "only unsigned types or bigint supported"); //bigint does not carry sign bit on shift
unsigned i = 0;
for (T v = _val; v; ++i, v >>= 8) {}
bytes ret(std::max(_min, i), 0);
toBigEndian(_val, ret);
return ret;
}
/// Convenience function for conversion of a u256 to hex
inline std::string toHex(u256 val)
{
return util::toHex(toBigEndian(val));
}
template
inline std::string toCompactHexWithPrefix(T _value)
{
return "0x" + util::toHex(toCompactBigEndian(_value, 1));
}
/// Returns decimal representation for small numbers and hex for large numbers.
inline std::string formatNumber(bigint const& _value)
{
if (_value < 0)
return "-" + formatNumber(-_value);
if (_value > 0x1000000)
return "0x" + util::toHex(toCompactBigEndian(_value, 1));
else
return _value.str();
}
inline std::string formatNumber(u256 const& _value)
{
if (_value > 0x1000000)
return toCompactHexWithPrefix(_value);
else
return _value.str();
}
// Algorithms for string and string-like collections.
/// Determine bytes required to encode the given integer value. @returns 0 if @a _i is zero.
template
inline unsigned numberEncodingSize(T _i)
{
static_assert(std::is_same::value || !std::numeric_limits::is_signed, "only unsigned types or bigint supported"); //bigint does not carry sign bit on shift
unsigned i = 0;
for (; _i != 0; ++i, _i >>= 8) {}
return i;
}
}