/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** * @author Christian * @date 2014 * Parser part that determines the declarations corresponding to names and the types of expressions. */ #include #include #include using namespace std; namespace dev { namespace solidity { void NameAndTypeResolver::resolveNamesAndTypes(ContractDefinition& _contract) { reset(); DeclarationRegistrationHelper registrar(m_scopes, _contract); m_currentScope = &m_scopes[&_contract]; for (ASTPointer const& structDef: _contract.getDefinedStructs()) ReferencesResolver resolver(*structDef, *this, nullptr); for (ASTPointer const& structDef: _contract.getDefinedStructs()) checkForRecursion(*structDef); for (ASTPointer const& variable: _contract.getStateVariables()) ReferencesResolver resolver(*variable, *this, nullptr); for (ASTPointer const& function: _contract.getDefinedFunctions()) { m_currentScope = &m_scopes[function.get()]; ReferencesResolver referencesResolver(*function, *this, function->getReturnParameterList().get()); } // First, the parameter types of all functions need to be resolved before we can check // the types, since it is possible to call functions that are only defined later // in the source. for (ASTPointer const& function: _contract.getDefinedFunctions()) { m_currentScope = &m_scopes[function.get()]; function->checkTypeRequirements(); } m_currentScope = &m_scopes[nullptr]; } Declaration* NameAndTypeResolver::resolveName(ASTString const& _name, Declaration const* _scope) const { auto iterator = m_scopes.find(_scope); if (iterator == end(m_scopes)) return nullptr; return iterator->second.resolveName(_name, false); } Declaration* NameAndTypeResolver::getNameFromCurrentScope(ASTString const& _name, bool _recursive) { return m_currentScope->resolveName(_name, _recursive); } void NameAndTypeResolver::checkForRecursion(StructDefinition const& _struct) { set definitionsSeen; vector queue = {&_struct}; while (!queue.empty()) { StructDefinition const* def = queue.back(); queue.pop_back(); if (definitionsSeen.count(def)) BOOST_THROW_EXCEPTION(ParserError() << errinfo_sourceLocation(def->getLocation()) << errinfo_comment("Recursive struct definition.")); definitionsSeen.insert(def); for (ASTPointer const& member: def->getMembers()) if (member->getType()->getCategory() == Type::Category::STRUCT) queue.push_back(dynamic_cast(*member->getTypeName()).getReferencedStruct()); } } void NameAndTypeResolver::reset() { m_scopes.clear(); m_currentScope = nullptr; } DeclarationRegistrationHelper::DeclarationRegistrationHelper(map& _scopes, ASTNode& _astRoot): m_scopes(_scopes), m_currentScope(&m_scopes[nullptr]) { _astRoot.accept(*this); } bool DeclarationRegistrationHelper::visit(ContractDefinition& _contract) { registerDeclaration(_contract, true); return true; } void DeclarationRegistrationHelper::endVisit(ContractDefinition&) { closeCurrentScope(); } bool DeclarationRegistrationHelper::visit(StructDefinition& _struct) { registerDeclaration(_struct, true); return true; } void DeclarationRegistrationHelper::endVisit(StructDefinition&) { closeCurrentScope(); } bool DeclarationRegistrationHelper::visit(FunctionDefinition& _function) { registerDeclaration(_function, true); m_currentFunction = &_function; return true; } void DeclarationRegistrationHelper::endVisit(FunctionDefinition&) { m_currentFunction = nullptr; closeCurrentScope(); } void DeclarationRegistrationHelper::endVisit(VariableDefinition& _variableDefinition) { // Register the local variables with the function // This does not fit here perfectly, but it saves us another AST visit. if (asserts(m_currentFunction)) BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Variable definition without function.")); m_currentFunction->addLocalVariable(_variableDefinition.getDeclaration()); } bool DeclarationRegistrationHelper::visit(VariableDeclaration& _declaration) { registerDeclaration(_declaration, false); return true; } void DeclarationRegistrationHelper::enterNewSubScope(ASTNode& _node) { map::iterator iter; bool newlyAdded; tie(iter, newlyAdded) = m_scopes.emplace(&_node, Scope(m_currentScope)); if (asserts(newlyAdded)) BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unable to add new scope.")); m_currentScope = &iter->second; } void DeclarationRegistrationHelper::closeCurrentScope() { if (asserts(m_currentScope)) BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Closed non-existing scope.")); m_currentScope = m_currentScope->getEnclosingScope(); } void DeclarationRegistrationHelper::registerDeclaration(Declaration& _declaration, bool _opensScope) { if (asserts(m_currentScope)) BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Declaration registered without scope.")); if (!m_currentScope->registerDeclaration(_declaration)) BOOST_THROW_EXCEPTION(DeclarationError() << errinfo_sourceLocation(_declaration.getLocation()) << errinfo_comment("Identifier already declared.")); //@todo the exception should also contain the location of the first declaration if (_opensScope) enterNewSubScope(_declaration); } ReferencesResolver::ReferencesResolver(ASTNode& _root, NameAndTypeResolver& _resolver, ParameterList* _returnParameters, bool _allowLazyTypes): m_resolver(_resolver), m_returnParameters(_returnParameters), m_allowLazyTypes(_allowLazyTypes) { _root.accept(*this); } void ReferencesResolver::endVisit(VariableDeclaration& _variable) { // endVisit because the internal type needs resolving if it is a user defined type // or mapping if (_variable.getTypeName()) _variable.setType(_variable.getTypeName()->toType()); else if (!m_allowLazyTypes) BOOST_THROW_EXCEPTION(_variable.createTypeError("Explicit type needed.")); // otherwise we have a "var"-declaration whose type is resolved by the first assignment } bool ReferencesResolver::visit(Return& _return) { if (asserts(m_returnParameters)) BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Return parameters not set.")); _return.setFunctionReturnParameters(*m_returnParameters); return true; } bool ReferencesResolver::visit(Mapping& _mapping) { return true; } bool ReferencesResolver::visit(UserDefinedTypeName& _typeName) { Declaration* declaration = m_resolver.getNameFromCurrentScope(_typeName.getName()); if (!declaration) BOOST_THROW_EXCEPTION(DeclarationError() << errinfo_sourceLocation(_typeName.getLocation()) << errinfo_comment("Undeclared identifier.")); StructDefinition* referencedStruct = dynamic_cast(declaration); //@todo later, contracts are also valid types if (!referencedStruct) BOOST_THROW_EXCEPTION(_typeName.createTypeError("Identifier does not name a type name.")); _typeName.setReferencedStruct(*referencedStruct); return false; } bool ReferencesResolver::visit(Identifier& _identifier) { Declaration* declaration = m_resolver.getNameFromCurrentScope(_identifier.getName()); if (!declaration) BOOST_THROW_EXCEPTION(DeclarationError() << errinfo_sourceLocation(_identifier.getLocation()) << errinfo_comment("Undeclared identifier.")); _identifier.setReferencedDeclaration(*declaration); return false; } } }