/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see .
*/
// SPDX-License-Identifier: GPL-3.0
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace solidity::util;
using namespace solidity::yul;
FunctionSpecializer::LiteralArguments FunctionSpecializer::specializableArguments(
FunctionCall const& _f
)
{
auto heuristic = [&](Expression const& _e) -> std::optional
{
if (std::holds_alternative(_e))
return ASTCopier{}.translate(_e);
return std::nullopt;
};
return applyMap(_f.arguments, heuristic);
}
void FunctionSpecializer::operator()(FunctionCall& _f)
{
ASTModifier::operator()(_f);
// TODO When backtracking is implemented, the restriction of recursive functions can be lifted.
if (
m_dialect.builtin(_f.functionName.name) ||
m_recursiveFunctions.count(_f.functionName.name)
)
return;
LiteralArguments arguments = specializableArguments(_f);
if (ranges::any_of(arguments, [](auto& _a) { return _a.has_value(); }))
{
YulString oldName = std::move(_f.functionName.name);
auto newName = m_nameDispenser.newName(oldName);
m_oldToNewMap[oldName].emplace_back(std::make_pair(newName, arguments));
_f.functionName.name = newName;
_f.arguments = util::filter(
_f.arguments,
applyMap(arguments, [](auto& _a) { return !_a; })
);
}
}
FunctionDefinition FunctionSpecializer::specialize(
FunctionDefinition const& _f,
YulString _newName,
FunctionSpecializer::LiteralArguments _arguments
)
{
yulAssert(_arguments.size() == _f.parameters.size(), "");
std::map translatedNames = applyMap(
NameCollector{_f, NameCollector::OnlyVariables}.names(),
[&](auto& _name) -> std::pair
{
return std::make_pair(_name, m_nameDispenser.newName(_name));
},
std::map{}
);
FunctionDefinition newFunction = std::get(FunctionCopier{translatedNames}(_f));
// Function parameters that will be specialized inside the body are converted into variable
// declarations.
std::vector missingVariableDeclarations;
for (auto&& [index, argument]: _arguments | ranges::views::enumerate)
if (argument)
missingVariableDeclarations.emplace_back(
VariableDeclaration{
_f.debugData,
std::vector{newFunction.parameters[index]},
std::make_unique(std::move(*argument))
}
);
newFunction.body.statements =
std::move(missingVariableDeclarations) + std::move(newFunction.body.statements);
// Only take those indices that cannot be specialized, i.e., whose value is `nullopt`.
newFunction.parameters =
util::filter(
newFunction.parameters,
applyMap(_arguments, [&](auto const& _v) { return !_v; })
);
newFunction.name = std::move(_newName);
return newFunction;
}
void FunctionSpecializer::run(OptimiserStepContext& _context, Block& _ast)
{
FunctionSpecializer f{
CallGraphGenerator::callGraph(_ast).recursiveFunctions(),
_context.dispenser,
_context.dialect
};
f(_ast);
iterateReplacing(_ast.statements, [&](Statement& _s) -> std::optional>
{
if (std::holds_alternative(_s))
{
auto& functionDefinition = std::get(_s);
if (f.m_oldToNewMap.count(functionDefinition.name))
{
std::vector out = applyMap(
f.m_oldToNewMap.at(functionDefinition.name),
[&](auto& _p) -> Statement
{
return f.specialize(functionDefinition, std::move(_p.first), std::move(_p.second));
}
);
return std::move(out) + make_vector(std::move(functionDefinition));
}
}
return std::nullopt;
});
}