/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ // SPDX-License-Identifier: GPL-3.0 /** @file CommonData.h * @author Gav Wood * @date 2014 * * Shared algorithms and data types. */ #pragma once #include #include #include #include #include #include #include #include #include #include #include /// Operators need to stay in the global namespace. /// Concatenate the contents of a container onto a vector template std::vector& operator+=(std::vector& _a, U& _b) { for (auto const& i: _b) _a.push_back(T(i)); return _a; } /// Concatenate the contents of a container onto a vector, move variant. template std::vector& operator+=(std::vector& _a, U&& _b) { std::move(_b.begin(), _b.end(), std::back_inserter(_a)); return _a; } /// Concatenate the contents of a container onto a multiset template std::multiset& operator+=(std::multiset& _a, U& _b) { _a.insert(_b.begin(), _b.end()); return _a; } /// Concatenate the contents of a container onto a multiset, move variant. template std::multiset& operator+=(std::multiset& _a, U&& _b) { for (auto&& x: _b) _a.insert(std::move(x)); return _a; } /// Concatenate the contents of a container onto a set template std::set& operator+=(std::set& _a, U& _b) { _a.insert(_b.begin(), _b.end()); return _a; } /// Concatenate the contents of a container onto a set, move variant. template std::set& operator+=(std::set& _a, U&& _b) { for (auto&& x: _b) _a.insert(std::move(x)); return _a; } /// Concatenate two vectors of elements. template inline std::vector operator+(std::vector const& _a, std::vector const& _b) { std::vector ret(_a); ret += _b; return ret; } /// Concatenate two vectors of elements, moving them. template inline std::vector operator+(std::vector&& _a, std::vector&& _b) { std::vector ret(std::move(_a)); if (&_a == &_b) ret += ret; else ret += std::move(_b); return ret; } /// Concatenate something to a sets of elements. template inline std::set operator+(std::set const& _a, U&& _b) { std::set ret(_a); ret += std::forward(_b); return ret; } /// Concatenate something to a sets of elements, move variant. template inline std::set operator+(std::set&& _a, U&& _b) { std::set ret(std::move(_a)); ret += std::forward(_b); return ret; } /// Remove the elements of a container from a set. template inline std::set& operator-=(std::set& _a, C const& _b) { for (auto const& x: _b) _a.erase(x); return _a; } template inline std::set operator-(std::set const& _a, C const& _b) { auto result = _a; result -= _b; return result; } /// Remove the elements of a container from a multiset. template inline std::multiset& operator-=(std::multiset& _a, C const& _b) { for (auto const& x: _b) _a.erase(x); return _a; } namespace solidity::util { /// Functional map. /// Returns a container _oc applying @param _op to each element in @param _c. /// By default _oc is a vector. /// If another return type is desired, an empty contained of that type /// is given as @param _oc. template())) >>> auto applyMap(Container const& _c, Callable&& _op, OutputContainer _oc = OutputContainer{}) { std::transform(std::begin(_c), std::end(_c), std::inserter(_oc, std::end(_oc)), _op); return _oc; } /// Filter a vector. /// Returns a copy of the vector after only taking indices `i` such that `_mask[i]` is true. template std::vector filter(std::vector const& _vec, std::vector const& _mask) { assert(_vec.size() == _mask.size()); std::vector ret; for (size_t i = 0; i < _mask.size(); ++i) if (_mask[i]) ret.push_back(_vec[i]); return ret; } /// Functional fold. /// Given a container @param _c, an initial value @param _acc, /// and a binary operator @param _binaryOp(T, U), accumulate /// the elements of _c over _acc. /// Note that has a similar function `accumulate` which /// until C++20 does *not* std::move the partial accumulated. template auto fold(C const& _c, T _acc, Callable&& _binaryOp) { for (auto const& e: _c) _acc = _binaryOp(std::move(_acc), e); return _acc; } template T convertContainer(U const& _from) { return T{_from.cbegin(), _from.cend()}; } template T convertContainer(U&& _from) { return T{ std::make_move_iterator(_from.begin()), std::make_move_iterator(_from.end()) }; } /// Gets a @a K -> @a V map and returns a map where values from the original map are keys and keys /// from the original map are values. /// /// @pre @a originalMap must have unique values. template std::map invertMap(std::map const& originalMap) { std::map inverseMap; for (auto const& originalPair: originalMap) { assert(inverseMap.count(originalPair.second) == 0); inverseMap.insert({originalPair.second, originalPair.first}); } return inverseMap; } /// Returns a set of keys of a map. template std::set keys(std::map const& _map) { return applyMap(_map, [](auto const& _elem) { return _elem.first; }, std::set{}); } /// @returns a pointer to the entry of @a _map at @a _key, if there is one, and nullptr otherwise. template decltype(auto) valueOrNullptr(MapType&& _map, KeyType const& _key) { auto it = _map.find(_key); return (it == _map.end()) ? nullptr : &it->second; } namespace detail { struct allow_copy {}; } static constexpr auto allow_copy = detail::allow_copy{}; /// @returns a reference to the entry of @a _map at @a _key, if there is one, and @a _defaultValue otherwise. /// Makes sure no copy is involved, unless allow_copy is passed as fourth argument. template< typename MapType, typename KeyType, typename ValueType = std::decay_t().find(std::declval())->second)> const&, typename AllowCopyType = void* > decltype(auto) valueOrDefault(MapType&& _map, KeyType const& _key, ValueType&& _defaultValue = {}, AllowCopyType = nullptr) { auto it = _map.find(_key); static_assert( std::is_same_v || std::is_reference_vsecond)>, "valueOrDefault does not allow copies by default. Pass allow_copy as additional argument, if you want to allow copies." ); return (it == _map.end()) ? _defaultValue : it->second; } namespace detail { template struct MapTuple { Callable callable; template decltype(auto) operator()(TupleType&& _tuple) { using PlainTupleType = std::remove_cv_t>; return operator()( std::forward(_tuple), std::make_index_sequence>{} ); } private: template decltype(auto) operator()(TupleType&& _tuple, std::index_sequence) { return callable(std::get(std::forward(_tuple))...); } }; } /// Wraps @a _callable, which takes multiple arguments, into a callable that takes a single tuple of arguments. /// Since structured binding in lambdas is not allowed, i.e. [](auto&& [key, value]) { ... } is invalid, this allows /// to instead use mapTuple([](auto&& key, auto&& value) { ... }). template decltype(auto) mapTuple(Callable&& _callable) { return detail::MapTuple{std::forward(_callable)}; } // String conversion functions, mainly to/from hex/nibble/byte representations. enum class WhenError { DontThrow = 0, Throw = 1, }; enum class HexPrefix { DontAdd = 0, Add = 1, }; enum class HexCase { Lower = 0, Upper = 1, Mixed = 2, }; /// Convert a single byte to a string of hex characters (of length two), /// optionally with uppercase hex letters. std::string toHex(uint8_t _data, HexCase _case = HexCase::Lower); /// Convert a series of bytes to the corresponding string of hex duplets, /// optionally with "0x" prefix and with uppercase hex letters. std::string toHex(bytes const& _data, HexPrefix _prefix = HexPrefix::DontAdd, HexCase _case = HexCase::Lower); /// Converts a (printable) ASCII hex character into the corresponding integer value. /// @example fromHex('A') == 10 && fromHex('f') == 15 && fromHex('5') == 5 int fromHex(char _i, WhenError _throw); /// Converts a (printable) ASCII hex string into the corresponding byte stream. /// @example fromHex("41626261") == asBytes("Abba") /// If _throw = ThrowType::DontThrow, it replaces bad hex characters with 0's, otherwise it will throw an exception. bytes fromHex(std::string const& _s, WhenError _throw = WhenError::DontThrow); /// Converts byte array to a string containing the same (binary) data. Unless /// the byte array happens to contain ASCII data, this won't be printable. inline std::string asString(bytes const& _b) { return std::string((char const*)_b.data(), (char const*)(_b.data() + _b.size())); } /// Converts byte array ref to a string containing the same (binary) data. Unless /// the byte array happens to contain ASCII data, this won't be printable. inline std::string asString(bytesConstRef _b) { return std::string((char const*)_b.data(), (char const*)(_b.data() + _b.size())); } /// Converts a string to a byte array containing the string's (byte) data. inline bytes asBytes(std::string const& _b) { return bytes((uint8_t const*)_b.data(), (uint8_t const*)(_b.data() + _b.size())); } // Big-endian to/from host endian conversion functions. /// Converts a templated integer value to the big-endian byte-stream represented on a templated collection. /// The size of the collection object will be unchanged. If it is too small, it will not represent the /// value properly, if too big then the additional elements will be zeroed out. /// @a Out will typically be either std::string or bytes. /// @a T will typically by unsigned, u160, u256 or bigint. template inline void toBigEndian(T _val, Out& o_out) { static_assert(std::is_same::value || !std::numeric_limits::is_signed, "only unsigned types or bigint supported"); //bigint does not carry sign bit on shift for (auto i = o_out.size(); i != 0; _val >>= 8, i--) { T v = _val & (T)0xff; o_out[i - 1] = (typename Out::value_type)(uint8_t)v; } } /// Converts a big-endian byte-stream represented on a templated collection to a templated integer value. /// @a In will typically be either std::string or bytes. /// @a T will typically by unsigned, u160, u256 or bigint. template inline T fromBigEndian(In const& _bytes) { T ret = (T)0; for (auto i: _bytes) ret = (T)((ret << 8) | (uint8_t)(typename std::make_unsigned::type)i); return ret; } inline bytes toBigEndian(u256 _val) { bytes ret(32); toBigEndian(_val, ret); return ret; } inline bytes toBigEndian(u160 _val) { bytes ret(20); toBigEndian(_val, ret); return ret; } /// Convenience function for toBigEndian. /// @returns a byte array just big enough to represent @a _val. template inline bytes toCompactBigEndian(T _val, unsigned _min = 0) { static_assert(std::is_same::value || !std::numeric_limits::is_signed, "only unsigned types or bigint supported"); //bigint does not carry sign bit on shift unsigned i = 0; for (T v = _val; v; ++i, v >>= 8) {} bytes ret(std::max(_min, i), 0); toBigEndian(_val, ret); return ret; } /// Convenience function for conversion of a u256 to hex inline std::string toHex(u256 val, HexPrefix prefix = HexPrefix::DontAdd) { std::string str = toHex(toBigEndian(val)); return (prefix == HexPrefix::Add) ? "0x" + str : str; } inline std::string toCompactHexWithPrefix(u256 const& _value) { return toHex(toCompactBigEndian(_value, 1), HexPrefix::Add); } /// Returns decimal representation for small numbers and hex for large numbers. inline std::string formatNumber(bigint const& _value) { if (_value < 0) return "-" + formatNumber(-_value); if (_value > 0x1000000) return toHex(toCompactBigEndian(_value, 1), HexPrefix::Add); else return _value.str(); } inline std::string formatNumber(u256 const& _value) { if (_value > 0x1000000) return toCompactHexWithPrefix(_value); else return _value.str(); } // Algorithms for string and string-like collections. /// Determine bytes required to encode the given integer value. @returns 0 if @a _i is zero. template inline unsigned bytesRequired(T _i) { static_assert(std::is_same::value || !std::numeric_limits::is_signed, "only unsigned types or bigint supported"); //bigint does not carry sign bit on shift unsigned i = 0; for (; _i != 0; ++i, _i >>= 8) {} return i; } template bool contains(T const& _t, V const& _v) { return std::end(_t) != std::find(std::begin(_t), std::end(_t), _v); } template bool contains_if(T const& _t, Predicate const& _p) { return std::end(_t) != std::find_if(std::begin(_t), std::end(_t), _p); } /// Function that iterates over a vector, calling a function on each of its /// elements. If that function returns a vector, the element is replaced by /// the returned vector. During the iteration, the original vector is only valid /// on the current element and after that. The actual replacement takes /// place at the end, but already visited elements might be invalidated. /// If nothing is replaced, no copy is performed. template void iterateReplacing(std::vector& _vector, F const& _f) { // Concept: _f must be Callable, must accept param T&, must return optional> bool useModified = false; std::vector modifiedVector; for (size_t i = 0; i < _vector.size(); ++i) { if (std::optional> r = _f(_vector[i])) { if (!useModified) { std::move(_vector.begin(), _vector.begin() + ptrdiff_t(i), back_inserter(modifiedVector)); useModified = true; } modifiedVector += std::move(*r); } else if (useModified) modifiedVector.emplace_back(std::move(_vector[i])); } if (useModified) _vector = std::move(modifiedVector); } namespace detail { template void iterateReplacingWindow(std::vector& _vector, F const& _f, std::index_sequence) { // Concept: _f must be Callable, must accept sizeof...(I) parameters of type T&, must return optional> bool useModified = false; std::vector modifiedVector; size_t i = 0; for (; i + sizeof...(I) <= _vector.size(); ++i) { if (std::optional> r = _f(_vector[i + I]...)) { if (!useModified) { std::move(_vector.begin(), _vector.begin() + ptrdiff_t(i), back_inserter(modifiedVector)); useModified = true; } modifiedVector += std::move(*r); i += sizeof...(I) - 1; } else if (useModified) modifiedVector.emplace_back(std::move(_vector[i])); } if (useModified) { for (; i < _vector.size(); ++i) modifiedVector.emplace_back(std::move(_vector[i])); _vector = std::move(modifiedVector); } } } /// Function that iterates over the vector @param _vector, /// calling the function @param _f on sequences of @tparam N of its /// elements. If @param _f returns a vector, these elements are replaced by /// the returned vector and the iteration continues with the next @tparam N elements. /// If the function does not return a vector, the iteration continues with an overlapping /// sequence of @tparam N elements that starts with the second element of the previous /// iteration. /// During the iteration, the original vector is only valid /// on the current element and after that. The actual replacement takes /// place at the end, but already visited elements might be invalidated. /// If nothing is replaced, no copy is performed. template void iterateReplacingWindow(std::vector& _vector, F const& _f) { // Concept: _f must be Callable, must accept N parameters of type T&, must return optional> detail::iterateReplacingWindow(_vector, _f, std::make_index_sequence{}); } /// @returns true iff @a _str passess the hex address checksum test. /// @param _strict if false, hex strings with only uppercase or only lowercase letters /// are considered valid. bool passesAddressChecksum(std::string const& _str, bool _strict); /// @returns the checksummed version of an address /// @param hex strings that look like an address std::string getChecksummedAddress(std::string const& _addr); bool isValidHex(std::string const& _string); bool isValidDecimal(std::string const& _string); /// @returns a quoted string if all characters are printable ASCII chars, /// or its hex representation otherwise. /// _value cannot be longer than 32 bytes. std::string formatAsStringOrNumber(std::string const& _value); /// @returns a string with the usual backslash-escapes for non-ASCII /// characters and surrounded by '"'-characters. std::string escapeAndQuoteString(std::string const& _input); template bool containerEqual(Container const& _lhs, Container const& _rhs, Compare&& _compare) { return std::equal(std::begin(_lhs), std::end(_lhs), std::begin(_rhs), std::end(_rhs), std::forward(_compare)); } inline std::string findAnyOf(std::string const& _haystack, std::vector const& _needles) { for (std::string const& needle: _needles) if (_haystack.find(needle) != std::string::npos) return needle; return ""; } namespace detail { template void variadicEmplaceBack(std::vector&) {} template void variadicEmplaceBack(std::vector& _vector, A&& _a, Args&&... _args) { _vector.emplace_back(std::forward(_a)); variadicEmplaceBack(_vector, std::forward(_args)...); } } template std::vector make_vector(Args&&... _args) { std::vector result; result.reserve(sizeof...(_args)); detail::variadicEmplaceBack(result, std::forward(_args)...); return result; } }