/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ /** * @author Christian * @date 2014 * Parser part that determines the declarations corresponding to names and the types of expressions. */ #include #include #include #include using namespace std; namespace dev { namespace solidity { NameAndTypeResolver::NameAndTypeResolver( vector const& _globals, map>& _scopes, ErrorReporter& _errorReporter ) : m_scopes(_scopes), m_errorReporter(_errorReporter) { if (!m_scopes[nullptr]) m_scopes[nullptr].reset(new DeclarationContainer()); for (Declaration const* declaration: _globals) m_scopes[nullptr]->registerDeclaration(*declaration); } bool NameAndTypeResolver::registerDeclarations(ASTNode& _sourceUnit, ASTNode const* _currentScope) { // The helper registers all declarations in m_scopes as a side-effect of its construction. try { DeclarationRegistrationHelper registrar(m_scopes, _sourceUnit, m_errorReporter, _currentScope); } catch (FatalError const&) { if (m_errorReporter.errors().empty()) throw; // Something is weird here, rather throw again. return false; } return true; } bool NameAndTypeResolver::performImports(SourceUnit& _sourceUnit, map const& _sourceUnits) { DeclarationContainer& target = *m_scopes.at(&_sourceUnit); bool error = false; for (auto const& node: _sourceUnit.nodes()) if (auto imp = dynamic_cast(node.get())) { string const& path = imp->annotation().absolutePath; if (!_sourceUnits.count(path)) { m_errorReporter.declarationError( imp->location(), "Import \"" + path + "\" (referenced as \"" + imp->path() + "\") not found." ); error = true; continue; } auto scope = m_scopes.find(_sourceUnits.at(path)); solAssert(scope != end(m_scopes), ""); if (!imp->symbolAliases().empty()) for (auto const& alias: imp->symbolAliases()) { auto declarations = scope->second->resolveName(alias.first->name(), false); if (declarations.empty()) { m_errorReporter.declarationError( imp->location(), "Declaration \"" + alias.first->name() + "\" not found in \"" + path + "\" (referenced as \"" + imp->path() + "\")." ); error = true; } else for (Declaration const* declaration: declarations) { ASTString const* name = alias.second ? alias.second.get() : &declaration->name(); if (!target.registerDeclaration(*declaration, name)) { m_errorReporter.declarationError( imp->location(), "Identifier \"" + *name + "\" already declared." ); error = true; } } } else if (imp->name().empty()) for (auto const& nameAndDeclaration: scope->second->declarations()) for (auto const& declaration: nameAndDeclaration.second) if (!target.registerDeclaration(*declaration, &nameAndDeclaration.first)) { m_errorReporter.declarationError( imp->location(), "Identifier \"" + nameAndDeclaration.first + "\" already declared." ); error = true; } } return !error; } bool NameAndTypeResolver::resolveNamesAndTypes(ASTNode& _node, bool _resolveInsideCode) { try { return resolveNamesAndTypesInternal(_node, _resolveInsideCode); } catch (FatalError const&) { if (m_errorReporter.errors().empty()) throw; // Something is weird here, rather throw again. return false; } } bool NameAndTypeResolver::updateDeclaration(Declaration const& _declaration) { try { m_scopes[nullptr]->registerDeclaration(_declaration, nullptr, false, true); solAssert(_declaration.scope() == nullptr, "Updated declaration outside global scope."); } catch (FatalError const&) { if (m_errorReporter.errors().empty()) throw; // Something is weird here, rather throw again. return false; } return true; } vector NameAndTypeResolver::resolveName(ASTString const& _name, ASTNode const* _scope) const { auto iterator = m_scopes.find(_scope); if (iterator == end(m_scopes)) return vector({}); return iterator->second->resolveName(_name, false); } vector NameAndTypeResolver::nameFromCurrentScope(ASTString const& _name, bool _recursive) const { return m_currentScope->resolveName(_name, _recursive); } Declaration const* NameAndTypeResolver::pathFromCurrentScope(vector const& _path, bool _recursive) const { solAssert(!_path.empty(), ""); vector candidates = m_currentScope->resolveName(_path.front(), _recursive); for (size_t i = 1; i < _path.size() && candidates.size() == 1; i++) { if (!m_scopes.count(candidates.front())) return nullptr; candidates = m_scopes.at(candidates.front())->resolveName(_path[i], false); } if (candidates.size() == 1) return candidates.front(); else return nullptr; } vector NameAndTypeResolver::cleanedDeclarations( Identifier const& _identifier, vector const& _declarations ) { solAssert(_declarations.size() > 1, ""); vector uniqueFunctions; for (Declaration const* declaration: _declarations) { solAssert(declaration, ""); // the declaration is functionDefinition, eventDefinition or a VariableDeclaration while declarations > 1 solAssert( dynamic_cast(declaration) || dynamic_cast(declaration) || dynamic_cast(declaration), "Found overloading involving something not a function or a variable." ); FunctionTypePointer functionType { declaration->functionType(false) }; if (!functionType) functionType = declaration->functionType(true); solAssert(functionType, "Failed to determine the function type of the overloaded."); for (auto parameter: functionType->parameterTypes() + functionType->returnParameterTypes()) if (!parameter) m_errorReporter.fatalDeclarationError(_identifier.location(), "Function type can not be used in this context."); if (uniqueFunctions.end() == find_if( uniqueFunctions.begin(), uniqueFunctions.end(), [&](Declaration const* d) { shared_ptr newFunctionType { d->functionType(false) }; if (!newFunctionType) newFunctionType = d->functionType(true); return newFunctionType && functionType->hasEqualArgumentTypes(*newFunctionType); } )) uniqueFunctions.push_back(declaration); } return uniqueFunctions; } bool NameAndTypeResolver::resolveNamesAndTypesInternal(ASTNode& _node, bool _resolveInsideCode) { if (ContractDefinition* contract = dynamic_cast(&_node)) { bool success = true; m_currentScope = m_scopes[contract->scope()].get(); solAssert(!!m_currentScope, ""); for (ASTPointer const& baseContract: contract->baseContracts()) if (!resolveNamesAndTypes(*baseContract, true)) success = false; m_currentScope = m_scopes[contract].get(); if (success) { linearizeBaseContracts(*contract); vector properBases( ++contract->annotation().linearizedBaseContracts.begin(), contract->annotation().linearizedBaseContracts.end() ); for (ContractDefinition const* base: properBases) importInheritedScope(*base); } // these can contain code, only resolve parameters for now for (ASTPointer const& node: contract->subNodes()) { m_currentScope = m_scopes[contract].get(); if (!resolveNamesAndTypes(*node, false)) { success = false; break; } } if (!success) return false; if (!_resolveInsideCode) return success; m_currentScope = m_scopes[contract].get(); // now resolve references inside the code for (ASTPointer const& node: contract->subNodes()) { m_currentScope = m_scopes[contract].get(); if (!resolveNamesAndTypes(*node, true)) success = false; } return success; } else { if (m_scopes.count(&_node)) m_currentScope = m_scopes[&_node].get(); return ReferencesResolver(m_errorReporter, *this, _resolveInsideCode).resolve(_node); } } void NameAndTypeResolver::importInheritedScope(ContractDefinition const& _base) { auto iterator = m_scopes.find(&_base); solAssert(iterator != end(m_scopes), ""); for (auto const& nameAndDeclaration: iterator->second->declarations()) for (auto const& declaration: nameAndDeclaration.second) // Import if it was declared in the base, is not the constructor and is visible in derived classes if (declaration->scope() == &_base && declaration->isVisibleInDerivedContracts()) if (!m_currentScope->registerDeclaration(*declaration)) { SourceLocation firstDeclarationLocation; SourceLocation secondDeclarationLocation; Declaration const* conflictingDeclaration = m_currentScope->conflictingDeclaration(*declaration); solAssert(conflictingDeclaration, ""); // Usual shadowing is not an error if (dynamic_cast(declaration) && dynamic_cast(conflictingDeclaration)) continue; // Usual shadowing is not an error if (dynamic_cast(declaration) && dynamic_cast(conflictingDeclaration)) continue; if (declaration->location().start < conflictingDeclaration->location().start) { firstDeclarationLocation = declaration->location(); secondDeclarationLocation = conflictingDeclaration->location(); } else { firstDeclarationLocation = conflictingDeclaration->location(); secondDeclarationLocation = declaration->location(); } m_errorReporter.declarationError( secondDeclarationLocation, SecondarySourceLocation().append("The previous declaration is here:", firstDeclarationLocation), "Identifier already declared." ); } } void NameAndTypeResolver::linearizeBaseContracts(ContractDefinition& _contract) { // order in the lists is from derived to base // list of lists to linearize, the last element is the list of direct bases list> input(1, list{}); for (ASTPointer const& baseSpecifier: _contract.baseContracts()) { UserDefinedTypeName const& baseName = baseSpecifier->name(); auto base = dynamic_cast(baseName.annotation().referencedDeclaration); if (!base) m_errorReporter.fatalTypeError(baseName.location(), "Contract expected."); // "push_front" has the effect that bases mentioned later can overwrite members of bases // mentioned earlier input.back().push_front(base); vector const& basesBases = base->annotation().linearizedBaseContracts; if (basesBases.empty()) m_errorReporter.fatalTypeError(baseName.location(), "Definition of base has to precede definition of derived contract"); input.push_front(list(basesBases.begin(), basesBases.end())); } input.back().push_front(&_contract); vector result = cThreeMerge(input); if (result.empty()) m_errorReporter.fatalTypeError(_contract.location(), "Linearization of inheritance graph impossible"); _contract.annotation().linearizedBaseContracts = result; _contract.annotation().contractDependencies.insert(result.begin() + 1, result.end()); } template vector<_T const*> NameAndTypeResolver::cThreeMerge(list>& _toMerge) { // returns true iff _candidate appears only as last element of the lists auto appearsOnlyAtHead = [&](_T const* _candidate) -> bool { for (list<_T const*> const& bases: _toMerge) { solAssert(!bases.empty(), ""); if (find(++bases.begin(), bases.end(), _candidate) != bases.end()) return false; } return true; }; // returns the next candidate to append to the linearized list or nullptr on failure auto nextCandidate = [&]() -> _T const* { for (list<_T const*> const& bases: _toMerge) { solAssert(!bases.empty(), ""); if (appearsOnlyAtHead(bases.front())) return bases.front(); } return nullptr; }; // removes the given contract from all lists auto removeCandidate = [&](_T const* _candidate) { for (auto it = _toMerge.begin(); it != _toMerge.end();) { it->remove(_candidate); if (it->empty()) it = _toMerge.erase(it); else ++it; } }; _toMerge.remove_if([](list<_T const*> const& _bases) { return _bases.empty(); }); vector<_T const*> result; while (!_toMerge.empty()) { _T const* candidate = nextCandidate(); if (!candidate) return vector<_T const*>(); result.push_back(candidate); removeCandidate(candidate); } return result; } DeclarationRegistrationHelper::DeclarationRegistrationHelper( map>& _scopes, ASTNode& _astRoot, ErrorReporter& _errorReporter, ASTNode const* _currentScope ): m_scopes(_scopes), m_currentScope(_currentScope), m_errorReporter(_errorReporter) { _astRoot.accept(*this); solAssert(m_currentScope == _currentScope, "Scopes not correctly closed."); } bool DeclarationRegistrationHelper::visit(SourceUnit& _sourceUnit) { if (!m_scopes[&_sourceUnit]) // By importing, it is possible that the container already exists. m_scopes[&_sourceUnit].reset(new DeclarationContainer(m_currentScope, m_scopes[m_currentScope].get())); m_currentScope = &_sourceUnit; return true; } void DeclarationRegistrationHelper::endVisit(SourceUnit& _sourceUnit) { _sourceUnit.annotation().exportedSymbols = m_scopes[&_sourceUnit]->declarations(); closeCurrentScope(); } bool DeclarationRegistrationHelper::visit(ImportDirective& _import) { SourceUnit const* importee = _import.annotation().sourceUnit; solAssert(!!importee, ""); if (!m_scopes[importee]) m_scopes[importee].reset(new DeclarationContainer(nullptr, m_scopes[nullptr].get())); m_scopes[&_import] = m_scopes[importee]; registerDeclaration(_import, false); return true; } bool DeclarationRegistrationHelper::visit(ContractDefinition& _contract) { registerDeclaration(_contract, true); _contract.annotation().canonicalName = currentCanonicalName(); return true; } void DeclarationRegistrationHelper::endVisit(ContractDefinition&) { closeCurrentScope(); } bool DeclarationRegistrationHelper::visit(StructDefinition& _struct) { registerDeclaration(_struct, true); _struct.annotation().canonicalName = currentCanonicalName(); return true; } void DeclarationRegistrationHelper::endVisit(StructDefinition&) { closeCurrentScope(); } bool DeclarationRegistrationHelper::visit(EnumDefinition& _enum) { registerDeclaration(_enum, true); _enum.annotation().canonicalName = currentCanonicalName(); return true; } void DeclarationRegistrationHelper::endVisit(EnumDefinition&) { closeCurrentScope(); } bool DeclarationRegistrationHelper::visit(EnumValue& _value) { registerDeclaration(_value, false); return true; } bool DeclarationRegistrationHelper::visit(FunctionDefinition& _function) { registerDeclaration(_function, true); m_currentFunction = &_function; return true; } void DeclarationRegistrationHelper::endVisit(FunctionDefinition&) { m_currentFunction = nullptr; closeCurrentScope(); } bool DeclarationRegistrationHelper::visit(ModifierDefinition& _modifier) { registerDeclaration(_modifier, true); m_currentFunction = &_modifier; return true; } void DeclarationRegistrationHelper::endVisit(ModifierDefinition&) { m_currentFunction = nullptr; closeCurrentScope(); } void DeclarationRegistrationHelper::endVisit(VariableDeclarationStatement& _variableDeclarationStatement) { // Register the local variables with the function // This does not fit here perfectly, but it saves us another AST visit. solAssert(m_currentFunction, "Variable declaration without function."); for (ASTPointer const& var: _variableDeclarationStatement.declarations()) if (var) m_currentFunction->addLocalVariable(*var); } bool DeclarationRegistrationHelper::visit(VariableDeclaration& _declaration) { registerDeclaration(_declaration, false); return true; } bool DeclarationRegistrationHelper::visit(EventDefinition& _event) { registerDeclaration(_event, true); return true; } void DeclarationRegistrationHelper::endVisit(EventDefinition&) { closeCurrentScope(); } void DeclarationRegistrationHelper::enterNewSubScope(Declaration const& _declaration) { map>::iterator iter; bool newlyAdded; shared_ptr container(new DeclarationContainer(m_currentScope, m_scopes[m_currentScope].get())); tie(iter, newlyAdded) = m_scopes.emplace(&_declaration, move(container)); solAssert(newlyAdded, "Unable to add new scope."); m_currentScope = &_declaration; } void DeclarationRegistrationHelper::closeCurrentScope() { solAssert(m_currentScope && m_scopes.count(m_currentScope), "Closed non-existing scope."); m_currentScope = m_scopes[m_currentScope]->enclosingNode(); } void DeclarationRegistrationHelper::registerDeclaration(Declaration& _declaration, bool _opensScope) { solAssert(m_currentScope && m_scopes.count(m_currentScope), "No current scope."); if (!m_scopes[m_currentScope]->registerDeclaration(_declaration, nullptr, !_declaration.isVisibleInContract())) { SourceLocation firstDeclarationLocation; SourceLocation secondDeclarationLocation; Declaration const* conflictingDeclaration = m_scopes[m_currentScope]->conflictingDeclaration(_declaration); solAssert(conflictingDeclaration, ""); if (_declaration.location().start < conflictingDeclaration->location().start) { firstDeclarationLocation = _declaration.location(); secondDeclarationLocation = conflictingDeclaration->location(); } else { firstDeclarationLocation = conflictingDeclaration->location(); secondDeclarationLocation = _declaration.location(); } m_errorReporter.declarationError( secondDeclarationLocation, SecondarySourceLocation().append("The previous declaration is here:", firstDeclarationLocation), "Identifier already declared." ); } _declaration.setScope(m_currentScope); if (_opensScope) enterNewSubScope(_declaration); } string DeclarationRegistrationHelper::currentCanonicalName() const { string ret; for ( ASTNode const* scope = m_currentScope; scope != nullptr; scope = m_scopes[scope]->enclosingNode() ) { if (auto decl = dynamic_cast(scope)) { if (!ret.empty()) ret = "." + ret; ret = decl->name() + ret; } } return ret; } } }