/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ /** * Optimiser component that removes assignments to variables that are not used * until they go out of scope or are re-assigned. */ #include #include #include #include #include using namespace std; using namespace dev; using namespace yul; void RedundantAssignEliminator::operator()(Identifier const& _identifier) { changeUndecidedTo(_identifier.name, State::Used); } void RedundantAssignEliminator::operator()(VariableDeclaration const& _variableDeclaration) { ASTWalker::operator()(_variableDeclaration); for (auto const& var: _variableDeclaration.variables) m_declaredVariables.emplace(var.name); } void RedundantAssignEliminator::operator()(Assignment const& _assignment) { visit(*_assignment.value); for (auto const& var: _assignment.variableNames) changeUndecidedTo(var.name, State::Unused); if (_assignment.variableNames.size() == 1) // Default-construct it in "Undecided" state if it does not yet exist. m_assignments[_assignment.variableNames.front().name][&_assignment]; } void RedundantAssignEliminator::operator()(If const& _if) { visit(*_if.condition); TrackedAssignments skipBranch{m_assignments}; (*this)(_if.body); merge(m_assignments, move(skipBranch)); } void RedundantAssignEliminator::operator()(Switch const& _switch) { visit(*_switch.expression); TrackedAssignments const preState{m_assignments}; bool hasDefault = false; vector branches; for (auto const& c: _switch.cases) { if (!c.value) hasDefault = true; (*this)(c.body); branches.emplace_back(move(m_assignments)); m_assignments = preState; } if (hasDefault) { m_assignments = move(branches.back()); branches.pop_back(); } for (auto& branch: branches) merge(m_assignments, move(branch)); } void RedundantAssignEliminator::operator()(FunctionDefinition const& _functionDefinition) { std::set outerDeclaredVariables; TrackedAssignments outerAssignments; ForLoopInfo forLoopInfo; swap(m_declaredVariables, outerDeclaredVariables); swap(m_assignments, outerAssignments); swap(m_forLoopInfo, forLoopInfo); (*this)(_functionDefinition.body); for (auto const& param: _functionDefinition.parameters) finalize(param.name, State::Unused); for (auto const& retParam: _functionDefinition.returnVariables) finalize(retParam.name, State::Used); swap(m_declaredVariables, outerDeclaredVariables); swap(m_assignments, outerAssignments); swap(m_forLoopInfo, forLoopInfo); } void RedundantAssignEliminator::operator()(ForLoop const& _forLoop) { ForLoopInfo outerForLoopInfo; swap(outerForLoopInfo, m_forLoopInfo); ++m_forLoopNestingDepth; // If the pre block was not empty, // we would have to deal with more complicated scoping rules. assertThrow(_forLoop.pre.statements.empty(), OptimizerException, ""); // We just run the loop twice to account for the back edge. // There need not be more runs because we only have three different states. visit(*_forLoop.condition); TrackedAssignments zeroRuns{m_assignments}; (*this)(_forLoop.body); merge(m_assignments, move(m_forLoopInfo.pendingContinueStmts)); m_forLoopInfo.pendingContinueStmts = {}; (*this)(_forLoop.post); visit(*_forLoop.condition); if (m_forLoopNestingDepth < 6) { // Do the second run only for small nesting depths to avoid horrible runtime. TrackedAssignments oneRun{m_assignments}; (*this)(_forLoop.body); merge(m_assignments, move(m_forLoopInfo.pendingContinueStmts)); m_forLoopInfo.pendingContinueStmts.clear(); (*this)(_forLoop.post); visit(*_forLoop.condition); // Order of merging does not matter because "max" is commutative and associative. merge(m_assignments, move(oneRun)); } else { // Shortcut to avoid horrible runtime: // Change all assignments that were newly introduced in the for loop to "used". // We do not have to do that with the "break" or "continue" paths, because // they will be joined later anyway. // TODO parallel traversal might be more efficient here. for (auto& var: m_assignments) for (auto& assignment: var.second) { auto zeroIt = zeroRuns.find(var.first); if (zeroIt != zeroRuns.end() && zeroIt->second.count(assignment.first)) continue; assignment.second = State::Value::Used; } } // Order of merging does not matter because "max" is commutative and associative. merge(m_assignments, move(zeroRuns)); merge(m_assignments, move(m_forLoopInfo.pendingBreakStmts)); m_forLoopInfo.pendingBreakStmts.clear(); // Restore potential outer for-loop states. swap(m_forLoopInfo, outerForLoopInfo); --m_forLoopNestingDepth; } void RedundantAssignEliminator::operator()(Break const&) { m_forLoopInfo.pendingBreakStmts.emplace_back(move(m_assignments)); m_assignments.clear(); } void RedundantAssignEliminator::operator()(Continue const&) { m_forLoopInfo.pendingContinueStmts.emplace_back(move(m_assignments)); m_assignments.clear(); } void RedundantAssignEliminator::operator()(Block const& _block) { set outerDeclaredVariables; swap(m_declaredVariables, outerDeclaredVariables); ASTWalker::operator()(_block); for (auto const& var: m_declaredVariables) finalize(var, State::Unused); swap(m_declaredVariables, outerDeclaredVariables); } void RedundantAssignEliminator::run(Dialect const& _dialect, Block& _ast) { RedundantAssignEliminator rae{_dialect}; rae(_ast); AssignmentRemover remover{rae.m_pendingRemovals}; remover(_ast); } template void joinMap(std::map& _a, std::map&& _b, F _conflictSolver) { // TODO Perhaps it is better to just create a sorted list // and then use insert(begin, end) auto ita = _a.begin(); auto aend = _a.end(); auto itb = _b.begin(); auto bend = _b.end(); for (; itb != bend; ++ita) { if (ita == aend) ita = _a.insert(ita, std::move(*itb++)); else if (ita->first < itb->first) continue; else if (itb->first < ita->first) ita = _a.insert(ita, std::move(*itb++)); else { _conflictSolver(ita->second, std::move(itb->second)); ++itb; } } } void RedundantAssignEliminator::merge(TrackedAssignments& _target, TrackedAssignments&& _other) { joinMap(_target, move(_other), []( map& _assignmentHere, map&& _assignmentThere ) { return joinMap(_assignmentHere, move(_assignmentThere), State::join); }); } void RedundantAssignEliminator::merge(TrackedAssignments& _target, vector&& _source) { for (TrackedAssignments& ts: _source) merge(_target, move(ts)); _source.clear(); } void RedundantAssignEliminator::changeUndecidedTo(YulString _variable, RedundantAssignEliminator::State _newState) { for (auto& assignment: m_assignments[_variable]) if (assignment.second == State::Undecided) assignment.second = _newState; } void RedundantAssignEliminator::finalize(YulString _variable, RedundantAssignEliminator::State _finalState) { finalize(m_assignments, _variable, _finalState); for (auto& assignments: m_forLoopInfo.pendingBreakStmts) finalize(assignments, _variable, _finalState); for (auto& assignments: m_forLoopInfo.pendingContinueStmts) finalize(assignments, _variable, _finalState); } void RedundantAssignEliminator::finalize( TrackedAssignments& _assignments, YulString _variable, RedundantAssignEliminator::State _finalState ) { for (auto const& assignment: _assignments[_variable]) { State const state = assignment.second == State::Undecided ? _finalState : assignment.second; if (state == State::Unused && MovableChecker{*m_dialect, *assignment.first->value}.movable()) // TODO the only point where we actually need this // to be a set is for the for loop m_pendingRemovals.insert(assignment.first); } _assignments.erase(_variable); } void AssignmentRemover::operator()(Block& _block) { boost::range::remove_erase_if(_block.statements, [=](Statement const& _statement) -> bool { return _statement.type() == typeid(Assignment) && m_toRemove.count(&boost::get(_statement)); }); ASTModifier::operator()(_block); }