/* EVMC: Ethereum Client-VM Connector API. * Copyright 2018-2019 The EVMC Authors. * Licensed under the Apache License, Version 2.0. */ #pragma once #include #include #include #include #include /// EVMC C++ API - wrappers and bindings for C++ /// @ingroup cpp namespace evmc { /// The big-endian 160-bit hash suitable for keeping an Ethereum address. /// /// This type wraps C ::evmc_address to make sure objects of this type are always initialized. struct address : evmc_address { /// Default and converting constructor. /// /// Initializes bytes to zeros if not other @p init value provided. constexpr address(evmc_address init = {}) noexcept : evmc_address{init} {} /// Explicit operator converting to bool. constexpr inline explicit operator bool() const noexcept; }; /// The fixed size array of 32 bytes for storing 256-bit EVM values. /// /// This type wraps C ::evmc_bytes32 to make sure objects of this type are always initialized. struct bytes32 : evmc_bytes32 { /// Default and converting constructor. /// /// Initializes bytes to zeros if not other @p init value provided. constexpr bytes32(evmc_bytes32 init = {}) noexcept : evmc_bytes32{init} {} /// Explicit operator converting to bool. constexpr inline explicit operator bool() const noexcept; }; /// The alias for evmc::bytes32 to represent a big-endian 256-bit integer. using uint256be = bytes32; /// Loads 64 bits / 8 bytes of data from the given @p bytes array in big-endian order. constexpr inline uint64_t load64be(const uint8_t* bytes) noexcept { // TODO: Report bug in clang incorrectly optimizing this with AVX2 enabled. return (uint64_t{bytes[0]} << 56) | (uint64_t{bytes[1]} << 48) | (uint64_t{bytes[2]} << 40) | (uint64_t{bytes[3]} << 32) | (uint64_t{bytes[4]} << 24) | (uint64_t{bytes[5]} << 16) | (uint64_t{bytes[6]} << 8) | uint64_t{bytes[7]}; } /// Loads 32 bits / 4 bytes of data from the given @p bytes array in big-endian order. constexpr inline uint32_t load32be(const uint8_t* bytes) noexcept { return (uint32_t{bytes[0]} << 24) | (uint32_t{bytes[1]} << 16) | (uint32_t{bytes[2]} << 8) | uint32_t{bytes[3]}; } namespace fnv { constexpr auto prime = 0x100000001b3; ///< The 64-bit FNV prime number. constexpr auto offset_basis = 0xcbf29ce484222325; ///< The 64-bit FNV offset basis. /// The hashing transformation for 64-bit inputs based on the FNV-1a formula. constexpr inline uint64_t fnv1a_by64(uint64_t h, uint64_t x) noexcept { return (h ^ x) * prime; } } // namespace fnv /// The "equal" comparison operator for the evmc::address type. constexpr bool operator==(const address& a, const address& b) noexcept { // TODO: Report bug in clang keeping unnecessary bswap. return load64be(&a.bytes[0]) == load64be(&b.bytes[0]) && load64be(&a.bytes[8]) == load64be(&b.bytes[8]) && load32be(&a.bytes[16]) == load32be(&b.bytes[16]); } /// The "not equal" comparison operator for the evmc::address type. constexpr bool operator!=(const address& a, const address& b) noexcept { return !(a == b); } /// The "less" comparison operator for the evmc::address type. constexpr bool operator<(const address& a, const address& b) noexcept { return load64be(&a.bytes[0]) < load64be(&b.bytes[0]) || (load64be(&a.bytes[0]) == load64be(&b.bytes[0]) && load64be(&a.bytes[8]) < load64be(&b.bytes[8])) || (load64be(&a.bytes[8]) == load64be(&b.bytes[8]) && load32be(&a.bytes[16]) < load32be(&b.bytes[16])); } /// The "equal" comparison operator for the evmc::bytes32 type. constexpr bool operator==(const bytes32& a, const bytes32& b) noexcept { return load64be(&a.bytes[0]) == load64be(&b.bytes[0]) && load64be(&a.bytes[8]) == load64be(&b.bytes[8]) && load64be(&a.bytes[16]) == load64be(&b.bytes[16]) && load64be(&a.bytes[24]) == load64be(&b.bytes[24]); } /// The "not equal" comparison operator for the evmc::bytes32 type. constexpr bool operator!=(const bytes32& a, const bytes32& b) noexcept { return !(a == b); } /// The "less" comparison operator for the evmc::bytes32 type. constexpr bool operator<(const bytes32& a, const bytes32& b) noexcept { return load64be(&a.bytes[0]) < load64be(&b.bytes[0]) || (load64be(&a.bytes[0]) == load64be(&b.bytes[0]) && load64be(&a.bytes[8]) < load64be(&b.bytes[8])) || (load64be(&a.bytes[8]) == load64be(&b.bytes[8]) && load64be(&a.bytes[16]) < load64be(&b.bytes[16])) || (load64be(&a.bytes[16]) == load64be(&b.bytes[16]) && load64be(&a.bytes[24]) < load64be(&b.bytes[24])); } /// Checks if the given address is the zero address. constexpr inline bool is_zero(const address& a) noexcept { return a == address{}; } constexpr address::operator bool() const noexcept { return !is_zero(*this); } /// Checks if the given bytes32 object has all zero bytes. constexpr inline bool is_zero(const bytes32& a) noexcept { return a == bytes32{}; } constexpr bytes32::operator bool() const noexcept { return !is_zero(*this); } namespace literals { namespace internal { template struct integer_sequence { }; template using byte_sequence = integer_sequence; template using char_sequence = integer_sequence; template struct concatenate; template struct concatenate, byte_sequence> { using type = byte_sequence; }; template constexpr uint8_t parse_hex_digit() noexcept { static_assert((D >= '0' && D <= '9') || (D >= 'a' && D <= 'f') || (D >= 'A' && D <= 'F'), "literal must be hexadecimal integer"); return static_cast( (D >= '0' && D <= '9') ? D - '0' : (D >= 'a' && D <= 'f') ? D - 'a' + 10 : D - 'A' + 10); } template struct parse_digits; template struct parse_digits> { using type = byte_sequence(parse_hex_digit() << 4) | parse_hex_digit()>; }; template struct parse_digits> { using type = typename concatenate>::type, typename parse_digits>::type>::type; }; template struct parse_literal; template struct parse_literal> { static_assert(Prefix1 == '0' && Prefix2 == 'x', "literal must be in hexadecimal notation"); static_assert(sizeof...(Literal) == sizeof(T) * 2, "literal must match the result type size"); template static constexpr T create_from(byte_sequence) noexcept { return T{{{Bytes...}}}; } static constexpr T get() noexcept { return create_from(typename parse_digits>::type{}); } }; template struct parse_literal> { static_assert(Digit == '0', "only 0 is allowed as a single digit literal"); static constexpr T get() noexcept { return {}; } }; template constexpr T parse() noexcept { return parse_literal>::get(); } } // namespace internal /// Literal for evmc::address. template constexpr address operator"" _address() noexcept { return internal::parse(); } /// Literal for evmc::bytes32. template constexpr bytes32 operator"" _bytes32() noexcept { return internal::parse(); } } // namespace literals using namespace literals; /// Alias for evmc_make_result(). constexpr auto make_result = evmc_make_result; /// @copydoc evmc_result /// /// This is a RAII wrapper for evmc_result and objects of this type /// automatically release attached resources. class result : private evmc_result { public: using evmc_result::create_address; using evmc_result::gas_left; using evmc_result::output_data; using evmc_result::output_size; using evmc_result::status_code; /// Creates the result from the provided arguments. /// /// The provided output is copied to memory allocated with malloc() /// and the evmc_result::release function is set to one invoking free(). /// /// @param _status_code The status code. /// @param _gas_left The amount of gas left. /// @param _output_data The pointer to the output. /// @param _output_size The output size. result(evmc_status_code _status_code, int64_t _gas_left, const uint8_t* _output_data, size_t _output_size) noexcept : evmc_result{make_result(_status_code, _gas_left, _output_data, _output_size)} {} /// Converting constructor from raw evmc_result. explicit result(evmc_result const& res) noexcept : evmc_result{res} {} /// Destructor responsible for automatically releasing attached resources. ~result() noexcept { if (release) release(this); } /// Move constructor. result(result&& other) noexcept : evmc_result{other} { other.release = nullptr; // Disable releasing of the rvalue object. } /// Move assignment operator. /// /// The self-assigment MUST never happen. /// /// @param other The other result object. /// @return The reference to the left-hand side object. result& operator=(result&& other) noexcept { this->~result(); // Release this object. static_cast(*this) = other; // Copy data. other.release = nullptr; // Disable releasing of the rvalue object. return *this; } /// Releases the ownership and returns the raw copy of evmc_result. /// /// This method drops the ownership of the result /// (result's resources are not going to be released when this object is destructed). /// It is the caller's responsibility having the returned copy of the result to release it. /// This object MUST NOT be used after this method is invoked. /// /// @return The copy of this object converted to raw evmc_result. evmc_result release_raw() noexcept { const auto out = evmc_result{*this}; // Copy data. this->release = nullptr; // Disable releasing of this object. return out; } }; /// @copybrief evmc_instance /// /// This is a RAII wrapper for evmc_instance and objects of this type /// automatically destroys the VM instance. class vm { public: vm() noexcept = default; /// Converting constructor from evmc_instance. explicit vm(evmc_instance* instance) noexcept : m_instance{instance} {} /// Destructor responsible for automatically destroying the VM instance. ~vm() noexcept { if (m_instance) m_instance->destroy(m_instance); } vm(const vm&) = delete; vm& operator=(const vm&) = delete; /// Move constructor. vm(vm&& other) noexcept : m_instance{other.m_instance} { other.m_instance = nullptr; } /// Move assignment operator. vm& operator=(vm&& other) noexcept { this->~vm(); m_instance = other.m_instance; other.m_instance = nullptr; return *this; } /// The constructor that captures a VM instance and configures the instance /// with provided list of options. vm(evmc_instance* instance, std::initializer_list> options) noexcept : m_instance{instance} { for (auto option : options) set_option(option.first, option.second); } /// Checks if contains a valid pointer to the VM instance. explicit operator bool() const noexcept { return m_instance != nullptr; } /// Checks whenever the VM instance is ABI compatible with the current EVMC API. bool is_abi_compatible() const noexcept { return m_instance->abi_version == EVMC_ABI_VERSION; } /// @copydoc evmc_instance::name char const* name() const noexcept { return m_instance->name; } /// @copydoc evmc_instance::version char const* version() const noexcept { return m_instance->version; } /// @copydoc evmc::instance::get_capabilities evmc_capabilities_flagset get_capabilities() const noexcept { return m_instance->get_capabilities(m_instance); } /// @copydoc evmc_set_option() evmc_set_option_result set_option(const char name[], const char value[]) noexcept { return evmc_set_option(m_instance, name, value); } /// @copydoc evmc_execute() result execute(evmc_context& ctx, evmc_revision rev, const evmc_message& msg, const uint8_t* code, size_t code_size) noexcept { return result{m_instance->execute(m_instance, &ctx, rev, &msg, code, code_size)}; } private: evmc_instance* m_instance = nullptr; }; /// The EVMC Host interface class HostInterface { public: virtual ~HostInterface() noexcept = default; /// @copydoc evmc_host_interface::account_exists virtual bool account_exists(const address& addr) noexcept = 0; /// @copydoc evmc_host_interface::get_storage virtual bytes32 get_storage(const address& addr, const bytes32& key) noexcept = 0; /// @copydoc evmc_host_interface::set_storage virtual evmc_storage_status set_storage(const address& addr, const bytes32& key, const bytes32& value) noexcept = 0; /// @copydoc evmc_host_interface::get_balance virtual uint256be get_balance(const address& addr) noexcept = 0; /// @copydoc evmc_host_interface::get_code_size virtual size_t get_code_size(const address& addr) noexcept = 0; /// @copydoc evmc_host_interface::get_code_hash virtual bytes32 get_code_hash(const address& addr) noexcept = 0; /// @copydoc evmc_host_interface::copy_code virtual size_t copy_code(const address& addr, size_t code_offset, uint8_t* buffer_data, size_t buffer_size) noexcept = 0; /// @copydoc evmc_host_interface::selfdestruct virtual void selfdestruct(const address& addr, const address& beneficiary) noexcept = 0; /// @copydoc evmc_host_interface::call virtual result call(const evmc_message& msg) noexcept = 0; /// @copydoc evmc_host_interface::get_tx_context virtual evmc_tx_context get_tx_context() noexcept = 0; /// @copydoc evmc_host_interface::get_block_hash virtual bytes32 get_block_hash(int64_t block_number) noexcept = 0; /// @copydoc evmc_host_interface::emit_log virtual void emit_log(const address& addr, const uint8_t* data, size_t data_size, const bytes32 topics[], size_t num_topics) noexcept = 0; }; /// Wrapper around EVMC host context / host interface. /// /// To be used by VM implementations as better alternative to using ::evmc_context directly. class HostContext : public HostInterface { evmc_context* context = nullptr; evmc_tx_context tx_context = {}; public: /// Implicit converting constructor from evmc_context. HostContext(evmc_context* ctx) noexcept : context{ctx} {} // NOLINT bool account_exists(const address& address) noexcept final { return context->host->account_exists(context, &address); } bytes32 get_storage(const address& address, const bytes32& key) noexcept final { return context->host->get_storage(context, &address, &key); } evmc_storage_status set_storage(const address& address, const bytes32& key, const bytes32& value) noexcept final { return context->host->set_storage(context, &address, &key, &value); } uint256be get_balance(const address& address) noexcept final { return context->host->get_balance(context, &address); } size_t get_code_size(const address& address) noexcept final { return context->host->get_code_size(context, &address); } bytes32 get_code_hash(const address& address) noexcept final { return context->host->get_code_hash(context, &address); } size_t copy_code(const address& address, size_t code_offset, uint8_t* buffer_data, size_t buffer_size) noexcept final { return context->host->copy_code(context, &address, code_offset, buffer_data, buffer_size); } void selfdestruct(const address& addr, const address& beneficiary) noexcept final { context->host->selfdestruct(context, &addr, &beneficiary); } result call(const evmc_message& message) noexcept final { return result{context->host->call(context, &message)}; } /// @copydoc HostInterface::get_tx_context() /// /// The implementation caches the received transaction context /// by assuming that the block timestamp should never be zero. /// /// @return The cached transaction context. evmc_tx_context get_tx_context() noexcept final { if (tx_context.block_timestamp == 0) tx_context = context->host->get_tx_context(context); return tx_context; } bytes32 get_block_hash(int64_t number) noexcept final { return context->host->get_block_hash(context, number); } void emit_log(const address& addr, const uint8_t* data, size_t data_size, const bytes32 topics[], size_t topics_count) noexcept final { context->host->emit_log(context, &addr, data, data_size, topics, topics_count); } }; /// Abstract class to be used by Host implementations. /// /// When implementing EVMC Host, you can directly inherit from the evmc::Host class. /// This way your implementation will be simpler by avoiding manual handling /// of the ::evmc_context and the ::evmc_context::host. class Host : public HostInterface, public evmc_context { public: inline Host() noexcept; }; namespace internal { inline bool account_exists(evmc_context* h, const evmc_address* addr) noexcept { return static_cast(h)->account_exists(*addr); } inline evmc_bytes32 get_storage(evmc_context* h, const evmc_address* addr, const evmc_bytes32* key) noexcept { return static_cast(h)->get_storage(*addr, *key); } inline evmc_storage_status set_storage(evmc_context* h, const evmc_address* addr, const evmc_bytes32* key, const evmc_bytes32* value) noexcept { return static_cast(h)->set_storage(*addr, *key, *value); } inline evmc_uint256be get_balance(evmc_context* h, const evmc_address* addr) noexcept { return static_cast(h)->get_balance(*addr); } inline size_t get_code_size(evmc_context* h, const evmc_address* addr) noexcept { return static_cast(h)->get_code_size(*addr); } inline evmc_bytes32 get_code_hash(evmc_context* h, const evmc_address* addr) noexcept { return static_cast(h)->get_code_hash(*addr); } inline size_t copy_code(evmc_context* h, const evmc_address* addr, size_t code_offset, uint8_t* buffer_data, size_t buffer_size) noexcept { return static_cast(h)->copy_code(*addr, code_offset, buffer_data, buffer_size); } inline void selfdestruct(evmc_context* h, const evmc_address* addr, const evmc_address* beneficiary) noexcept { static_cast(h)->selfdestruct(*addr, *beneficiary); } inline evmc_result call(evmc_context* h, const evmc_message* msg) noexcept { return static_cast(h)->call(*msg).release_raw(); } inline evmc_tx_context get_tx_context(evmc_context* h) noexcept { return static_cast(h)->get_tx_context(); } inline evmc_bytes32 get_block_hash(evmc_context* h, int64_t block_number) noexcept { return static_cast(h)->get_block_hash(block_number); } inline void emit_log(evmc_context* h, const evmc_address* addr, const uint8_t* data, size_t data_size, const evmc_bytes32 topics[], size_t num_topics) noexcept { static_cast(h)->emit_log(*addr, data, data_size, static_cast(topics), num_topics); } constexpr evmc_host_interface interface{ account_exists, get_storage, set_storage, get_balance, get_code_size, get_code_hash, copy_code, selfdestruct, call, get_tx_context, get_block_hash, emit_log, }; } // namespace internal inline Host::Host() noexcept : evmc_context{&evmc::internal::interface} {} } // namespace evmc namespace std { /// Hash operator template specialization for evmc::address. Needed for unordered containers. template <> struct hash { /// Hash operator using FNV1a-based folding. constexpr size_t operator()(const evmc::address& s) const noexcept { using namespace evmc; using namespace fnv; return static_cast(fnv1a_by64( fnv1a_by64(fnv1a_by64(fnv::offset_basis, load64be(&s.bytes[0])), load64be(&s.bytes[8])), load32be(&s.bytes[16]))); } }; /// Hash operator template specialization for evmc::bytes32. Needed for unordered containers. template <> struct hash { /// Hash operator using FNV1a-based folding. constexpr size_t operator()(const evmc::bytes32& s) const noexcept { using namespace evmc; using namespace fnv; return static_cast( fnv1a_by64(fnv1a_by64(fnv1a_by64(fnv1a_by64(fnv::offset_basis, load64be(&s.bytes[0])), load64be(&s.bytes[8])), load64be(&s.bytes[16])), load64be(&s.bytes[24]))); } }; } // namespace std