/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ // SPDX-License-Identifier: GPL-3.0 /** * Definition of u256 and similar types and helper functions. */ #pragma once #include #include #include // TODO: do this only conditionally as soon as a boost version with gcc 12 support is released. #if defined(__GNUC__) && !defined(__clang__) && (__GNUC__ >= 12) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wmaybe-uninitialized" #pragma GCC diagnostic ignored "-Warray-bounds" #pragma GCC diagnostic ignored "-Wstringop-overread" #pragma GCC diagnostic ignored "-Waggressive-loop-optimizations" #endif #include #if defined(__GNUC__) && !defined(__clang__) && (__GNUC__ >= 12) #pragma GCC diagnostic pop #endif #include namespace solidity { // Numeric types. using bigint = boost::multiprecision::number>; using u256 = boost::multiprecision::number>; using s256 = boost::multiprecision::number>; /// Interprets @a _u as a two's complement signed number and returns the resulting s256. inline s256 u2s(u256 _u) { static bigint const c_end = bigint(1) << 256; if (boost::multiprecision::bit_test(_u, 255)) return s256(-(c_end - _u)); else return s256(_u); } /// @returns the two's complement signed representation of the signed number _u. inline u256 s2u(s256 _u) { static bigint const c_end = bigint(1) << 256; if (_u >= 0) return u256(_u); else return u256(c_end + _u); } inline u256 exp256(u256 _base, u256 _exponent) { using boost::multiprecision::limb_type; u256 result = 1; while (_exponent) { if (boost::multiprecision::bit_test(_exponent, 0)) result *= _base; _base *= _base; _exponent >>= 1; } return result; } /// Checks whether _mantissa * (X ** _exp) fits into 4096 bits, /// where X is given indirectly via _log2OfBase = log2(X). bool fitsPrecisionBaseX(bigint const& _mantissa, double _log2OfBase, uint32_t _exp); // Big-endian to/from host endian conversion functions. /// Converts a templated integer value to the big-endian byte-stream represented on a templated collection. /// The size of the collection object will be unchanged. If it is too small, it will not represent the /// value properly, if too big then the additional elements will be zeroed out. /// @a Out will typically be either std::string or bytes. /// @a T will typically by unsigned, u160, u256 or bigint. template inline void toBigEndian(T _val, Out& o_out) { static_assert(std::is_same::value || !std::numeric_limits::is_signed, "only unsigned types or bigint supported"); //bigint does not carry sign bit on shift for (auto i = o_out.size(); i != 0; _val >>= 8, i--) { T v = _val & (T)0xff; o_out[i - 1] = (typename Out::value_type)(uint8_t)v; } } /// Converts a big-endian byte-stream represented on a templated collection to a templated integer value. /// @a In will typically be either std::string or bytes. /// @a T will typically by unsigned, u256 or bigint. template inline T fromBigEndian(In const& _bytes) { T ret = (T)0; for (auto i: _bytes) ret = (T)((ret << 8) | (uint8_t)(typename std::make_unsigned::type)i); return ret; } inline bytes toBigEndian(u256 _val) { bytes ret(32); toBigEndian(_val, ret); return ret; } /// Convenience function for toBigEndian. /// @returns a byte array just big enough to represent @a _val. template inline bytes toCompactBigEndian(T _val, unsigned _min = 0) { static_assert(std::is_same::value || !std::numeric_limits::is_signed, "only unsigned types or bigint supported"); //bigint does not carry sign bit on shift unsigned i = 0; for (T v = _val; v; ++i, v >>= 8) {} bytes ret(std::max(_min, i), 0); toBigEndian(_val, ret); return ret; } /// Convenience function for conversion of a u256 to hex inline std::string toHex(u256 val) { return util::toHex(toBigEndian(val)); } template inline std::string toCompactHexWithPrefix(T _value) { return "0x" + util::toHex(toCompactBigEndian(_value, 1)); } /// Returns decimal representation for small numbers and hex for large numbers. inline std::string formatNumber(bigint const& _value) { if (_value < 0) return "-" + formatNumber(-_value); if (_value > 0x1000000) return "0x" + util::toHex(toCompactBigEndian(_value, 1)); else return _value.str(); } inline std::string formatNumber(u256 const& _value) { if (_value > 0x1000000) return toCompactHexWithPrefix(_value); else return _value.str(); } // Algorithms for string and string-like collections. /// Determine bytes required to encode the given integer value. @returns 0 if @a _i is zero. template inline unsigned numberEncodingSize(T _i) { static_assert(std::is_same::value || !std::numeric_limits::is_signed, "only unsigned types or bigint supported"); //bigint does not carry sign bit on shift unsigned i = 0; for (; _i != 0; ++i, _i >>= 8) {} return i; } }