/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ // SPDX-License-Identifier: GPL-3.0 /** * @author Christian * @date 2014 * Solidity AST to EVM bytecode compiler for expressions. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace solidity; using namespace solidity::evmasm; using namespace solidity::frontend; using namespace solidity::langutil; using namespace solidity::util; namespace { Type const* closestType(Type const* _type, Type const* _targetType, bool _isShiftOp) { if (_isShiftOp) return _type->mobileType(); else if (auto const* tupleType = dynamic_cast(_type)) { solAssert(_targetType, ""); TypePointers const& targetComponents = dynamic_cast(*_targetType).components(); solAssert(tupleType->components().size() == targetComponents.size(), ""); TypePointers tempComponents(targetComponents.size()); for (size_t i = 0; i < targetComponents.size(); ++i) { if (tupleType->components()[i] && targetComponents[i]) { tempComponents[i] = closestType(tupleType->components()[i], targetComponents[i], _isShiftOp); solAssert(tempComponents[i], ""); } } return TypeProvider::tuple(move(tempComponents)); } else return _targetType->dataStoredIn(DataLocation::Storage) ? _type->mobileType() : _targetType; } } void ExpressionCompiler::compile(Expression const& _expression) { _expression.accept(*this); } void ExpressionCompiler::appendStateVariableInitialization(VariableDeclaration const& _varDecl) { if (!_varDecl.value()) return; Type const* type = _varDecl.value()->annotation().type; solAssert(!!type, "Type information not available."); CompilerContext::LocationSetter locationSetter(m_context, _varDecl); _varDecl.value()->accept(*this); if (_varDecl.annotation().type->dataStoredIn(DataLocation::Storage)) { // reference type, only convert value to mobile type and do final conversion in storeValue. auto mt = type->mobileType(); solAssert(mt, ""); utils().convertType(*type, *mt); type = mt; } else { utils().convertType(*type, *_varDecl.annotation().type); type = _varDecl.annotation().type; } if (_varDecl.immutable()) ImmutableItem(m_context, _varDecl).storeValue(*type, _varDecl.location(), true); else StorageItem(m_context, _varDecl).storeValue(*type, _varDecl.location(), true); } void ExpressionCompiler::appendConstStateVariableAccessor(VariableDeclaration const& _varDecl) { solAssert(_varDecl.isConstant(), ""); acceptAndConvert(*_varDecl.value(), *_varDecl.annotation().type); // append return m_context << dupInstruction(_varDecl.annotation().type->sizeOnStack() + 1); m_context.appendJump(evmasm::AssemblyItem::JumpType::OutOfFunction); } void ExpressionCompiler::appendStateVariableAccessor(VariableDeclaration const& _varDecl) { solAssert(!_varDecl.isConstant(), ""); CompilerContext::LocationSetter locationSetter(m_context, _varDecl); FunctionType accessorType(_varDecl); TypePointers paramTypes = accessorType.parameterTypes(); if (_varDecl.immutable()) solAssert(paramTypes.empty(), ""); m_context.adjustStackOffset(static_cast(1 + CompilerUtils::sizeOnStack(paramTypes))); if (!_varDecl.immutable()) { // retrieve the position of the variable auto const& location = m_context.storageLocationOfVariable(_varDecl); m_context << location.first << u256(location.second); } Type const* returnType = _varDecl.annotation().type; for (size_t i = 0; i < paramTypes.size(); ++i) { if (auto mappingType = dynamic_cast(returnType)) { solAssert(CompilerUtils::freeMemoryPointer >= 0x40, ""); // pop offset m_context << Instruction::POP; if (paramTypes[i]->isDynamicallySized()) { solAssert( dynamic_cast(*paramTypes[i]).isByteArrayOrString(), "Expected string or byte array for mapping key type" ); // stack: // copy key[i] to top. utils().copyToStackTop(static_cast(paramTypes.size() - i + 1), 1); m_context.appendInlineAssembly(R"({ let key_len := mload(key_ptr) // Temp. use the memory after the array data for the slot // position let post_data_ptr := add(key_ptr, add(key_len, 0x20)) let orig_data := mload(post_data_ptr) mstore(post_data_ptr, slot_pos) let hash := keccak256(add(key_ptr, 0x20), add(key_len, 0x20)) mstore(post_data_ptr, orig_data) slot_pos := hash })", {"slot_pos", "key_ptr"}); m_context << Instruction::POP; } else { solAssert(paramTypes[i]->isValueType(), "Expected value type for mapping key"); // move storage offset to memory. utils().storeInMemory(32); // move key to memory. utils().copyToStackTop(static_cast(paramTypes.size() - i), 1); utils().storeInMemory(0); m_context << u256(64) << u256(0); m_context << Instruction::KECCAK256; } // push offset m_context << u256(0); returnType = mappingType->valueType(); } else if (auto arrayType = dynamic_cast(returnType)) { // pop offset m_context << Instruction::POP; utils().copyToStackTop(static_cast(paramTypes.size() - i + 1), 1); ArrayUtils(m_context).retrieveLength(*arrayType, 1); // Stack: ref [length] index length // check out-of-bounds access m_context << Instruction::DUP2 << Instruction::LT; auto tag = m_context.appendConditionalJump(); m_context << u256(0) << Instruction::DUP1 << Instruction::REVERT; m_context << tag; ArrayUtils(m_context).accessIndex(*arrayType, false); returnType = arrayType->baseType(); } else solAssert(false, "Index access is allowed only for \"mapping\" and \"array\" types."); } // remove index arguments. if (paramTypes.size() == 1) m_context << Instruction::SWAP2 << Instruction::POP << Instruction::SWAP1; else if (paramTypes.size() >= 2) { m_context << swapInstruction(static_cast(paramTypes.size())); m_context << Instruction::POP; m_context << swapInstruction(static_cast(paramTypes.size())); utils().popStackSlots(paramTypes.size() - 1); } unsigned retSizeOnStack = 0; auto returnTypes = accessorType.returnParameterTypes(); solAssert(returnTypes.size() >= 1, ""); if (StructType const* structType = dynamic_cast(returnType)) { solAssert(!_varDecl.immutable(), ""); // remove offset m_context << Instruction::POP; auto const& names = accessorType.returnParameterNames(); // struct for (size_t i = 0; i < names.size(); ++i) { if (returnTypes[i]->category() == Type::Category::Mapping) continue; if (auto arrayType = dynamic_cast(returnTypes[i])) if (!arrayType->isByteArrayOrString()) continue; pair const& offsets = structType->storageOffsetsOfMember(names[i]); m_context << Instruction::DUP1 << u256(offsets.first) << Instruction::ADD << u256(offsets.second); Type const* memberType = structType->memberType(names[i]); StorageItem(m_context, *memberType).retrieveValue(SourceLocation(), true); utils().convertType(*memberType, *returnTypes[i]); utils().moveToStackTop(returnTypes[i]->sizeOnStack()); retSizeOnStack += returnTypes[i]->sizeOnStack(); } // remove slot m_context << Instruction::POP; } else { // simple value or array solAssert(returnTypes.size() == 1, ""); if (_varDecl.immutable()) ImmutableItem(m_context, _varDecl).retrieveValue(SourceLocation()); else StorageItem(m_context, *returnType).retrieveValue(SourceLocation(), true); utils().convertType(*returnType, *returnTypes.front()); retSizeOnStack = returnTypes.front()->sizeOnStack(); } solAssert(retSizeOnStack == utils().sizeOnStack(returnTypes), ""); if (retSizeOnStack > 15) BOOST_THROW_EXCEPTION( StackTooDeepError() << errinfo_sourceLocation(_varDecl.location()) << errinfo_comment("Stack too deep.") ); m_context << dupInstruction(retSizeOnStack + 1); m_context.appendJump(evmasm::AssemblyItem::JumpType::OutOfFunction); } bool ExpressionCompiler::visit(Conditional const& _condition) { CompilerContext::LocationSetter locationSetter(m_context, _condition); _condition.condition().accept(*this); evmasm::AssemblyItem trueTag = m_context.appendConditionalJump(); acceptAndConvert(_condition.falseExpression(), *_condition.annotation().type); evmasm::AssemblyItem endTag = m_context.appendJumpToNew(); m_context << trueTag; int offset = static_cast(_condition.annotation().type->sizeOnStack()); m_context.adjustStackOffset(-offset); acceptAndConvert(_condition.trueExpression(), *_condition.annotation().type); m_context << endTag; return false; } bool ExpressionCompiler::visit(Assignment const& _assignment) { CompilerContext::LocationSetter locationSetter(m_context, _assignment); Token op = _assignment.assignmentOperator(); Token binOp = op == Token::Assign ? op : TokenTraits::AssignmentToBinaryOp(op); Type const& leftType = *_assignment.leftHandSide().annotation().type; if (leftType.category() == Type::Category::Tuple) { solAssert(*_assignment.annotation().type == TupleType(), ""); solAssert(op == Token::Assign, ""); } else solAssert(*_assignment.annotation().type == leftType, ""); bool cleanupNeeded = false; if (op != Token::Assign) cleanupNeeded = cleanupNeededForOp(leftType.category(), binOp, m_context.arithmetic()); _assignment.rightHandSide().accept(*this); // Perform some conversion already. This will convert storage types to memory and literals // to their actual type, but will not convert e.g. memory to storage. Type const* rightIntermediateType = closestType( _assignment.rightHandSide().annotation().type, _assignment.leftHandSide().annotation().type, op != Token::Assign && TokenTraits::isShiftOp(binOp) ); solAssert(rightIntermediateType, ""); utils().convertType(*_assignment.rightHandSide().annotation().type, *rightIntermediateType, cleanupNeeded); _assignment.leftHandSide().accept(*this); solAssert(!!m_currentLValue, "LValue not retrieved."); if (op == Token::Assign) m_currentLValue->storeValue(*rightIntermediateType, _assignment.location()); else // compound assignment { solAssert(binOp != Token::Exp, "Compound exp is not possible."); solAssert(leftType.isValueType(), "Compound operators only available for value types."); unsigned lvalueSize = m_currentLValue->sizeOnStack(); unsigned itemSize = _assignment.annotation().type->sizeOnStack(); if (lvalueSize > 0) { utils().copyToStackTop(lvalueSize + itemSize, itemSize); utils().copyToStackTop(itemSize + lvalueSize, lvalueSize); // value lvalue_ref value lvalue_ref } m_currentLValue->retrieveValue(_assignment.location(), true); utils().convertType(leftType, leftType, cleanupNeeded); if (TokenTraits::isShiftOp(binOp)) appendShiftOperatorCode(binOp, leftType, *rightIntermediateType); else { solAssert(leftType == *rightIntermediateType, ""); appendOrdinaryBinaryOperatorCode(binOp, leftType); } if (lvalueSize > 0) { if (itemSize + lvalueSize > 16) BOOST_THROW_EXCEPTION( StackTooDeepError() << errinfo_sourceLocation(_assignment.location()) << errinfo_comment("Stack too deep, try removing local variables.") ); // value [lvalue_ref] updated_value for (unsigned i = 0; i < itemSize; ++i) m_context << swapInstruction(itemSize + lvalueSize) << Instruction::POP; } m_currentLValue->storeValue(*_assignment.annotation().type, _assignment.location()); } m_currentLValue.reset(); return false; } bool ExpressionCompiler::visit(TupleExpression const& _tuple) { if (_tuple.isInlineArray()) { ArrayType const& arrayType = dynamic_cast(*_tuple.annotation().type); solAssert(!arrayType.isDynamicallySized(), "Cannot create dynamically sized inline array."); utils().allocateMemory(max(u256(32u), arrayType.memoryDataSize())); m_context << Instruction::DUP1; for (auto const& component: _tuple.components()) { acceptAndConvert(*component, *arrayType.baseType(), true); utils().storeInMemoryDynamic(*arrayType.baseType(), true); } m_context << Instruction::POP; } else { vector> lvalues; for (auto const& component: _tuple.components()) if (component) { component->accept(*this); if (_tuple.annotation().willBeWrittenTo) { solAssert(!!m_currentLValue, ""); lvalues.push_back(move(m_currentLValue)); } } else if (_tuple.annotation().willBeWrittenTo) lvalues.push_back(unique_ptr()); if (_tuple.annotation().willBeWrittenTo) { if (_tuple.components().size() == 1) m_currentLValue = move(lvalues[0]); else m_currentLValue = make_unique(m_context, move(lvalues)); } } return false; } bool ExpressionCompiler::visit(UnaryOperation const& _unaryOperation) { CompilerContext::LocationSetter locationSetter(m_context, _unaryOperation); Type const& type = *_unaryOperation.annotation().type; if (type.category() == Type::Category::RationalNumber) { m_context << type.literalValue(nullptr); return false; } _unaryOperation.subExpression().accept(*this); switch (_unaryOperation.getOperator()) { case Token::Not: // ! m_context << Instruction::ISZERO; break; case Token::BitNot: // ~ m_context << Instruction::NOT; break; case Token::Delete: // delete solAssert(!!m_currentLValue, "LValue not retrieved."); m_currentLValue->setToZero(_unaryOperation.location()); m_currentLValue.reset(); break; case Token::Inc: // ++ (pre- or postfix) case Token::Dec: // -- (pre- or postfix) solAssert(!!m_currentLValue, "LValue not retrieved."); solUnimplementedAssert( type.category() != Type::Category::FixedPoint, "Not yet implemented - FixedPointType." ); m_currentLValue->retrieveValue(_unaryOperation.location()); if (!_unaryOperation.isPrefixOperation()) { // store value for later solUnimplementedAssert(type.sizeOnStack() == 1, "Stack size != 1 not implemented."); m_context << Instruction::DUP1; if (m_currentLValue->sizeOnStack() > 0) for (unsigned i = 1 + m_currentLValue->sizeOnStack(); i > 0; --i) m_context << swapInstruction(i); } if (_unaryOperation.getOperator() == Token::Inc) { if (m_context.arithmetic() == Arithmetic::Checked) m_context.callYulFunction(m_context.utilFunctions().incrementCheckedFunction(type), 1, 1); else { m_context << u256(1); m_context << Instruction::ADD; } } else { if (m_context.arithmetic() == Arithmetic::Checked) m_context.callYulFunction(m_context.utilFunctions().decrementCheckedFunction(type), 1, 1); else { m_context << u256(1); m_context << Instruction::SWAP1 << Instruction::SUB; } } // Stack for prefix: [ref...] (*ref)+-1 // Stack for postfix: *ref [ref...] (*ref)+-1 for (unsigned i = m_currentLValue->sizeOnStack(); i > 0; --i) m_context << swapInstruction(i); m_currentLValue->storeValue( *_unaryOperation.annotation().type, _unaryOperation.location(), !_unaryOperation.isPrefixOperation()); m_currentLValue.reset(); break; case Token::Add: // + // unary add, so basically no-op break; case Token::Sub: // - solUnimplementedAssert( type.category() != Type::Category::FixedPoint, "Not yet implemented - FixedPointType." ); if (m_context.arithmetic() == Arithmetic::Checked) m_context.callYulFunction(m_context.utilFunctions().negateNumberCheckedFunction(type), 1, 1); else m_context << u256(0) << Instruction::SUB; break; default: solAssert(false, "Invalid unary operator: " + string(TokenTraits::toString(_unaryOperation.getOperator()))); } return false; } bool ExpressionCompiler::visit(BinaryOperation const& _binaryOperation) { CompilerContext::LocationSetter locationSetter(m_context, _binaryOperation); Expression const& leftExpression = _binaryOperation.leftExpression(); Expression const& rightExpression = _binaryOperation.rightExpression(); solAssert(!!_binaryOperation.annotation().commonType, ""); Type const* commonType = _binaryOperation.annotation().commonType; Token const c_op = _binaryOperation.getOperator(); if (c_op == Token::And || c_op == Token::Or) // special case: short-circuiting appendAndOrOperatorCode(_binaryOperation); else if (commonType->category() == Type::Category::RationalNumber) m_context << commonType->literalValue(nullptr); else { bool cleanupNeeded = cleanupNeededForOp(commonType->category(), c_op, m_context.arithmetic()); Type const* leftTargetType = commonType; Type const* rightTargetType = TokenTraits::isShiftOp(c_op) || c_op == Token::Exp ? rightExpression.annotation().type->mobileType() : commonType; solAssert(rightTargetType, ""); // for commutative operators, push the literal as late as possible to allow improved optimization auto isLiteral = [](Expression const& _e) { return dynamic_cast(&_e) || _e.annotation().type->category() == Type::Category::RationalNumber; }; bool swap = m_optimiseOrderLiterals && TokenTraits::isCommutativeOp(c_op) && isLiteral(rightExpression) && !isLiteral(leftExpression); if (swap) { acceptAndConvert(leftExpression, *leftTargetType, cleanupNeeded); acceptAndConvert(rightExpression, *rightTargetType, cleanupNeeded); } else { acceptAndConvert(rightExpression, *rightTargetType, cleanupNeeded); acceptAndConvert(leftExpression, *leftTargetType, cleanupNeeded); } if (TokenTraits::isShiftOp(c_op)) // shift only cares about the signedness of both sides appendShiftOperatorCode(c_op, *leftTargetType, *rightTargetType); else if (c_op == Token::Exp) appendExpOperatorCode(*leftTargetType, *rightTargetType); else if (TokenTraits::isCompareOp(c_op)) appendCompareOperatorCode(c_op, *commonType); else appendOrdinaryBinaryOperatorCode(c_op, *commonType); } // do not visit the child nodes, we already did that explicitly return false; } bool ExpressionCompiler::visit(FunctionCall const& _functionCall) { auto functionCallKind = *_functionCall.annotation().kind; CompilerContext::LocationSetter locationSetter(m_context, _functionCall); if (functionCallKind == FunctionCallKind::TypeConversion) { solAssert(_functionCall.arguments().size() == 1, ""); solAssert(_functionCall.names().empty(), ""); auto const& expression = *_functionCall.arguments().front(); auto const& targetType = *_functionCall.annotation().type; if (auto const* typeType = dynamic_cast(expression.annotation().type)) if (auto const* addressType = dynamic_cast(&targetType)) { auto const* contractType = dynamic_cast(typeType->actualType()); solAssert( contractType && contractType->contractDefinition().isLibrary() && addressType->stateMutability() == StateMutability::NonPayable, "" ); m_context.appendLibraryAddress(contractType->contractDefinition().fullyQualifiedName()); return false; } acceptAndConvert(expression, targetType); return false; } FunctionTypePointer functionType; if (functionCallKind == FunctionCallKind::StructConstructorCall) { auto const& type = dynamic_cast(*_functionCall.expression().annotation().type); auto const& structType = dynamic_cast(*type.actualType()); functionType = structType.constructorType(); } else functionType = dynamic_cast(_functionCall.expression().annotation().type); TypePointers parameterTypes = functionType->parameterTypes(); vector> const& arguments = _functionCall.sortedArguments(); if (functionCallKind == FunctionCallKind::StructConstructorCall) { TypeType const& type = dynamic_cast(*_functionCall.expression().annotation().type); auto const& structType = dynamic_cast(*type.actualType()); utils().allocateMemory(max(u256(32u), structType.memoryDataSize())); m_context << Instruction::DUP1; for (unsigned i = 0; i < arguments.size(); ++i) { acceptAndConvert(*arguments[i], *functionType->parameterTypes()[i]); utils().storeInMemoryDynamic(*functionType->parameterTypes()[i]); } m_context << Instruction::POP; } else { FunctionType const& function = *functionType; if (function.bound()) solAssert( function.kind() == FunctionType::Kind::DelegateCall || function.kind() == FunctionType::Kind::Internal || function.kind() == FunctionType::Kind::ArrayPush || function.kind() == FunctionType::Kind::ArrayPop, ""); switch (function.kind()) { case FunctionType::Kind::Declaration: solAssert(false, "Attempted to generate code for calling a function definition."); break; case FunctionType::Kind::Internal: { // Calling convention: Caller pushes return address and arguments // Callee removes them and pushes return values evmasm::AssemblyItem returnLabel = m_context.pushNewTag(); for (unsigned i = 0; i < arguments.size(); ++i) acceptAndConvert(*arguments[i], *function.parameterTypes()[i]); { bool shortcutTaken = false; if (auto identifier = dynamic_cast(&_functionCall.expression())) { solAssert(!function.bound(), ""); if (auto functionDef = dynamic_cast(identifier->annotation().referencedDeclaration)) { // Do not directly visit the identifier, because this way, we can avoid // the runtime entry label to be created at the creation time context. CompilerContext::LocationSetter locationSetter2(m_context, *identifier); solAssert(*identifier->annotation().requiredLookup == VirtualLookup::Virtual, ""); utils().pushCombinedFunctionEntryLabel( functionDef->resolveVirtual(m_context.mostDerivedContract()), false ); shortcutTaken = true; } } if (!shortcutTaken) _functionCall.expression().accept(*this); } unsigned parameterSize = CompilerUtils::sizeOnStack(function.parameterTypes()); if (function.bound()) { // stack: arg2, ..., argn, label, arg1 unsigned depth = parameterSize + 1; utils().moveIntoStack(depth, function.selfType()->sizeOnStack()); parameterSize += function.selfType()->sizeOnStack(); } if (m_context.runtimeContext()) // We have a runtime context, so we need the creation part. utils().rightShiftNumberOnStack(32); else // Extract the runtime part. m_context << ((u256(1) << 32) - 1) << Instruction::AND; m_context.appendJump(evmasm::AssemblyItem::JumpType::IntoFunction); m_context << returnLabel; unsigned returnParametersSize = CompilerUtils::sizeOnStack(function.returnParameterTypes()); // callee adds return parameters, but removes arguments and return label m_context.adjustStackOffset(static_cast(returnParametersSize - parameterSize) - 1); break; } case FunctionType::Kind::BareCall: case FunctionType::Kind::BareDelegateCall: case FunctionType::Kind::BareStaticCall: solAssert(!_functionCall.annotation().tryCall, ""); [[fallthrough]]; case FunctionType::Kind::External: case FunctionType::Kind::DelegateCall: _functionCall.expression().accept(*this); appendExternalFunctionCall(function, arguments, _functionCall.annotation().tryCall); break; case FunctionType::Kind::BareCallCode: solAssert(false, "Callcode has been removed."); case FunctionType::Kind::Creation: { _functionCall.expression().accept(*this); // Stack: [salt], [value] solAssert(!function.gasSet(), "Gas limit set for contract creation."); solAssert(function.returnParameterTypes().size() == 1, ""); TypePointers argumentTypes; for (auto const& arg: arguments) { arg->accept(*this); argumentTypes.push_back(arg->annotation().type); } ContractDefinition const* contract = &dynamic_cast(*function.returnParameterTypes().front()).contractDefinition(); utils().fetchFreeMemoryPointer(); utils().copyContractCodeToMemory(*contract, true); utils().abiEncode(argumentTypes, function.parameterTypes()); // now on stack: [salt], [value], memory_end_ptr // need: [salt], size, offset, value if (function.saltSet()) { m_context << dupInstruction(2 + (function.valueSet() ? 1 : 0)); m_context << Instruction::SWAP1; } // now: [salt], [value], [salt], memory_end_ptr utils().toSizeAfterFreeMemoryPointer(); // now: [salt], [value], [salt], size, offset if (function.valueSet()) m_context << dupInstruction(3 + (function.saltSet() ? 1 : 0)); else m_context << u256(0); // now: [salt], [value], [salt], size, offset, value if (function.saltSet()) m_context << Instruction::CREATE2; else m_context << Instruction::CREATE; // now: [salt], [value], address if (function.valueSet()) m_context << swapInstruction(1) << Instruction::POP; if (function.saltSet()) m_context << swapInstruction(1) << Instruction::POP; // Check if zero (reverted) m_context << Instruction::DUP1 << Instruction::ISZERO; if (_functionCall.annotation().tryCall) { // If this is a try call, return "
1" in the success case and // "0" in the error case. AssemblyItem errorCase = m_context.appendConditionalJump(); m_context << u256(1); m_context << errorCase; } else m_context.appendConditionalRevert(true); break; } case FunctionType::Kind::SetGas: { // stack layout: contract_address function_id [gas] [value] _functionCall.expression().accept(*this); acceptAndConvert(*arguments.front(), *TypeProvider::uint256(), true); // Note that function is not the original function, but the ".gas" function. // Its values of gasSet and valueSet is equal to the original function's though. unsigned stackDepth = (function.gasSet() ? 1u : 0u) + (function.valueSet() ? 1u : 0u); if (stackDepth > 0) m_context << swapInstruction(stackDepth); if (function.gasSet()) m_context << Instruction::POP; break; } case FunctionType::Kind::SetValue: // stack layout: contract_address function_id [gas] [value] _functionCall.expression().accept(*this); // Note that function is not the original function, but the ".value" function. // Its values of gasSet and valueSet is equal to the original function's though. if (function.valueSet()) m_context << Instruction::POP; arguments.front()->accept(*this); break; case FunctionType::Kind::Send: case FunctionType::Kind::Transfer: { _functionCall.expression().accept(*this); // Provide the gas stipend manually at first because we may send zero ether. // Will be zeroed if we send more than zero ether. m_context << u256(evmasm::GasCosts::callStipend); acceptAndConvert(*arguments.front(), *function.parameterTypes().front(), true); // gas <- gas * !value m_context << Instruction::SWAP1 << Instruction::DUP2; m_context << Instruction::ISZERO << Instruction::MUL << Instruction::SWAP1; FunctionType::Options callOptions; callOptions.valueSet = true; callOptions.gasSet = true; appendExternalFunctionCall( FunctionType( TypePointers{}, TypePointers{}, strings(), strings(), FunctionType::Kind::BareCall, StateMutability::NonPayable, nullptr, callOptions ), {}, false ); if (function.kind() == FunctionType::Kind::Transfer) { // Check if zero (out of stack or not enough balance). m_context << Instruction::ISZERO; // Revert message bubbles up. m_context.appendConditionalRevert(true); } break; } case FunctionType::Kind::Selfdestruct: acceptAndConvert(*arguments.front(), *function.parameterTypes().front(), true); m_context << Instruction::SELFDESTRUCT; break; case FunctionType::Kind::Revert: { if (arguments.empty()) m_context.appendRevert(); else { // function-sel(Error(string)) + encoding solAssert(arguments.size() == 1, ""); solAssert(function.parameterTypes().size() == 1, ""); if (m_context.revertStrings() == RevertStrings::Strip) { if (!*arguments.front()->annotation().isPure) { arguments.front()->accept(*this); utils().popStackElement(*arguments.front()->annotation().type); } m_context.appendRevert(); } else { arguments.front()->accept(*this); utils().revertWithStringData(*arguments.front()->annotation().type); } } break; } case FunctionType::Kind::KECCAK256: { solAssert(arguments.size() == 1, ""); solAssert(!function.padArguments(), ""); Type const* argType = arguments.front()->annotation().type; solAssert(argType, ""); arguments.front()->accept(*this); if (auto const* stringLiteral = dynamic_cast(argType)) // Optimization: Compute keccak256 on string literals at compile-time. m_context << u256(keccak256(stringLiteral->value())); else if (*argType == *TypeProvider::bytesMemory() || *argType == *TypeProvider::stringMemory()) { // Optimization: If type is bytes or string, then do not encode, // but directly compute keccak256 on memory. ArrayUtils(m_context).retrieveLength(*TypeProvider::bytesMemory()); m_context << Instruction::SWAP1 << u256(0x20) << Instruction::ADD; m_context << Instruction::KECCAK256; } else { utils().fetchFreeMemoryPointer(); utils().packedEncode({argType}, TypePointers()); utils().toSizeAfterFreeMemoryPointer(); m_context << Instruction::KECCAK256; } break; } case FunctionType::Kind::Event: { _functionCall.expression().accept(*this); auto const& event = dynamic_cast(function.declaration()); unsigned numIndexed = 0; TypePointers paramTypes = function.parameterTypes(); // All indexed arguments go to the stack for (size_t arg = arguments.size(); arg > 0; --arg) if (event.parameters()[arg - 1]->isIndexed()) { ++numIndexed; arguments[arg - 1]->accept(*this); if (auto const& referenceType = dynamic_cast(paramTypes[arg - 1])) { utils().fetchFreeMemoryPointer(); utils().packedEncode( {arguments[arg - 1]->annotation().type}, {referenceType} ); utils().toSizeAfterFreeMemoryPointer(); m_context << Instruction::KECCAK256; } else { solAssert(paramTypes[arg - 1]->isValueType(), ""); if (auto functionType = dynamic_cast(paramTypes[arg - 1])) { auto argumentType = dynamic_cast(arguments[arg-1]->annotation().type); solAssert( argumentType && functionType->kind() == FunctionType::Kind::External && argumentType->kind() == FunctionType::Kind::External && !argumentType->bound(), "" ); utils().combineExternalFunctionType(true); } else utils().convertType( *arguments[arg - 1]->annotation().type, *paramTypes[arg - 1], true ); } } if (!event.isAnonymous()) { m_context << u256(h256::Arith(keccak256(function.externalSignature()))); ++numIndexed; } solAssert(numIndexed <= 4, "Too many indexed arguments."); // Copy all non-indexed arguments to memory (data) // Memory position is only a hack and should be removed once we have free memory pointer. TypePointers nonIndexedArgTypes; TypePointers nonIndexedParamTypes; for (unsigned arg = 0; arg < arguments.size(); ++arg) if (!event.parameters()[arg]->isIndexed()) { arguments[arg]->accept(*this); nonIndexedArgTypes.push_back(arguments[arg]->annotation().type); nonIndexedParamTypes.push_back(paramTypes[arg]); } utils().fetchFreeMemoryPointer(); utils().abiEncode(nonIndexedArgTypes, nonIndexedParamTypes); // need: topic1 ... topicn memsize memstart utils().toSizeAfterFreeMemoryPointer(); m_context << logInstruction(numIndexed); break; } case FunctionType::Kind::Error: { _functionCall.expression().accept(*this); vector argumentTypes; for (ASTPointer const& arg: _functionCall.sortedArguments()) { arg->accept(*this); argumentTypes.push_back(arg->annotation().type); } solAssert(dynamic_cast(&function.declaration()), ""); utils().revertWithError( function.externalSignature(), function.parameterTypes(), argumentTypes ); break; } case FunctionType::Kind::Wrap: case FunctionType::Kind::Unwrap: { solAssert(arguments.size() == 1, ""); Type const* argumentType = arguments.at(0)->annotation().type; Type const* functionCallType = _functionCall.annotation().type; solAssert(argumentType, ""); solAssert(functionCallType, ""); FunctionType::Kind kind = functionType->kind(); if (kind == FunctionType::Kind::Wrap) { solAssert( argumentType->isImplicitlyConvertibleTo( dynamic_cast(*functionCallType).underlyingType() ), "" ); solAssert(argumentType->isImplicitlyConvertibleTo(*function.parameterTypes()[0]), ""); } else solAssert( dynamic_cast(*argumentType) == dynamic_cast(*function.parameterTypes()[0]), "" ); acceptAndConvert(*arguments[0], *function.parameterTypes()[0]); break; } case FunctionType::Kind::BlockHash: { acceptAndConvert(*arguments[0], *function.parameterTypes()[0], true); m_context << Instruction::BLOCKHASH; break; } case FunctionType::Kind::AddMod: case FunctionType::Kind::MulMod: { acceptAndConvert(*arguments[2], *TypeProvider::uint256()); m_context << Instruction::DUP1 << Instruction::ISZERO; m_context.appendConditionalPanic(util::PanicCode::DivisionByZero); for (unsigned i = 1; i < 3; i ++) acceptAndConvert(*arguments[2 - i], *TypeProvider::uint256()); if (function.kind() == FunctionType::Kind::AddMod) m_context << Instruction::ADDMOD; else m_context << Instruction::MULMOD; break; } case FunctionType::Kind::ECRecover: case FunctionType::Kind::SHA256: case FunctionType::Kind::RIPEMD160: { _functionCall.expression().accept(*this); static map const contractAddresses{ {FunctionType::Kind::ECRecover, 1}, {FunctionType::Kind::SHA256, 2}, {FunctionType::Kind::RIPEMD160, 3} }; m_context << contractAddresses.at(function.kind()); for (unsigned i = function.sizeOnStack(); i > 0; --i) m_context << swapInstruction(i); solAssert(!_functionCall.annotation().tryCall, ""); appendExternalFunctionCall(function, arguments, false); break; } case FunctionType::Kind::ArrayPush: { solAssert(function.bound(), ""); _functionCall.expression().accept(*this); if (function.parameterTypes().size() == 0) { auto paramType = function.returnParameterTypes().at(0); solAssert(paramType, ""); ArrayType const* arrayType = dynamic_cast(function.selfType()); solAssert(arrayType, ""); // stack: ArrayReference m_context << u256(1) << Instruction::DUP2; ArrayUtils(m_context).incrementDynamicArraySize(*arrayType); // stack: ArrayReference 1 newLength m_context << Instruction::SUB; // stack: ArrayReference (newLength-1) ArrayUtils(m_context).accessIndex(*arrayType, false); if (arrayType->isByteArrayOrString()) setLValue(_functionCall); else setLValueToStorageItem(_functionCall); } else { solAssert(function.parameterTypes().size() == 1, ""); solAssert(!!function.parameterTypes()[0], ""); Type const* paramType = function.parameterTypes()[0]; ArrayType const* arrayType = dynamic_cast(function.selfType()); solAssert(arrayType, ""); // stack: ArrayReference arguments[0]->accept(*this); Type const* argType = arguments[0]->annotation().type; // stack: ArrayReference argValue utils().moveToStackTop(argType->sizeOnStack(), 1); // stack: argValue ArrayReference m_context << Instruction::DUP1; ArrayUtils(m_context).incrementDynamicArraySize(*arrayType); // stack: argValue ArrayReference newLength m_context << u256(1) << Instruction::SWAP1 << Instruction::SUB; // stack: argValue ArrayReference (newLength-1) ArrayUtils(m_context).accessIndex(*arrayType, false); // stack: argValue storageSlot slotOffset utils().moveToStackTop(2, argType->sizeOnStack()); // stack: storageSlot slotOffset argValue Type const* type = arrayType->baseType()->dataStoredIn(DataLocation::Storage) ? arguments[0]->annotation().type->mobileType() : arrayType->baseType(); solAssert(type, ""); utils().convertType(*argType, *type); utils().moveToStackTop(1 + type->sizeOnStack()); utils().moveToStackTop(1 + type->sizeOnStack()); // stack: argValue storageSlot slotOffset if (!arrayType->isByteArrayOrString()) StorageItem(m_context, *paramType).storeValue(*type, _functionCall.location(), true); else StorageByteArrayElement(m_context).storeValue(*type, _functionCall.location(), true); } break; } case FunctionType::Kind::ArrayPop: { _functionCall.expression().accept(*this); solAssert(function.bound(), ""); solAssert(function.parameterTypes().empty(), ""); ArrayType const* arrayType = dynamic_cast(function.selfType()); solAssert(arrayType && arrayType->dataStoredIn(DataLocation::Storage), ""); ArrayUtils(m_context).popStorageArrayElement(*arrayType); break; } case FunctionType::Kind::BytesConcat: { _functionCall.expression().accept(*this); vector argumentTypes; vector targetTypes; for (auto const& argument: arguments) { argument->accept(*this); solAssert(argument->annotation().type, ""); argumentTypes.emplace_back(argument->annotation().type); if (argument->annotation().type->category() == Type::Category::FixedBytes) targetTypes.emplace_back(argument->annotation().type); else if ( auto const* literalType = dynamic_cast(argument->annotation().type); literalType && !literalType->value().empty() && literalType->value().size() <= 32 ) targetTypes.emplace_back(TypeProvider::fixedBytes(static_cast(literalType->value().size()))); else { solAssert(!dynamic_cast(argument->annotation().type), ""); solAssert(argument->annotation().type->isImplicitlyConvertibleTo(*TypeProvider::bytesMemory()), ""); targetTypes.emplace_back(TypeProvider::bytesMemory()); } } utils().fetchFreeMemoryPointer(); // stack: ... m_context << u256(32) << Instruction::ADD; utils().packedEncode(argumentTypes, targetTypes); utils().fetchFreeMemoryPointer(); m_context.appendInlineAssembly(R"({ mstore(mem_ptr, sub(sub(mem_end, mem_ptr), 0x20)) })", {"mem_end", "mem_ptr"}); m_context << Instruction::SWAP1; utils().storeFreeMemoryPointer(); break; } case FunctionType::Kind::ObjectCreation: { ArrayType const& arrayType = dynamic_cast(*_functionCall.annotation().type); _functionCall.expression().accept(*this); solAssert(arguments.size() == 1, ""); // Fetch requested length. acceptAndConvert(*arguments[0], *TypeProvider::uint256()); // Make sure we can allocate memory without overflow m_context << u256(0xffffffffffffffff); m_context << Instruction::DUP2; m_context << Instruction::GT; m_context.appendConditionalPanic(PanicCode::ResourceError); // Stack: requested_length utils().fetchFreeMemoryPointer(); // Stack: requested_length memptr m_context << Instruction::SWAP1; // Stack: memptr requested_length // store length m_context << Instruction::DUP1 << Instruction::DUP3 << Instruction::MSTORE; // Stack: memptr requested_length // update free memory pointer m_context << Instruction::DUP1; // Stack: memptr requested_length requested_length if (arrayType.isByteArrayOrString()) // Round up to multiple of 32 m_context << u256(31) << Instruction::ADD << u256(31) << Instruction::NOT << Instruction::AND; else m_context << arrayType.baseType()->memoryHeadSize() << Instruction::MUL; // stacK: memptr requested_length data_size m_context << u256(32) << Instruction::ADD; m_context << Instruction::DUP3 << Instruction::ADD; utils().storeFreeMemoryPointer(); // Stack: memptr requested_length // Check if length is zero m_context << Instruction::DUP1 << Instruction::ISZERO; auto skipInit = m_context.appendConditionalJump(); // Always initialize because the free memory pointer might point at // a dirty memory area. m_context << Instruction::DUP2 << u256(32) << Instruction::ADD; utils().zeroInitialiseMemoryArray(arrayType); m_context << skipInit; m_context << Instruction::POP; break; } case FunctionType::Kind::Assert: case FunctionType::Kind::Require: { acceptAndConvert(*arguments.front(), *function.parameterTypes().front(), false); bool haveReasonString = arguments.size() > 1 && m_context.revertStrings() != RevertStrings::Strip; if (arguments.size() > 1) { // Users probably expect the second argument to be evaluated // even if the condition is false, as would be the case for an actual // function call. solAssert(arguments.size() == 2, ""); solAssert(function.kind() == FunctionType::Kind::Require, ""); if (m_context.revertStrings() == RevertStrings::Strip) { if (!*arguments.at(1)->annotation().isPure) { arguments.at(1)->accept(*this); utils().popStackElement(*arguments.at(1)->annotation().type); } } else { arguments.at(1)->accept(*this); utils().moveIntoStack(1, arguments.at(1)->annotation().type->sizeOnStack()); } } // Stack: // jump if condition was met m_context << Instruction::ISZERO << Instruction::ISZERO; auto success = m_context.appendConditionalJump(); if (function.kind() == FunctionType::Kind::Assert) // condition was not met, flag an error m_context.appendPanic(util::PanicCode::Assert); else if (haveReasonString) { utils().revertWithStringData(*arguments.at(1)->annotation().type); // Here, the argument is consumed, but in the other branch, it is still there. m_context.adjustStackOffset(static_cast(arguments.at(1)->annotation().type->sizeOnStack())); } else m_context.appendRevert(); // the success branch m_context << success; if (haveReasonString) utils().popStackElement(*arguments.at(1)->annotation().type); break; } case FunctionType::Kind::ABIEncode: case FunctionType::Kind::ABIEncodePacked: case FunctionType::Kind::ABIEncodeWithSelector: case FunctionType::Kind::ABIEncodeCall: case FunctionType::Kind::ABIEncodeWithSignature: { bool const isPacked = function.kind() == FunctionType::Kind::ABIEncodePacked; bool const hasSelectorOrSignature = function.kind() == FunctionType::Kind::ABIEncodeWithSelector || function.kind() == FunctionType::Kind::ABIEncodeCall || function.kind() == FunctionType::Kind::ABIEncodeWithSignature; TypePointers argumentTypes; ASTNode::listAccept(arguments, *this); if (function.kind() == FunctionType::Kind::ABIEncodeCall) { solAssert(arguments.size() == 2); auto const functionPtr = dynamic_cast(arguments[0]->annotation().type); solAssert(functionPtr); // Account for tuples with one component which become that component if (auto const tupleType = dynamic_cast(arguments[1]->annotation().type)) argumentTypes = tupleType->components(); else argumentTypes.emplace_back(arguments[1]->annotation().type); } else for (unsigned i = 0; i < arguments.size(); ++i) { // Do not keep the selector as part of the ABI encoded args if (!hasSelectorOrSignature || i > 0) argumentTypes.push_back(arguments[i]->annotation().type); } utils().fetchFreeMemoryPointer(); // stack now: [] .. // adjust by 32(+4) bytes to accommodate the length(+selector) m_context << u256(32 + (hasSelectorOrSignature ? 4 : 0)) << Instruction::ADD; // stack now: [] .. if (isPacked) { solAssert(!function.padArguments(), ""); utils().packedEncode(argumentTypes, TypePointers()); } else { solAssert(function.padArguments(), ""); utils().abiEncode(argumentTypes, TypePointers()); } utils().fetchFreeMemoryPointer(); // stack: [] // size is end minus start minus length slot m_context.appendInlineAssembly(R"({ mstore(mem_ptr, sub(sub(mem_end, mem_ptr), 0x20)) })", {"mem_end", "mem_ptr"}); m_context << Instruction::SWAP1; utils().storeFreeMemoryPointer(); // stack: [] if (hasSelectorOrSignature) { // stack: solAssert(arguments.size() >= 1, ""); Type const* selectorType = arguments[0]->annotation().type; utils().moveIntoStack(selectorType->sizeOnStack()); Type const* dataOnStack = selectorType; // stack: if (function.kind() == FunctionType::Kind::ABIEncodeWithSignature) { // hash the signature if (auto const* stringType = dynamic_cast(selectorType)) { m_context << util::selectorFromSignature(stringType->value()); dataOnStack = TypeProvider::fixedBytes(4); } else { utils().fetchFreeMemoryPointer(); // stack: utils().packedEncode(TypePointers{selectorType}, TypePointers()); utils().toSizeAfterFreeMemoryPointer(); m_context << Instruction::KECCAK256; // stack: dataOnStack = TypeProvider::fixedBytes(32); } } else if (function.kind() == FunctionType::Kind::ABIEncodeCall) { auto const& funType = dynamic_cast(*selectorType); if (funType.kind() == FunctionType::Kind::Declaration) { solAssert(funType.hasDeclaration()); solAssert(selectorType->sizeOnStack() == 0); m_context << funType.externalIdentifier(); } else { solAssert(selectorType->sizeOnStack() == 2); // stack: // Extract selector from the stack m_context << Instruction::SWAP1 << Instruction::POP; } // Conversion will be done below dataOnStack = TypeProvider::uint(32); } else solAssert(function.kind() == FunctionType::Kind::ABIEncodeWithSelector, ""); utils().convertType(*dataOnStack, FixedBytesType(4), true); // stack: // load current memory, mask and combine the selector string mask = formatNumber((u256(-1) >> 32)); m_context.appendInlineAssembly(R"({ let data_start := add(mem_ptr, 0x20) let data := mload(data_start) let mask := )" + mask + R"( mstore(data_start, or(and(data, mask), selector)) })", {"mem_ptr", "selector"}); m_context << Instruction::POP; } // stack now: break; } case FunctionType::Kind::ABIDecode: { arguments.front()->accept(*this); Type const* firstArgType = arguments.front()->annotation().type; TypePointers targetTypes; if (TupleType const* targetTupleType = dynamic_cast(_functionCall.annotation().type)) targetTypes = targetTupleType->components(); else targetTypes = TypePointers{_functionCall.annotation().type}; if ( auto referenceType = dynamic_cast(firstArgType); referenceType && referenceType->dataStoredIn(DataLocation::CallData) ) { solAssert(referenceType->isImplicitlyConvertibleTo(*TypeProvider::bytesCalldata()), ""); utils().convertType(*referenceType, *TypeProvider::bytesCalldata()); utils().abiDecode(targetTypes, false); } else { utils().convertType(*firstArgType, *TypeProvider::bytesMemory()); m_context << Instruction::DUP1 << u256(32) << Instruction::ADD; m_context << Instruction::SWAP1 << Instruction::MLOAD; // stack now: utils().abiDecode(targetTypes, true); } break; } case FunctionType::Kind::GasLeft: m_context << Instruction::GAS; break; case FunctionType::Kind::MetaType: // No code to generate. break; } } return false; } bool ExpressionCompiler::visit(FunctionCallOptions const& _functionCallOptions) { _functionCallOptions.expression().accept(*this); // Desired Stack: [salt], [gas], [value] enum Option { Salt, Gas, Value }; vector