/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ /** * Yul interpreter module that evaluates Ewasm builtins. */ #include #include #include #include #include #include using namespace std; using namespace solidity; using namespace solidity::yul; using namespace solidity::yul::test; using solidity::util::h256; namespace { /// Copy @a _size bytes of @a _source at offset @a _sourceOffset to /// @a _target at offset @a _targetOffset. Behaves as if @a _source would /// continue with an infinite sequence of zero bytes beyond its end. void copyZeroExtended( map& _target, bytes const& _source, size_t _targetOffset, size_t _sourceOffset, size_t _size ) { for (size_t i = 0; i < _size; ++i) _target[_targetOffset + i] = _sourceOffset + i < _source.size() ? _source[_sourceOffset + i] : 0; } /// Count leading zeros for uint64. Following WebAssembly rules, it returns 64 for @a _v being zero. /// NOTE: the clz builtin of the compiler may or may not do this uint64_t clz64(uint64_t _v) { if (_v == 0) return 64; uint64_t r = 0; while (!(_v & 0x8000000000000000)) { r += 1; _v = _v << 1; } return r; } } using u512 = boost::multiprecision::number>; u256 EwasmBuiltinInterpreter::evalBuiltin(YulString _fun, vector const& _arguments) { vector arg; for (u256 const& a: _arguments) arg.emplace_back(uint64_t(a & uint64_t(-1))); if (_fun == "datasize"_yulstring) return u256(keccak256(h256(_arguments.at(0)))) & 0xfff; else if (_fun == "dataoffset"_yulstring) return u256(keccak256(h256(_arguments.at(0) + 2))) & 0xfff; else if (_fun == "datacopy"_yulstring) { // This is identical to codecopy. if (accessMemory(_arguments.at(0), _arguments.at(2))) copyZeroExtended( m_state.memory, m_state.code, static_cast(_arguments.at(0)), static_cast(_arguments.at(1) & numeric_limits::max()), static_cast(_arguments.at(2)) ); return 0; } else if (_fun == "i32.drop"_yulstring || _fun == "i64.drop"_yulstring || _fun == "nop"_yulstring) return {}; else if (_fun == "i32.wrap_i64"_yulstring) return arg.at(0) & uint32_t(-1); else if (_fun == "i64.extend_i32_u"_yulstring) // Return the same as above because everything is u256 anyway. return arg.at(0) & uint32_t(-1); else if (_fun == "unreachable"_yulstring) { logTrace(evmasm::Instruction::INVALID, {}); throw ExplicitlyTerminated(); } else if (_fun == "i64.store"_yulstring) { accessMemory(arg[0], 8); writeMemoryWord(arg[0], arg[1]); return 0; } else if (_fun == "i64.store8"_yulstring || _fun == "i32.store8"_yulstring) { accessMemory(arg[0], 1); writeMemoryByte(arg[0], static_cast(arg[1] & 0xff)); return 0; } else if (_fun == "i64.load"_yulstring) { accessMemory(arg[0], 8); return readMemoryWord(arg[0]); } else if (_fun == "i32.store"_yulstring) { accessMemory(arg[0], 4); writeMemoryHalfWord(arg[0], arg[1]); return 0; } else if (_fun == "i32.load"_yulstring) { accessMemory(arg[0], 4); return readMemoryHalfWord(arg[0]); } else if (_fun == "i32.clz"_yulstring) // NOTE: the clz implementation assumes 64-bit inputs, hence the adjustment return clz64(arg[0] & uint32_t(-1)) - 32; else if (_fun == "i64.clz"_yulstring) return clz64(arg[0]); string prefix = _fun.str(); string suffix; auto dot = prefix.find("."); if (dot != string::npos) { suffix = prefix.substr(dot + 1); prefix.resize(dot); } if (prefix == "i32") { vector halfWordArgs; for (uint64_t a: arg) halfWordArgs.push_back(uint32_t(a & uint32_t(-1))); return evalWasmBuiltin(suffix, halfWordArgs); } else if (prefix == "i64") return evalWasmBuiltin(suffix, arg); else if (prefix == "eth") return evalEthBuiltin(suffix, arg); yulAssert(false, "Unknown builtin: " + _fun.str() + " (or implementation did not return)"); return 0; } template u256 EwasmBuiltinInterpreter::evalWasmBuiltin(string const& _fun, vector const& _arguments) { vector const& arg = _arguments; if (_fun == "add") return arg[0] + arg[1]; else if (_fun == "sub") return arg[0] - arg[1]; else if (_fun == "mul") return arg[0] * arg[1]; else if (_fun == "div_u") { if (arg[1] == 0) throw ExplicitlyTerminated(); else return arg[0] / arg[1]; } else if (_fun == "rem_u") { if (arg[1] == 0) throw ExplicitlyTerminated(); else return arg[0] % arg[1]; } else if (_fun == "and") return arg[0] & arg[1]; else if (_fun == "or") return arg[0] | arg[1]; else if (_fun == "xor") return arg[0] ^ arg[1]; else if (_fun == "shl") return arg[0] << arg[1]; else if (_fun == "shr_u") return arg[0] >> arg[1]; else if (_fun == "eq") return arg[0] == arg[1] ? 1 : 0; else if (_fun == "ne") return arg[0] != arg[1] ? 1 : 0; else if (_fun == "eqz") return arg[0] == 0 ? 1 : 0; else if (_fun == "lt_u") return arg[0] < arg[1] ? 1 : 0; else if (_fun == "gt_u") return arg[0] > arg[1] ? 1 : 0; else if (_fun == "le_u") return arg[0] <= arg[1] ? 1 : 0; else if (_fun == "ge_u") return arg[0] >= arg[1] ? 1 : 0; yulAssert(false, "Unknown builtin: " + _fun + " (or implementation did not return)"); return 0; } u256 EwasmBuiltinInterpreter::evalEthBuiltin(string const& _fun, vector const& _arguments) { vector const& arg = _arguments; if (_fun == "getAddress") { writeAddress(arg[0], m_state.address); return 0; } else if (_fun == "getExternalBalance") { // TODO this does not read the address, but is consistent with // EVM interpreter implementation. // If we take the address into account, this needs to use readAddress. writeU128(arg[1], m_state.balance); return 0; } else if (_fun == "getBlockHash") { if (arg[0] >= m_state.blockNumber || arg[0] + 256 < m_state.blockNumber) return 1; else { writeU256(arg[1], 0xaaaaaaaa + u256(arg[0] - m_state.blockNumber - 256)); return 0; } } else if (_fun == "call") { // TODO read args from memory // TODO use readAddress to read address. logTrace(evmasm::Instruction::CALL, {}); return arg[0] & 1; } else if (_fun == "callDataCopy") { if (arg[1] + arg[2] < arg[1] || arg[1] + arg[2] > m_state.calldata.size()) throw ExplicitlyTerminated(); if (accessMemory(arg[0], arg[2])) copyZeroExtended( m_state.memory, m_state.calldata, size_t(arg[0]), size_t(arg[1]), size_t(arg[2]) ); return {}; } else if (_fun == "getCallDataSize") return m_state.calldata.size(); else if (_fun == "callCode") { // TODO read args from memory // TODO use readAddress to read address. logTrace(evmasm::Instruction::CALLCODE, {}); return arg[0] & 1; } else if (_fun == "callDelegate") { // TODO read args from memory // TODO use readAddress to read address. logTrace(evmasm::Instruction::DELEGATECALL, {}); return arg[0] & 1; } else if (_fun == "callStatic") { // TODO read args from memory // TODO use readAddress to read address. logTrace(evmasm::Instruction::STATICCALL, {}); return arg[0] & 1; } else if (_fun == "storageStore") { m_state.storage[h256(readU256(arg[0]))] = readU256((arg[1])); return 0; } else if (_fun == "storageLoad") { writeU256(arg[1], m_state.storage[h256(readU256(arg[0]))]); return 0; } else if (_fun == "getCaller") { // TODO should this only write 20 bytes? writeAddress(arg[0], m_state.caller); return 0; } else if (_fun == "getCallValue") { writeU128(arg[0], m_state.callvalue); return 0; } else if (_fun == "codeCopy") { if (accessMemory(arg[0], arg[2])) copyZeroExtended( m_state.memory, m_state.code, size_t(arg[0]), size_t(arg[1]), size_t(arg[2]) ); return 0; } else if (_fun == "getCodeSize") return m_state.code.size(); else if (_fun == "getBlockCoinbase") { writeAddress(arg[0], m_state.coinbase); return 0; } else if (_fun == "create") { // TODO access memory // TODO use writeAddress to store resulting address logTrace(evmasm::Instruction::CREATE, {}); return 0xcccccc + arg[1]; } else if (_fun == "getBlockDifficulty") { writeU256(arg[0], m_state.difficulty); return 0; } else if (_fun == "externalCodeCopy") { // TODO use readAddress to read address. if (accessMemory(arg[1], arg[3])) // TODO this way extcodecopy and codecopy do the same thing. copyZeroExtended( m_state.memory, m_state.code, size_t(arg[1]), size_t(arg[2]), size_t(arg[3]) ); return 0; } else if (_fun == "getExternalCodeSize") // Generate "random" code length. Make sure it fits the page size. return u256(keccak256(h256(readAddress(arg[0])))) & 0xfff; else if (_fun == "getGasLeft") return 0x99; else if (_fun == "getBlockGasLimit") return uint64_t(m_state.gaslimit); else if (_fun == "getTxGasPrice") { writeU128(arg[0], m_state.gasprice); return 0; } else if (_fun == "log") { uint64_t numberOfTopics = arg[2]; if (numberOfTopics > 4) throw ExplicitlyTerminated(); logTrace(evmasm::logInstruction(numberOfTopics), {}); return 0; } else if (_fun == "getBlockNumber") return m_state.blockNumber; else if (_fun == "getTxOrigin") { writeAddress(arg[0], m_state.origin); return 0; } else if (_fun == "finish") { bytes data; if (accessMemory(arg[0], arg[1])) data = readMemory(arg[0], arg[1]); logTrace(evmasm::Instruction::RETURN, {}, data); throw ExplicitlyTerminated(); } else if (_fun == "revert") { bytes data; if (accessMemory(arg[0], arg[1])) data = readMemory(arg[0], arg[1]); logTrace(evmasm::Instruction::REVERT, {}, data); throw ExplicitlyTerminated(); } else if (_fun == "getReturnDataSize") return m_state.returndata.size(); else if (_fun == "returnDataCopy") { if (arg[1] + arg[2] < arg[1] || arg[1] + arg[2] > m_state.returndata.size()) throw ExplicitlyTerminated(); if (accessMemory(arg[0], arg[2])) copyZeroExtended( m_state.memory, m_state.calldata, size_t(arg[0]), size_t(arg[1]), size_t(arg[2]) ); return {}; } else if (_fun == "selfDestruct") { // TODO use readAddress to read address. logTrace(evmasm::Instruction::SELFDESTRUCT, {}); throw ExplicitlyTerminated(); } else if (_fun == "getBlockTimestamp") return m_state.timestamp; yulAssert(false, "Unknown builtin: " + _fun + " (or implementation did not return)"); return 0; } bool EwasmBuiltinInterpreter::accessMemory(u256 const& _offset, u256 const& _size) { if (((_offset + _size) >= _offset) && ((_offset + _size + 0x1f) >= (_offset + _size))) { u256 newSize = (_offset + _size + 0x1f) & ~u256(0x1f); m_state.msize = max(m_state.msize, newSize); return _size <= 0xffff; } else m_state.msize = u256(-1); return false; } bytes EwasmBuiltinInterpreter::readMemory(uint64_t _offset, uint64_t _size) { yulAssert(_size <= 0xffff, "Too large read."); bytes data(size_t(_size), uint8_t(0)); for (size_t i = 0; i < data.size(); ++i) data[i] = m_state.memory[_offset + i]; return data; } uint64_t EwasmBuiltinInterpreter::readMemoryWord(uint64_t _offset) { uint64_t r = 0; for (size_t i = 0; i < 8; i++) r |= uint64_t(m_state.memory[_offset + i]) << (i * 8); return r; } uint32_t EwasmBuiltinInterpreter::readMemoryHalfWord(uint64_t _offset) { uint32_t r = 0; for (size_t i = 0; i < 4; i++) r |= uint64_t(m_state.memory[_offset + i]) << (i * 8); return r; } void EwasmBuiltinInterpreter::writeMemoryWord(uint64_t _offset, uint64_t _value) { for (size_t i = 0; i < 8; i++) m_state.memory[_offset + i] = uint8_t((_value >> (i * 8)) & 0xff); } void EwasmBuiltinInterpreter::writeMemoryHalfWord(uint64_t _offset, uint32_t _value) { for (size_t i = 0; i < 4; i++) m_state.memory[_offset + i] = uint8_t((_value >> (i * 8)) & 0xff); } void EwasmBuiltinInterpreter::writeMemoryByte(uint64_t _offset, uint8_t _value) { m_state.memory[_offset] = _value; } void EwasmBuiltinInterpreter::writeU256(uint64_t _offset, u256 _value, size_t _croppedTo) { accessMemory(_offset, _croppedTo); for (size_t i = 0; i < _croppedTo; i++) { m_state.memory[_offset + _croppedTo - 1 - i] = uint8_t(_value & 0xff); _value >>= 8; } } u256 EwasmBuiltinInterpreter::readU256(uint64_t _offset, size_t _croppedTo) { accessMemory(_offset, _croppedTo); u256 value; for (size_t i = 0; i < _croppedTo; i++) value = (value << 8) | m_state.memory[_offset + i]; return value; } void EwasmBuiltinInterpreter::logTrace(evmasm::Instruction _instruction, std::vector const& _arguments, bytes const& _data) { logTrace(evmasm::instructionInfo(_instruction).name, _arguments, _data); } void EwasmBuiltinInterpreter::logTrace(std::string const& _pseudoInstruction, std::vector const& _arguments, bytes const& _data) { string message = _pseudoInstruction + "("; for (size_t i = 0; i < _arguments.size(); ++i) message += (i > 0 ? ", " : "") + util::formatNumber(_arguments[i]); message += ")"; if (!_data.empty()) message += " [" + util::toHex(_data) + "]"; m_state.trace.emplace_back(std::move(message)); if (m_state.maxTraceSize > 0 && m_state.trace.size() >= m_state.maxTraceSize) { m_state.trace.emplace_back("Trace size limit reached."); throw TraceLimitReached(); } }