/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ /** * @author Christian * @date 2015 * Type analyzer and checker. */ #include #include #include #include #include // needed for inline assembly #include using namespace std; using namespace dev; using namespace dev::solidity; bool TypeChecker::checkTypeRequirements(ASTNode const& _contract) { try { _contract.accept(*this); } catch (FatalError const&) { // We got a fatal error which required to stop further type checking, but we can // continue normally from here. if (m_errors.empty()) throw; // Something is weird here, rather throw again. } return Error::containsOnlyWarnings(m_errors); } TypePointer const& TypeChecker::type(Expression const& _expression) const { solAssert(!!_expression.annotation().type, "Type requested but not present."); return _expression.annotation().type; } TypePointer const& TypeChecker::type(VariableDeclaration const& _variable) const { solAssert(!!_variable.annotation().type, "Type requested but not present."); return _variable.annotation().type; } bool TypeChecker::visit(ContractDefinition const& _contract) { m_scope = &_contract; // We force our own visiting order here. //@TODO structs will be visited again below, but it is probably fine. ASTNode::listAccept(_contract.definedStructs(), *this); ASTNode::listAccept(_contract.baseContracts(), *this); checkContractDuplicateFunctions(_contract); checkContractIllegalOverrides(_contract); checkContractAbstractFunctions(_contract); checkContractAbstractConstructors(_contract); FunctionDefinition const* function = _contract.constructor(); if (function) { if (!function->isPublic()) _contract.annotation().hasPublicConstructor = false; if (!function->returnParameters().empty()) typeError(function->returnParameterList()->location(), "Non-empty \"returns\" directive for constructor."); if (function->isDeclaredConst()) typeError(function->location(), "Constructor cannot be defined as constant."); if (function->visibility() != FunctionDefinition::Visibility::Public && function->visibility() != FunctionDefinition::Visibility::Internal) typeError(function->location(), "Constructor must be public or internal."); } FunctionDefinition const* fallbackFunction = nullptr; for (FunctionDefinition const* function: _contract.definedFunctions()) { if (function->name().empty()) { if (fallbackFunction) { auto err = make_shared(Error::Type::DeclarationError); *err << errinfo_comment("Only one fallback function is allowed."); m_errors.push_back(err); } else { fallbackFunction = function; if (_contract.isLibrary()) typeError(fallbackFunction->location(), "Libraries cannot have fallback functions."); if (fallbackFunction->isDeclaredConst()) typeError(fallbackFunction->location(), "Fallback function cannot be declared constant."); if (!fallbackFunction->parameters().empty()) typeError(fallbackFunction->parameterList().location(), "Fallback function cannot take parameters."); if (!fallbackFunction->returnParameters().empty()) typeError(fallbackFunction->returnParameterList()->location(), "Fallback function cannot return values."); } } if (!function->isImplemented()) _contract.annotation().isFullyImplemented = false; } ASTNode::listAccept(_contract.subNodes(), *this); checkContractExternalTypeClashes(_contract); // check for hash collisions in function signatures set> hashes; for (auto const& it: _contract.interfaceFunctionList()) { FixedHash<4> const& hash = it.first; if (hashes.count(hash)) typeError( _contract.location(), string("Function signature hash collision for ") + it.second->externalSignature() ); hashes.insert(hash); } if (_contract.isLibrary()) checkLibraryRequirements(_contract); return false; } void TypeChecker::checkContractDuplicateFunctions(ContractDefinition const& _contract) { /// Checks that two functions with the same name defined in this contract have different /// argument types and that there is at most one constructor. map> functions; for (FunctionDefinition const* function: _contract.definedFunctions()) functions[function->name()].push_back(function); // Constructor if (functions[_contract.name()].size() > 1) { SecondarySourceLocation ssl; auto it = ++functions[_contract.name()].begin(); for (; it != functions[_contract.name()].end(); ++it) ssl.append("Another declaration is here:", (*it)->location()); auto err = make_shared(Error(Error::Type::DeclarationError)); *err << errinfo_sourceLocation(functions[_contract.name()].front()->location()) << errinfo_comment("More than one constructor defined.") << errinfo_secondarySourceLocation(ssl); m_errors.push_back(err); } for (auto const& it: functions) { vector const& overloads = it.second; for (size_t i = 0; i < overloads.size(); ++i) for (size_t j = i + 1; j < overloads.size(); ++j) if (FunctionType(*overloads[i]).hasEqualArgumentTypes(FunctionType(*overloads[j]))) { auto err = make_shared(Error(Error::Type::DeclarationError)); *err << errinfo_sourceLocation(overloads[j]->location()) << errinfo_comment("Function with same name and arguments defined twice.") << errinfo_secondarySourceLocation(SecondarySourceLocation().append( "Other declaration is here:", overloads[i]->location())); m_errors.push_back(err); } } } void TypeChecker::checkContractAbstractFunctions(ContractDefinition const& _contract) { // Mapping from name to function definition (exactly one per argument type equality class) and // flag to indicate whether it is fully implemented. using FunTypeAndFlag = std::pair; map> functions; // Search from base to derived for (ContractDefinition const* contract: boost::adaptors::reverse(_contract.annotation().linearizedBaseContracts)) for (FunctionDefinition const* function: contract->definedFunctions()) { // Take constructors out of overload hierarchy if (function->isConstructor()) continue; auto& overloads = functions[function->name()]; FunctionTypePointer funType = make_shared(*function); auto it = find_if(overloads.begin(), overloads.end(), [&](FunTypeAndFlag const& _funAndFlag) { return funType->hasEqualArgumentTypes(*_funAndFlag.first); }); if (it == overloads.end()) overloads.push_back(make_pair(funType, function->isImplemented())); else if (it->second) { if (!function->isImplemented()) typeError(function->location(), "Redeclaring an already implemented function as abstract"); } else if (function->isImplemented()) it->second = true; } // Set to not fully implemented if at least one flag is false. for (auto const& it: functions) for (auto const& funAndFlag: it.second) if (!funAndFlag.second) { _contract.annotation().isFullyImplemented = false; return; } } void TypeChecker::checkContractAbstractConstructors(ContractDefinition const& _contract) { set argumentsNeeded; // check that we get arguments for all base constructors that need it. // If not mark the contract as abstract (not fully implemented) vector const& bases = _contract.annotation().linearizedBaseContracts; for (ContractDefinition const* contract: bases) if (FunctionDefinition const* constructor = contract->constructor()) if (contract != &_contract && !constructor->parameters().empty()) argumentsNeeded.insert(contract); for (ContractDefinition const* contract: bases) { if (FunctionDefinition const* constructor = contract->constructor()) for (auto const& modifier: constructor->modifiers()) { auto baseContract = dynamic_cast( &dereference(*modifier->name()) ); if (baseContract) argumentsNeeded.erase(baseContract); } for (ASTPointer const& base: contract->baseContracts()) { auto baseContract = dynamic_cast(&dereference(base->name())); solAssert(baseContract, ""); if (!base->arguments().empty()) argumentsNeeded.erase(baseContract); } } if (!argumentsNeeded.empty()) _contract.annotation().isFullyImplemented = false; } void TypeChecker::checkContractIllegalOverrides(ContractDefinition const& _contract) { // TODO unify this at a later point. for this we need to put the constness and the access specifier // into the types map> functions; map modifiers; // We search from derived to base, so the stored item causes the error. for (ContractDefinition const* contract: _contract.annotation().linearizedBaseContracts) { for (FunctionDefinition const* function: contract->definedFunctions()) { if (function->isConstructor()) continue; // constructors can neither be overridden nor override anything string const& name = function->name(); if (modifiers.count(name)) typeError(modifiers[name]->location(), "Override changes function to modifier."); FunctionType functionType(*function); // function should not change the return type for (FunctionDefinition const* overriding: functions[name]) { FunctionType overridingType(*overriding); if (!overridingType.hasEqualArgumentTypes(functionType)) continue; if ( overriding->visibility() != function->visibility() || overriding->isDeclaredConst() != function->isDeclaredConst() || overriding->isPayable() != function->isPayable() || overridingType != functionType ) typeError(overriding->location(), "Override changes extended function signature."); } functions[name].push_back(function); } for (ModifierDefinition const* modifier: contract->functionModifiers()) { string const& name = modifier->name(); ModifierDefinition const*& override = modifiers[name]; if (!override) override = modifier; else if (ModifierType(*override) != ModifierType(*modifier)) typeError(override->location(), "Override changes modifier signature."); if (!functions[name].empty()) typeError(override->location(), "Override changes modifier to function."); } } } void TypeChecker::checkContractExternalTypeClashes(ContractDefinition const& _contract) { map>> externalDeclarations; for (ContractDefinition const* contract: _contract.annotation().linearizedBaseContracts) { for (FunctionDefinition const* f: contract->definedFunctions()) if (f->isPartOfExternalInterface()) { auto functionType = make_shared(*f); // under non error circumstances this should be true if (functionType->interfaceFunctionType()) externalDeclarations[functionType->externalSignature()].push_back( make_pair(f, functionType) ); } for (VariableDeclaration const* v: contract->stateVariables()) if (v->isPartOfExternalInterface()) { auto functionType = make_shared(*v); // under non error circumstances this should be true if (functionType->interfaceFunctionType()) externalDeclarations[functionType->externalSignature()].push_back( make_pair(v, functionType) ); } } for (auto const& it: externalDeclarations) for (size_t i = 0; i < it.second.size(); ++i) for (size_t j = i + 1; j < it.second.size(); ++j) if (!it.second[i].second->hasEqualArgumentTypes(*it.second[j].second)) typeError( it.second[j].first->location(), "Function overload clash during conversion to external types for arguments." ); } void TypeChecker::checkLibraryRequirements(ContractDefinition const& _contract) { solAssert(_contract.isLibrary(), ""); if (!_contract.baseContracts().empty()) typeError(_contract.location(), "Library is not allowed to inherit."); for (auto const& var: _contract.stateVariables()) if (!var->isConstant()) typeError(var->location(), "Library cannot have non-constant state variables"); } void TypeChecker::endVisit(InheritanceSpecifier const& _inheritance) { auto base = dynamic_cast(&dereference(_inheritance.name())); solAssert(base, "Base contract not available."); if (base->isLibrary()) typeError(_inheritance.location(), "Libraries cannot be inherited from."); auto const& arguments = _inheritance.arguments(); TypePointers parameterTypes = ContractType(*base).newExpressionType()->parameterTypes(); if (!arguments.empty() && parameterTypes.size() != arguments.size()) { typeError( _inheritance.location(), "Wrong argument count for constructor call: " + toString(arguments.size()) + " arguments given but expected " + toString(parameterTypes.size()) + "." ); return; } for (size_t i = 0; i < arguments.size(); ++i) if (!type(*arguments[i])->isImplicitlyConvertibleTo(*parameterTypes[i])) typeError( arguments[i]->location(), "Invalid type for argument in constructor call. " "Invalid implicit conversion from " + type(*arguments[i])->toString() + " to " + parameterTypes[i]->toString() + " requested." ); } void TypeChecker::endVisit(UsingForDirective const& _usingFor) { ContractDefinition const* library = dynamic_cast( _usingFor.libraryName().annotation().referencedDeclaration ); if (!library || !library->isLibrary()) typeError(_usingFor.libraryName().location(), "Library name expected."); } bool TypeChecker::visit(StructDefinition const& _struct) { for (ASTPointer const& member: _struct.members()) if (!type(*member)->canBeStored()) typeError(member->location(), "Type cannot be used in struct."); // Check recursion, fatal error if detected. using StructPointer = StructDefinition const*; using StructPointersSet = set; function check = [&](StructPointer _struct, StructPointersSet const& _parents) { if (_parents.count(_struct)) fatalTypeError(_struct->location(), "Recursive struct definition."); StructPointersSet parents = _parents; parents.insert(_struct); for (ASTPointer const& member: _struct->members()) if (type(*member)->category() == Type::Category::Struct) { auto const& typeName = dynamic_cast(*member->typeName()); check(&dynamic_cast(*typeName.annotation().referencedDeclaration), parents); } }; check(&_struct, StructPointersSet{}); ASTNode::listAccept(_struct.members(), *this); return false; } bool TypeChecker::visit(FunctionDefinition const& _function) { bool isLibraryFunction = dynamic_cast(_function.scope()) && dynamic_cast(_function.scope())->isLibrary(); if (_function.isPayable()) { if (isLibraryFunction) typeError(_function.location(), "Library functions cannot be payable."); if (!_function.isConstructor() && !_function.name().empty() && !_function.isPartOfExternalInterface()) typeError(_function.location(), "Internal functions cannot be payable."); if (_function.isDeclaredConst()) typeError(_function.location(), "Functions cannot be constant and payable at the same time."); } for (ASTPointer const& var: _function.parameters() + _function.returnParameters()) { if (!type(*var)->canLiveOutsideStorage()) typeError(var->location(), "Type is required to live outside storage."); if (_function.visibility() >= FunctionDefinition::Visibility::Public && !(type(*var)->interfaceType(isLibraryFunction))) fatalTypeError(var->location(), "Internal type is not allowed for public or external functions."); } for (ASTPointer const& modifier: _function.modifiers()) visitManually( *modifier, _function.isConstructor() ? dynamic_cast(*_function.scope()).annotation().linearizedBaseContracts : vector() ); if (_function.isImplemented()) _function.body().accept(*this); return false; } bool TypeChecker::visit(VariableDeclaration const& _variable) { // Variables can be declared without type (with "var"), in which case the first assignment // sets the type. // Note that assignments before the first declaration are legal because of the special scoping // rules inherited from JavaScript. // type is filled either by ReferencesResolver directly from the type name or by // TypeChecker at the VariableDeclarationStatement level. TypePointer varType = _variable.annotation().type; solAssert(!!varType, "Failed to infer variable type."); if (_variable.isConstant()) { if (!dynamic_cast(_variable.scope())) typeError(_variable.location(), "Illegal use of \"constant\" specifier."); if (!_variable.value()) typeError(_variable.location(), "Uninitialized \"constant\" variable."); if (!varType->isValueType()) { bool constImplemented = false; if (auto arrayType = dynamic_cast(varType.get())) constImplemented = arrayType->isByteArray(); if (!constImplemented) typeError( _variable.location(), "Illegal use of \"constant\" specifier. \"constant\" " "is not yet implemented for this type." ); } } if (_variable.value()) expectType(*_variable.value(), *varType); if (!_variable.isStateVariable()) { if (varType->dataStoredIn(DataLocation::Memory) || varType->dataStoredIn(DataLocation::CallData)) if (!varType->canLiveOutsideStorage()) typeError(_variable.location(), "Type " + varType->toString() + " is only valid in storage."); } else if ( _variable.visibility() >= VariableDeclaration::Visibility::Public && !FunctionType(_variable).interfaceFunctionType() ) typeError(_variable.location(), "Internal type is not allowed for public state variables."); return false; } void TypeChecker::visitManually( ModifierInvocation const& _modifier, vector const& _bases ) { std::vector> const& arguments = _modifier.arguments(); for (ASTPointer const& argument: arguments) argument->accept(*this); _modifier.name()->accept(*this); auto const* declaration = &dereference(*_modifier.name()); vector> emptyParameterList; vector> const* parameters = nullptr; if (auto modifierDecl = dynamic_cast(declaration)) parameters = &modifierDecl->parameters(); else // check parameters for Base constructors for (ContractDefinition const* base: _bases) if (declaration == base) { if (auto referencedConstructor = base->constructor()) parameters = &referencedConstructor->parameters(); else parameters = &emptyParameterList; break; } if (!parameters) { typeError(_modifier.location(), "Referenced declaration is neither modifier nor base class."); return; } if (parameters->size() != arguments.size()) { typeError( _modifier.location(), "Wrong argument count for modifier invocation: " + toString(arguments.size()) + " arguments given but expected " + toString(parameters->size()) + "." ); return; } for (size_t i = 0; i < _modifier.arguments().size(); ++i) if (!type(*arguments[i])->isImplicitlyConvertibleTo(*type(*(*parameters)[i]))) typeError( arguments[i]->location(), "Invalid type for argument in modifier invocation. " "Invalid implicit conversion from " + type(*arguments[i])->toString() + " to " + type(*(*parameters)[i])->toString() + " requested." ); } bool TypeChecker::visit(EventDefinition const& _eventDef) { unsigned numIndexed = 0; for (ASTPointer const& var: _eventDef.parameters()) { if (var->isIndexed()) numIndexed++; if (_eventDef.isAnonymous() && numIndexed > 4) typeError(_eventDef.location(), "More than 4 indexed arguments for anonymous event."); else if (!_eventDef.isAnonymous() && numIndexed > 3) typeError(_eventDef.location(), "More than 3 indexed arguments for event."); if (!type(*var)->canLiveOutsideStorage()) typeError(var->location(), "Type is required to live outside storage."); if (!type(*var)->interfaceType(false)) typeError(var->location(), "Internal type is not allowed as event parameter type."); } return false; } void TypeChecker::endVisit(FunctionTypeName const& _funType) { FunctionType const& fun = dynamic_cast(*_funType.annotation().type); if (fun.location() == FunctionType::Location::External) if (!fun.canBeUsedExternally(false)) typeError(_funType.location(), "External function type uses internal types."); } bool TypeChecker::visit(InlineAssembly const& _inlineAssembly) { // Inline assembly does not have its own type-checking phase, so we just run the // code-generator and see whether it produces any errors. // External references have already been resolved in a prior stage and stored in the annotation. assembly::CodeGenerator codeGen(_inlineAssembly.operations(), m_errors); codeGen.typeCheck([&](assembly::Identifier const& _identifier, eth::Assembly& _assembly, assembly::CodeGenerator::IdentifierContext _context) { auto ref = _inlineAssembly.annotation().externalReferences.find(&_identifier); if (ref == _inlineAssembly.annotation().externalReferences.end()) return false; Declaration const* declaration = ref->second; solAssert(!!declaration, ""); if (_context == assembly::CodeGenerator::IdentifierContext::RValue) { solAssert(!!declaration->type(), "Type of declaration required but not yet determined."); unsigned pushes = 0; if (dynamic_cast(declaration)) pushes = 1; else if (auto var = dynamic_cast(declaration)) { if (var->isConstant()) fatalTypeError(SourceLocation(), "Constant variables not yet implemented for inline assembly."); if (var->isLocalVariable()) pushes = var->type()->sizeOnStack(); else if (!var->type()->isValueType()) pushes = 1; else pushes = 2; // slot number, intra slot offset } else if (auto contract = dynamic_cast(declaration)) { if (!contract->isLibrary()) return false; pushes = 1; } else return false; for (unsigned i = 0; i < pushes; ++i) _assembly.append(u256(0)); // just to verify the stack height } else { // lvalue context if (auto varDecl = dynamic_cast(declaration)) { if (!varDecl->isLocalVariable()) return false; // only local variables are inline-assemlby lvalues for (unsigned i = 0; i < declaration->type()->sizeOnStack(); ++i) _assembly.append(Instruction::POP); // remove value just to verify the stack height } else return false; } return true; }); return false; } bool TypeChecker::visit(IfStatement const& _ifStatement) { expectType(_ifStatement.condition(), BoolType()); _ifStatement.trueStatement().accept(*this); if (_ifStatement.falseStatement()) _ifStatement.falseStatement()->accept(*this); return false; } bool TypeChecker::visit(WhileStatement const& _whileStatement) { expectType(_whileStatement.condition(), BoolType()); _whileStatement.body().accept(*this); return false; } bool TypeChecker::visit(ForStatement const& _forStatement) { if (_forStatement.initializationExpression()) _forStatement.initializationExpression()->accept(*this); if (_forStatement.condition()) expectType(*_forStatement.condition(), BoolType()); if (_forStatement.loopExpression()) _forStatement.loopExpression()->accept(*this); _forStatement.body().accept(*this); return false; } void TypeChecker::endVisit(Return const& _return) { if (!_return.expression()) return; ParameterList const* params = _return.annotation().functionReturnParameters; if (!params) { typeError(_return.location(), "Return arguments not allowed."); return; } TypePointers returnTypes; for (auto const& var: params->parameters()) returnTypes.push_back(type(*var)); if (auto tupleType = dynamic_cast(type(*_return.expression()).get())) { if (tupleType->components().size() != params->parameters().size()) typeError(_return.location(), "Different number of arguments in return statement than in returns declaration."); else if (!tupleType->isImplicitlyConvertibleTo(TupleType(returnTypes))) typeError( _return.expression()->location(), "Return argument type " + type(*_return.expression())->toString() + " is not implicitly convertible to expected type " + TupleType(returnTypes).toString(false) + "." ); } else if (params->parameters().size() != 1) typeError(_return.location(), "Different number of arguments in return statement than in returns declaration."); else { TypePointer const& expected = type(*params->parameters().front()); if (!type(*_return.expression())->isImplicitlyConvertibleTo(*expected)) typeError( _return.expression()->location(), "Return argument type " + type(*_return.expression())->toString() + " is not implicitly convertible to expected type (type of first return variable) " + expected->toString() + "." ); } } bool TypeChecker::visit(VariableDeclarationStatement const& _statement) { if (!_statement.initialValue()) { // No initial value is only permitted for single variables with specified type. if (_statement.declarations().size() != 1 || !_statement.declarations().front()) fatalTypeError(_statement.location(), "Assignment necessary for type detection."); VariableDeclaration const& varDecl = *_statement.declarations().front(); if (!varDecl.annotation().type) fatalTypeError(_statement.location(), "Assignment necessary for type detection."); if (auto ref = dynamic_cast(type(varDecl).get())) { if (ref->dataStoredIn(DataLocation::Storage)) { warning( varDecl.location(), "Uninitialized storage pointer. Did you mean ' memory " + varDecl.name() + "'?" ); } } varDecl.accept(*this); return false; } // Here we have an initial value and might have to derive some types before we can visit // the variable declaration(s). _statement.initialValue()->accept(*this); TypePointers valueTypes; if (auto tupleType = dynamic_cast(type(*_statement.initialValue()).get())) valueTypes = tupleType->components(); else valueTypes = TypePointers{type(*_statement.initialValue())}; // Determine which component is assigned to which variable. // If numbers do not match, fill up if variables begin or end empty (not both). vector& assignments = _statement.annotation().assignments; assignments.resize(valueTypes.size(), nullptr); vector> const& variables = _statement.declarations(); if (variables.empty()) { if (!valueTypes.empty()) fatalTypeError( _statement.location(), "Too many components (" + toString(valueTypes.size()) + ") in value for variable assignment (0) needed" ); } else if (valueTypes.size() != variables.size() && !variables.front() && !variables.back()) fatalTypeError( _statement.location(), "Wildcard both at beginning and end of variable declaration list is only allowed " "if the number of components is equal." ); size_t minNumValues = variables.size(); if (!variables.empty() && (!variables.back() || !variables.front())) --minNumValues; if (valueTypes.size() < minNumValues) fatalTypeError( _statement.location(), "Not enough components (" + toString(valueTypes.size()) + ") in value to assign all variables (" + toString(minNumValues) + ")." ); if (valueTypes.size() > variables.size() && variables.front() && variables.back()) fatalTypeError( _statement.location(), "Too many components (" + toString(valueTypes.size()) + ") in value for variable assignment (" + toString(minNumValues) + " needed)." ); bool fillRight = !variables.empty() && (!variables.back() || variables.front()); for (size_t i = 0; i < min(variables.size(), valueTypes.size()); ++i) if (fillRight) assignments[i] = variables[i].get(); else assignments[assignments.size() - i - 1] = variables[variables.size() - i - 1].get(); for (size_t i = 0; i < assignments.size(); ++i) { if (!assignments[i]) continue; VariableDeclaration const& var = *assignments[i]; solAssert(!var.value(), "Value has to be tied to statement."); TypePointer const& valueComponentType = valueTypes[i]; solAssert(!!valueComponentType, ""); if (!var.annotation().type) { // Infer type from value. solAssert(!var.typeName(), ""); var.annotation().type = valueComponentType->mobileType(); if (!var.annotation().type) { if (valueComponentType->category() == Type::Category::RationalNumber) fatalTypeError( _statement.initialValue()->location(), "Invalid rational " + valueComponentType->toString() + " (absolute value too large or divison by zero)." ); else solAssert(false, ""); } else if (*var.annotation().type == TupleType()) typeError( var.location(), "Cannot declare variable with void (empty tuple) type." ); var.accept(*this); } else { var.accept(*this); if (!valueComponentType->isImplicitlyConvertibleTo(*var.annotation().type)) { if ( valueComponentType->category() == Type::Category::RationalNumber && dynamic_cast(*valueComponentType).isFractional() && valueComponentType->mobileType() ) typeError( _statement.location(), "Type " + valueComponentType->toString() + " is not implicitly convertible to expected type " + var.annotation().type->toString() + ". Try converting to type " + valueComponentType->mobileType()->toString() + " or use an explicit conversion." ); else typeError( _statement.location(), "Type " + valueComponentType->toString() + " is not implicitly convertible to expected type " + var.annotation().type->toString() + "." ); } } } return false; } void TypeChecker::endVisit(ExpressionStatement const& _statement) { if (type(_statement.expression())->category() == Type::Category::RationalNumber) if (!dynamic_cast(*type(_statement.expression())).mobileType()) typeError(_statement.expression().location(), "Invalid rational number."); if (auto call = dynamic_cast(&_statement.expression())) { if (auto callType = dynamic_cast(type(call->expression()).get())) { using Location = FunctionType::Location; Location location = callType->location(); if ( location == Location::Bare || location == Location::BareCallCode || location == Location::BareDelegateCall || location == Location::Send ) warning(_statement.location(), "Return value of low-level calls not used."); } } } bool TypeChecker::visit(Conditional const& _conditional) { expectType(_conditional.condition(), BoolType()); _conditional.trueExpression().accept(*this); _conditional.falseExpression().accept(*this); TypePointer trueType = type(_conditional.trueExpression())->mobileType(); TypePointer falseType = type(_conditional.falseExpression())->mobileType(); if (!trueType) fatalTypeError(_conditional.trueExpression().location(), "Invalid mobile type."); if (!falseType) fatalTypeError(_conditional.falseExpression().location(), "Invalid mobile type."); TypePointer commonType = Type::commonType(trueType, falseType); if (!commonType) { typeError( _conditional.location(), "True expression's type " + trueType->toString() + " doesn't match false expression's type " + falseType->toString() + "." ); // even we can't find a common type, we have to set a type here, // otherwise the upper statement will not be able to check the type. commonType = trueType; } _conditional.annotation().type = commonType; if (_conditional.annotation().lValueRequested) typeError( _conditional.location(), "Conditional expression as left value is not supported yet." ); return false; } bool TypeChecker::visit(Assignment const& _assignment) { requireLValue(_assignment.leftHandSide()); TypePointer t = type(_assignment.leftHandSide()); _assignment.annotation().type = t; if (TupleType const* tupleType = dynamic_cast(t.get())) { // Sequenced assignments of tuples is not valid, make the result a "void" type. _assignment.annotation().type = make_shared(); expectType(_assignment.rightHandSide(), *tupleType); } else if (t->category() == Type::Category::Mapping) { typeError(_assignment.location(), "Mappings cannot be assigned to."); _assignment.rightHandSide().accept(*this); } else if (_assignment.assignmentOperator() == Token::Assign) expectType(_assignment.rightHandSide(), *t); else { // compound assignment _assignment.rightHandSide().accept(*this); TypePointer resultType = t->binaryOperatorResult( Token::AssignmentToBinaryOp(_assignment.assignmentOperator()), type(_assignment.rightHandSide()) ); if (!resultType || *resultType != *t) typeError( _assignment.location(), "Operator " + string(Token::toString(_assignment.assignmentOperator())) + " not compatible with types " + t->toString() + " and " + type(_assignment.rightHandSide())->toString() ); } return false; } bool TypeChecker::visit(TupleExpression const& _tuple) { vector> const& components = _tuple.components(); TypePointers types; if (_tuple.annotation().lValueRequested) { if (_tuple.isInlineArray()) fatalTypeError(_tuple.location(), "Inline array type cannot be declared as LValue."); for (auto const& component: components) if (component) { requireLValue(*component); types.push_back(type(*component)); } else types.push_back(TypePointer()); if (components.size() == 1) _tuple.annotation().type = type(*components[0]); else _tuple.annotation().type = make_shared(types); // If some of the components are not LValues, the error is reported above. _tuple.annotation().isLValue = true; } else { TypePointer inlineArrayType; for (size_t i = 0; i < components.size(); ++i) { // Outside of an lvalue-context, the only situation where a component can be empty is (x,). if (!components[i] && !(i == 1 && components.size() == 2)) fatalTypeError(_tuple.location(), "Tuple component cannot be empty."); else if (components[i]) { components[i]->accept(*this); types.push_back(type(*components[i])); if (_tuple.isInlineArray()) solAssert(!!types[i], "Inline array cannot have empty components"); if (_tuple.isInlineArray()) { if ((i == 0 || inlineArrayType) && !types[i]->mobileType()) fatalTypeError(components[i]->location(), "Invalid mobile type."); if (i == 0) inlineArrayType = types[i]; else if (inlineArrayType) inlineArrayType = Type::commonType(inlineArrayType, types[i]); } } else types.push_back(TypePointer()); } if (_tuple.isInlineArray()) { if (!inlineArrayType) fatalTypeError(_tuple.location(), "Unable to deduce common type for array elements."); _tuple.annotation().type = make_shared(DataLocation::Memory, inlineArrayType, types.size()); } else { if (components.size() == 1) _tuple.annotation().type = type(*components[0]); else { if (components.size() == 2 && !components[1]) types.pop_back(); _tuple.annotation().type = make_shared(types); } } } return false; } bool TypeChecker::visit(UnaryOperation const& _operation) { // Inc, Dec, Add, Sub, Not, BitNot, Delete Token::Value op = _operation.getOperator(); if (op == Token::Value::Inc || op == Token::Value::Dec || op == Token::Value::Delete) requireLValue(_operation.subExpression()); else _operation.subExpression().accept(*this); TypePointer const& subExprType = type(_operation.subExpression()); TypePointer t = type(_operation.subExpression())->unaryOperatorResult(op); if (!t) { typeError( _operation.location(), "Unary operator " + string(Token::toString(op)) + " cannot be applied to type " + subExprType->toString() ); t = subExprType; } _operation.annotation().type = t; return false; } void TypeChecker::endVisit(BinaryOperation const& _operation) { TypePointer const& leftType = type(_operation.leftExpression()); TypePointer const& rightType = type(_operation.rightExpression()); TypePointer commonType = leftType->binaryOperatorResult(_operation.getOperator(), rightType); if (!commonType) { typeError( _operation.location(), "Operator " + string(Token::toString(_operation.getOperator())) + " not compatible with types " + leftType->toString() + " and " + rightType->toString() ); commonType = leftType; } _operation.annotation().commonType = commonType; _operation.annotation().type = Token::isCompareOp(_operation.getOperator()) ? make_shared() : commonType; } bool TypeChecker::visit(FunctionCall const& _functionCall) { bool isPositionalCall = _functionCall.names().empty(); vector> arguments = _functionCall.arguments(); vector> const& argumentNames = _functionCall.names(); // We need to check arguments' type first as they will be needed for overload resolution. shared_ptr argumentTypes; if (isPositionalCall) argumentTypes = make_shared(); for (ASTPointer const& argument: arguments) { argument->accept(*this); // only store them for positional calls if (isPositionalCall) argumentTypes->push_back(type(*argument)); } if (isPositionalCall) _functionCall.expression().annotation().argumentTypes = move(argumentTypes); _functionCall.expression().accept(*this); TypePointer expressionType = type(_functionCall.expression()); if (auto const* typeType = dynamic_cast(expressionType.get())) { _functionCall.annotation().isStructConstructorCall = (typeType->actualType()->category() == Type::Category::Struct); _functionCall.annotation().isTypeConversion = !_functionCall.annotation().isStructConstructorCall; } else _functionCall.annotation().isStructConstructorCall = _functionCall.annotation().isTypeConversion = false; if (_functionCall.annotation().isTypeConversion) { TypeType const& t = dynamic_cast(*expressionType); TypePointer resultType = t.actualType(); if (arguments.size() != 1) typeError(_functionCall.location(), "Exactly one argument expected for explicit type conversion."); else if (!isPositionalCall) typeError(_functionCall.location(), "Type conversion cannot allow named arguments."); else { TypePointer const& argType = type(*arguments.front()); if (auto argRefType = dynamic_cast(argType.get())) // do not change the data location when converting // (data location cannot yet be specified for type conversions) resultType = ReferenceType::copyForLocationIfReference(argRefType->location(), resultType); if (!argType->isExplicitlyConvertibleTo(*resultType)) typeError(_functionCall.location(), "Explicit type conversion not allowed."); } _functionCall.annotation().type = resultType; return false; } // Actual function call or struct constructor call. FunctionTypePointer functionType; /// For error message: Struct members that were removed during conversion to memory. set membersRemovedForStructConstructor; if (_functionCall.annotation().isStructConstructorCall) { TypeType const& t = dynamic_cast(*expressionType); auto const& structType = dynamic_cast(*t.actualType()); functionType = structType.constructorType(); membersRemovedForStructConstructor = structType.membersMissingInMemory(); } else functionType = dynamic_pointer_cast(expressionType); if (!functionType) { typeError(_functionCall.location(), "Type is not callable"); _functionCall.annotation().type = make_shared(); return false; } else if (functionType->returnParameterTypes().size() == 1) _functionCall.annotation().type = functionType->returnParameterTypes().front(); else _functionCall.annotation().type = make_shared(functionType->returnParameterTypes()); TypePointers parameterTypes = functionType->parameterTypes(); if (!functionType->takesArbitraryParameters() && parameterTypes.size() != arguments.size()) { string msg = "Wrong argument count for function call: " + toString(arguments.size()) + " arguments given but expected " + toString(parameterTypes.size()) + "."; // Extend error message in case we try to construct a struct with mapping member. if (_functionCall.annotation().isStructConstructorCall && !membersRemovedForStructConstructor.empty()) { msg += " Members that have to be skipped in memory:"; for (auto const& member: membersRemovedForStructConstructor) msg += " " + member; } typeError(_functionCall.location(), msg); } else if (isPositionalCall) { // call by positional arguments for (size_t i = 0; i < arguments.size(); ++i) { auto const& argType = type(*arguments[i]); if (functionType->takesArbitraryParameters()) { if (auto t = dynamic_cast(argType.get())) if (!t->mobileType()) typeError(arguments[i]->location(), "Invalid rational number (too large or division by zero)."); } else if (!type(*arguments[i])->isImplicitlyConvertibleTo(*parameterTypes[i])) typeError( arguments[i]->location(), "Invalid type for argument in function call. " "Invalid implicit conversion from " + type(*arguments[i])->toString() + " to " + parameterTypes[i]->toString() + " requested." ); } } else { // call by named arguments auto const& parameterNames = functionType->parameterNames(); if (functionType->takesArbitraryParameters()) typeError( _functionCall.location(), "Named arguments cannnot be used for functions that take arbitrary parameters." ); else if (parameterNames.size() > argumentNames.size()) typeError(_functionCall.location(), "Some argument names are missing."); else if (parameterNames.size() < argumentNames.size()) typeError(_functionCall.location(), "Too many arguments."); else { // check duplicate names bool duplication = false; for (size_t i = 0; i < argumentNames.size(); i++) for (size_t j = i + 1; j < argumentNames.size(); j++) if (*argumentNames[i] == *argumentNames[j]) { duplication = true; typeError(arguments[i]->location(), "Duplicate named argument."); } // check actual types if (!duplication) for (size_t i = 0; i < argumentNames.size(); i++) { bool found = false; for (size_t j = 0; j < parameterNames.size(); j++) if (parameterNames[j] == *argumentNames[i]) { found = true; // check type convertible if (!type(*arguments[i])->isImplicitlyConvertibleTo(*parameterTypes[j])) typeError( arguments[i]->location(), "Invalid type for argument in function call. " "Invalid implicit conversion from " + type(*arguments[i])->toString() + " to " + parameterTypes[i]->toString() + " requested." ); break; } if (!found) typeError( _functionCall.location(), "Named argument does not match function declaration." ); } } } return false; } void TypeChecker::endVisit(NewExpression const& _newExpression) { TypePointer type = _newExpression.typeName().annotation().type; solAssert(!!type, "Type name not resolved."); if (auto contractName = dynamic_cast(&_newExpression.typeName())) { auto contract = dynamic_cast(&dereference(*contractName)); if (!contract) fatalTypeError(_newExpression.location(), "Identifier is not a contract."); if (!contract->annotation().isFullyImplemented) typeError(_newExpression.location(), "Trying to create an instance of an abstract contract."); if (!contract->annotation().hasPublicConstructor) typeError(_newExpression.location(), "Contract with internal constructor cannot be created directly."); solAssert(!!m_scope, ""); m_scope->annotation().contractDependencies.insert(contract); solAssert( !contract->annotation().linearizedBaseContracts.empty(), "Linearized base contracts not yet available." ); if (contractDependenciesAreCyclic(*m_scope)) typeError( _newExpression.location(), "Circular reference for contract creation (cannot create instance of derived or same contract)." ); _newExpression.annotation().type = FunctionType::newExpressionType(*contract); } else if (type->category() == Type::Category::Array) { if (!type->canLiveOutsideStorage()) fatalTypeError( _newExpression.typeName().location(), "Type cannot live outside storage." ); if (!type->isDynamicallySized()) typeError( _newExpression.typeName().location(), "Length has to be placed in parentheses after the array type for new expression." ); type = ReferenceType::copyForLocationIfReference(DataLocation::Memory, type); _newExpression.annotation().type = make_shared( TypePointers{make_shared(256)}, TypePointers{type}, strings(), strings(), FunctionType::Location::ObjectCreation ); } else fatalTypeError(_newExpression.location(), "Contract or array type expected."); } bool TypeChecker::visit(MemberAccess const& _memberAccess) { _memberAccess.expression().accept(*this); TypePointer exprType = type(_memberAccess.expression()); ASTString const& memberName = _memberAccess.memberName(); // Retrieve the types of the arguments if this is used to call a function. auto const& argumentTypes = _memberAccess.annotation().argumentTypes; MemberList::MemberMap possibleMembers = exprType->members(m_scope).membersByName(memberName); if (possibleMembers.size() > 1 && argumentTypes) { // do overload resolution for (auto it = possibleMembers.begin(); it != possibleMembers.end();) if ( it->type->category() == Type::Category::Function && !dynamic_cast(*it->type).canTakeArguments(*argumentTypes, exprType) ) it = possibleMembers.erase(it); else ++it; } if (possibleMembers.size() == 0) { auto storageType = ReferenceType::copyForLocationIfReference( DataLocation::Storage, exprType ); if (!storageType->members(m_scope).membersByName(memberName).empty()) fatalTypeError( _memberAccess.location(), "Member \"" + memberName + "\" is not available in " + exprType->toString() + " outside of storage." ); fatalTypeError( _memberAccess.location(), "Member \"" + memberName + "\" not found or not visible " "after argument-dependent lookup in " + exprType->toString() + (memberName == "value" ? " - did you forget the \"payable\" modifier?" : "") ); } else if (possibleMembers.size() > 1) fatalTypeError( _memberAccess.location(), "Member \"" + memberName + "\" not unique " "after argument-dependent lookup in " + exprType->toString() + (memberName == "value" ? " - did you forget the \"payable\" modifier?" : "") ); auto& annotation = _memberAccess.annotation(); annotation.referencedDeclaration = possibleMembers.front().declaration; annotation.type = possibleMembers.front().type; if (auto funType = dynamic_cast(annotation.type.get())) if (funType->bound() && !exprType->isImplicitlyConvertibleTo(*funType->selfType())) typeError( _memberAccess.location(), "Function \"" + memberName + "\" cannot be called on an object of type " + exprType->toString() + " (expected " + funType->selfType()->toString() + ")" ); if (exprType->category() == Type::Category::Struct) annotation.isLValue = true; else if (exprType->category() == Type::Category::Array) { auto const& arrayType(dynamic_cast(*exprType)); annotation.isLValue = ( memberName == "length" && arrayType.location() == DataLocation::Storage && arrayType.isDynamicallySized() ); } else if (exprType->category() == Type::Category::FixedBytes) annotation.isLValue = false; else if (TypeType const* typeType = dynamic_cast(exprType.get())) { if (ContractType const* contractType = dynamic_cast(typeType->actualType().get())) annotation.isLValue = annotation.referencedDeclaration->isLValue(); } return false; } bool TypeChecker::visit(IndexAccess const& _access) { _access.baseExpression().accept(*this); TypePointer baseType = type(_access.baseExpression()); TypePointer resultType; bool isLValue = false; Expression const* index = _access.indexExpression(); switch (baseType->category()) { case Type::Category::Array: { ArrayType const& actualType = dynamic_cast(*baseType); if (!index) typeError(_access.location(), "Index expression cannot be omitted."); else if (actualType.isString()) { typeError(_access.location(), "Index access for string is not possible."); index->accept(*this); } else { expectType(*index, IntegerType(256)); if (auto numberType = dynamic_cast(type(*index).get())) { if (!numberType->isFractional()) // error is reported above if (!actualType.isDynamicallySized() && actualType.length() <= numberType->literalValue(nullptr)) typeError(_access.location(), "Out of bounds array access."); } } resultType = actualType.baseType(); isLValue = actualType.location() != DataLocation::CallData; break; } case Type::Category::Mapping: { MappingType const& actualType = dynamic_cast(*baseType); if (!index) typeError(_access.location(), "Index expression cannot be omitted."); else expectType(*index, *actualType.keyType()); resultType = actualType.valueType(); isLValue = true; break; } case Type::Category::TypeType: { TypeType const& typeType = dynamic_cast(*baseType); if (!index) resultType = make_shared(make_shared(DataLocation::Memory, typeType.actualType())); else { expectType(*index, IntegerType(256)); if (auto length = dynamic_cast(type(*index).get())) resultType = make_shared(make_shared( DataLocation::Memory, typeType.actualType(), length->literalValue(nullptr) )); else fatalTypeError(index->location(), "Integer constant expected."); } break; } case Type::Category::FixedBytes: { FixedBytesType const& bytesType = dynamic_cast(*baseType); if (!index) typeError(_access.location(), "Index expression cannot be omitted."); else { expectType(*index, IntegerType(256)); if (auto integerType = dynamic_cast(type(*index).get())) if (bytesType.numBytes() <= integerType->literalValue(nullptr)) typeError(_access.location(), "Out of bounds array access."); } resultType = make_shared(1); isLValue = false; // @todo this heavily depends on how it is embedded break; } default: fatalTypeError( _access.baseExpression().location(), "Indexed expression has to be a type, mapping or array (is " + baseType->toString() + ")" ); } _access.annotation().type = move(resultType); _access.annotation().isLValue = isLValue; return false; } bool TypeChecker::visit(Identifier const& _identifier) { IdentifierAnnotation& annotation = _identifier.annotation(); if (!annotation.referencedDeclaration) { if (!annotation.argumentTypes) { // The identifier should be a public state variable shadowing other functions vector candidates; for (Declaration const* declaration: annotation.overloadedDeclarations) { if (VariableDeclaration const* variableDeclaration = dynamic_cast(declaration)) candidates.push_back(declaration); } if (candidates.empty()) fatalTypeError(_identifier.location(), "No matching declaration found after variable lookup."); else if (candidates.size() == 1) annotation.referencedDeclaration = candidates.front(); else fatalTypeError(_identifier.location(), "No unique declaration found after variable lookup."); } else if (annotation.overloadedDeclarations.empty()) fatalTypeError(_identifier.location(), "No candidates for overload resolution found."); else if (annotation.overloadedDeclarations.size() == 1) annotation.referencedDeclaration = *annotation.overloadedDeclarations.begin(); else { vector candidates; for (Declaration const* declaration: annotation.overloadedDeclarations) { TypePointer function = declaration->type(); solAssert(!!function, "Requested type not present."); auto const* functionType = dynamic_cast(function.get()); if (functionType && functionType->canTakeArguments(*annotation.argumentTypes)) candidates.push_back(declaration); } if (candidates.empty()) fatalTypeError(_identifier.location(), "No matching declaration found after argument-dependent lookup."); else if (candidates.size() == 1) annotation.referencedDeclaration = candidates.front(); else fatalTypeError(_identifier.location(), "No unique declaration found after argument-dependent lookup."); } } solAssert( !!annotation.referencedDeclaration, "Referenced declaration is null after overload resolution." ); auto variableDeclaration = dynamic_cast(annotation.referencedDeclaration); annotation.isConstant = variableDeclaration != nullptr && variableDeclaration->isConstant(); annotation.isLValue = annotation.referencedDeclaration->isLValue(); annotation.type = annotation.referencedDeclaration->type(); if (!annotation.type) fatalTypeError(_identifier.location(), "Declaration referenced before type could be determined."); return false; } void TypeChecker::endVisit(ElementaryTypeNameExpression const& _expr) { _expr.annotation().type = make_shared(Type::fromElementaryTypeName(_expr.typeName())); } void TypeChecker::endVisit(Literal const& _literal) { if (_literal.looksLikeAddress()) { if (_literal.passesAddressChecksum()) { _literal.annotation().type = make_shared(0, IntegerType::Modifier::Address); return; } else warning( _literal.location(), "This looks like an address but has an invalid checksum. " "If this is not used as an address, please prepend '00'." ); } _literal.annotation().type = Type::forLiteral(_literal); if (!_literal.annotation().type) fatalTypeError(_literal.location(), "Invalid literal value."); } bool TypeChecker::contractDependenciesAreCyclic( ContractDefinition const& _contract, std::set const& _seenContracts ) const { // Naive depth-first search that remembers nodes already seen. if (_seenContracts.count(&_contract)) return true; set seen(_seenContracts); seen.insert(&_contract); for (auto const* c: _contract.annotation().contractDependencies) if (contractDependenciesAreCyclic(*c, seen)) return true; return false; } Declaration const& TypeChecker::dereference(Identifier const& _identifier) const { solAssert(!!_identifier.annotation().referencedDeclaration, "Declaration not stored."); return *_identifier.annotation().referencedDeclaration; } Declaration const& TypeChecker::dereference(UserDefinedTypeName const& _typeName) const { solAssert(!!_typeName.annotation().referencedDeclaration, "Declaration not stored."); return *_typeName.annotation().referencedDeclaration; } void TypeChecker::expectType(Expression const& _expression, Type const& _expectedType) { _expression.accept(*this); if (!type(_expression)->isImplicitlyConvertibleTo(_expectedType)) { if ( type(_expression)->category() == Type::Category::RationalNumber && dynamic_pointer_cast(type(_expression))->isFractional() && type(_expression)->mobileType() ) typeError( _expression.location(), "Type " + type(_expression)->toString() + " is not implicitly convertible to expected type " + _expectedType.toString() + ". Try converting to type " + type(_expression)->mobileType()->toString() + " or use an explicit conversion." ); else typeError( _expression.location(), "Type " + type(_expression)->toString() + " is not implicitly convertible to expected type " + _expectedType.toString() + "." ); } } void TypeChecker::requireLValue(Expression const& _expression) { _expression.annotation().lValueRequested = true; _expression.accept(*this); if (_expression.annotation().isConstant) typeError(_expression.location(), "Cannot assign to a constant variable."); else if (!_expression.annotation().isLValue) typeError(_expression.location(), "Expression has to be an lvalue."); } void TypeChecker::typeError(SourceLocation const& _location, string const& _description) { auto err = make_shared(Error::Type::TypeError); *err << errinfo_sourceLocation(_location) << errinfo_comment(_description); m_errors.push_back(err); } void TypeChecker::warning(SourceLocation const& _location, string const& _description) { auto err = make_shared(Error::Type::Warning); *err << errinfo_sourceLocation(_location) << errinfo_comment(_description); m_errors.push_back(err); } void TypeChecker::fatalTypeError(SourceLocation const& _location, string const& _description) { typeError(_location, _description); BOOST_THROW_EXCEPTION(FatalError()); }