/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ // SPDX-License-Identifier: GPL-3.0 /** * @author Christian * @date 2014 * Solidity compiler. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace solidity; using namespace solidity::evmasm; using namespace solidity::frontend; using namespace solidity::langutil; using solidity::util::FixedHash; using solidity::util::h256; using solidity::util::errinfo_comment; namespace { /** * Simple helper class to ensure that the stack height is the same at certain places in the code. */ class StackHeightChecker { public: explicit StackHeightChecker(CompilerContext const& _context): m_context(_context), stackHeight(m_context.stackHeight()) {} void check() { solAssert( m_context.stackHeight() == stackHeight, std::string("I sense a disturbance in the stack: ") + to_string(m_context.stackHeight()) + " vs " + to_string(stackHeight) ); } private: CompilerContext const& m_context; unsigned stackHeight; }; } void ContractCompiler::compileContract( ContractDefinition const& _contract, map> const& _otherCompilers ) { CompilerContext::LocationSetter locationSetter(m_context, _contract); if (_contract.isLibrary()) // Check whether this is a call (true) or a delegatecall (false). // This has to be the first code in the contract. appendDelegatecallCheck(); initializeContext(_contract, _otherCompilers); // This generates the dispatch function for externally visible functions // and adds the function to the compilation queue. Additionally internal functions, // which are referenced directly or indirectly will be added. appendFunctionSelector(_contract); } size_t ContractCompiler::compileConstructor( ContractDefinition const& _contract, std::map> const& _otherCompilers ) { CompilerContext::LocationSetter locationSetter(m_context, _contract); if (_contract.isLibrary()) return deployLibrary(_contract); else { initializeContext(_contract, _otherCompilers); return packIntoContractCreator(_contract); } } void ContractCompiler::initializeContext( ContractDefinition const& _contract, map> const& _otherCompilers ) { m_context.setUseABICoderV2(*_contract.sourceUnit().annotation().useABICoderV2); m_context.setOtherCompilers(_otherCompilers); m_context.setMostDerivedContract(_contract); if (m_runtimeCompiler) registerImmutableVariables(_contract); CompilerUtils(m_context).initialiseFreeMemoryPointer(); registerStateVariables(_contract); m_context.resetVisitedNodes(&_contract); } void ContractCompiler::appendCallValueCheck() { // Throw if function is not payable but call contained ether. m_context << Instruction::CALLVALUE; m_context.appendConditionalRevert(false, "Ether sent to non-payable function"); } void ContractCompiler::appendInitAndConstructorCode(ContractDefinition const& _contract) { solAssert(!_contract.isLibrary(), "Tried to initialize library."); CompilerContext::LocationSetter locationSetter(m_context, _contract); m_baseArguments = &_contract.annotation().baseConstructorArguments; // Initialization of state variables in base-to-derived order. for (ContractDefinition const* contract: _contract.annotation().linearizedBaseContracts | ranges::views::reverse) initializeStateVariables(*contract); if (FunctionDefinition const* constructor = _contract.constructor()) appendConstructor(*constructor); else { // Implicit constructors are always non-payable. appendCallValueCheck(); if (auto c = _contract.nextConstructor(m_context.mostDerivedContract())) appendBaseConstructor(*c); } } size_t ContractCompiler::packIntoContractCreator(ContractDefinition const& _contract) { solAssert(!!m_runtimeCompiler, ""); solAssert(!_contract.isLibrary(), "Tried to use contract creator or library."); appendInitAndConstructorCode(_contract); // We jump to the deploy routine because we first have to append all missing functions, // which can cause further functions to be added to the runtime context. evmasm::AssemblyItem deployRoutine = m_context.appendJumpToNew(); // We have to include copies of functions in the construction time and runtime context // because of absolute jumps. appendMissingFunctions(); m_runtimeCompiler->appendMissingFunctions(); CompilerContext::LocationSetter locationSetter(m_context, _contract); m_context << deployRoutine; solAssert(m_context.runtimeSub() != numeric_limits::max(), "Runtime sub not registered"); ContractType contractType(_contract); auto const& immutables = contractType.immutableVariables(); // Push all immutable values on the stack. for (auto const& immutable: immutables) CompilerUtils(m_context).loadFromMemory(static_cast(m_context.immutableMemoryOffset(*immutable)), *immutable->annotation().type); m_context.pushSubroutineSize(m_context.runtimeSub()); if (immutables.empty()) m_context << Instruction::DUP1; m_context.pushSubroutineOffset(m_context.runtimeSub()); m_context << u256(0) << Instruction::CODECOPY; // Assign immutable values from stack in reversed order. for (auto const& immutable: immutables | ranges::views::reverse) { auto slotNames = m_context.immutableVariableSlotNames(*immutable); for (auto&& slotName: slotNames | ranges::views::reverse) { m_context << u256(0); m_context.appendImmutableAssignment(slotName); } } if (!immutables.empty()) m_context.pushSubroutineSize(m_context.runtimeSub()); m_context << u256(0) << Instruction::RETURN; return m_context.runtimeSub(); } size_t ContractCompiler::deployLibrary(ContractDefinition const& _contract) { solAssert(!!m_runtimeCompiler, ""); solAssert(_contract.isLibrary(), "Tried to deploy contract as library."); appendMissingFunctions(); m_runtimeCompiler->appendMissingFunctions(); CompilerContext::LocationSetter locationSetter(m_context, _contract); solAssert(m_context.runtimeSub() != numeric_limits::max(), "Runtime sub not registered"); m_context.pushSubroutineSize(m_context.runtimeSub()); m_context.pushSubroutineOffset(m_context.runtimeSub()); // This code replaces the address added by appendDeployTimeAddress(). m_context.appendInlineAssembly( Whiskers(R"( { // If code starts at 11, an mstore(0) writes to the full PUSH20 plus data // without the need for a shift. let codepos := 11 codecopy(codepos, subOffset, subSize) // Check that the first opcode is a PUSH20 if iszero(eq(0x73, byte(0, mload(codepos)))) { mstore(0, ) mstore(4, ) revert(0, 0x24) } mstore(0, address()) mstore8(codepos, 0x73) return(codepos, subSize) } )") ("panicSelector", util::selectorFromSignature("Panic(uint256)").str()) ("panicCode", "0") .render(), {"subSize", "subOffset"} ); return m_context.runtimeSub(); } void ContractCompiler::appendBaseConstructor(FunctionDefinition const& _constructor) { CompilerContext::LocationSetter locationSetter(m_context, _constructor); FunctionType constructorType(_constructor); if (!constructorType.parameterTypes().empty()) { solAssert(m_baseArguments, ""); solAssert(m_baseArguments->count(&_constructor), ""); std::vector> const* arguments = nullptr; ASTNode const* baseArgumentNode = m_baseArguments->at(&_constructor); if (auto inheritanceSpecifier = dynamic_cast(baseArgumentNode)) arguments = inheritanceSpecifier->arguments(); else if (auto modifierInvocation = dynamic_cast(baseArgumentNode)) arguments = modifierInvocation->arguments(); solAssert(arguments, ""); solAssert(arguments->size() == constructorType.parameterTypes().size(), ""); for (unsigned i = 0; i < arguments->size(); ++i) compileExpression(*(arguments->at(i)), constructorType.parameterTypes()[i]); } _constructor.accept(*this); } void ContractCompiler::appendConstructor(FunctionDefinition const& _constructor) { CompilerContext::LocationSetter locationSetter(m_context, _constructor); if (!_constructor.isPayable()) appendCallValueCheck(); // copy constructor arguments from code to memory and then to stack, they are supplied after the actual program if (!_constructor.parameters().empty()) { CompilerUtils(m_context).fetchFreeMemoryPointer(); // CODESIZE returns the actual size of the code, // which is the size of the generated code (``programSize``) // plus the constructor arguments added to the transaction payload. m_context.appendProgramSize(); m_context << Instruction::CODESIZE << Instruction::SUB; // stack: m_context << Instruction::DUP1; m_context.appendProgramSize(); m_context << Instruction::DUP4 << Instruction::CODECOPY; // stack: m_context << Instruction::DUP2 << Instruction::DUP2 << Instruction::ADD; // stack: CompilerUtils(m_context).storeFreeMemoryPointer(); // stack: CompilerUtils(m_context).abiDecode(FunctionType(_constructor).parameterTypes(), true); } _constructor.accept(*this); } void ContractCompiler::appendDelegatecallCheck() { // Special constant that will be replaced by the address at deploy time. // At compilation time, this is just "PUSH20 00...000". m_context.appendDeployTimeAddress(); m_context << Instruction::ADDRESS << Instruction::EQ; // The result on the stack is // "We have not been called via DELEGATECALL". } void ContractCompiler::appendInternalSelector( map, evmasm::AssemblyItem const> const& _entryPoints, vector> const& _ids, evmasm::AssemblyItem const& _notFoundTag, size_t _runs ) { // Code for selecting from n functions without split: // n times: dup1, push4 , eq, push2/3 , jumpi // push2/3 jump // (called SELECT[n]) // Code for selecting from n functions with split: // dup1, push4 , gt, push2/3, jumpi // SELECT[n/2] // tag_less: // SELECT[n/2] // // This means each split adds 16-18 bytes of additional code (note the additional jump out!) // The average execution cost if we do not split at all are: // (3 + 3 + 3 + 3 + 10) * n/2 = 24 * n/2 = 12 * n // If we split once: // (3 + 3 + 3 + 3 + 10) + 24 * n/4 = 24 * (n/4 + 1) = 6 * n + 24; // // We should split if // _runs * 12 * n > _runs * (6 * n + 24) + 17 * createDataGas // <=> _runs * 6 * (n - 4) > 17 * createDataGas // // Which also means that the execution itself is not profitable // unless we have at least 5 functions. // Start with some comparisons to avoid overflow, then do the actual comparison. bool split = false; if (_ids.size() <= 4) split = false; else if (_runs > (17 * evmasm::GasCosts::createDataGas) / 6) split = true; else split = (_runs * 6 * (_ids.size() - 4) > 17 * evmasm::GasCosts::createDataGas); if (split) { size_t pivotIndex = _ids.size() / 2; FixedHash<4> pivot{_ids.at(pivotIndex)}; m_context << dupInstruction(1) << u256(FixedHash<4>::Arith(pivot)) << Instruction::GT; evmasm::AssemblyItem lessTag{m_context.appendConditionalJump()}; // Here, we have funid >= pivot vector> larger{_ids.begin() + static_cast(pivotIndex), _ids.end()}; appendInternalSelector(_entryPoints, larger, _notFoundTag, _runs); m_context << lessTag; // Here, we have funid < pivot vector> smaller{_ids.begin(), _ids.begin() + static_cast(pivotIndex)}; appendInternalSelector(_entryPoints, smaller, _notFoundTag, _runs); } else { for (auto const& id: _ids) { m_context << dupInstruction(1) << u256(FixedHash<4>::Arith(id)) << Instruction::EQ; m_context.appendConditionalJumpTo(_entryPoints.at(id)); } m_context.appendJumpTo(_notFoundTag); } } namespace { // Helper function to check if any function is payable bool hasPayableFunctions(ContractDefinition const& _contract) { if (_contract.receiveFunction()) return true; FunctionDefinition const* fallback = _contract.fallbackFunction(); if (fallback && fallback->isPayable()) return true; for (auto const& it: _contract.interfaceFunctions()) if (it.second->isPayable()) return true; return false; } } void ContractCompiler::appendFunctionSelector(ContractDefinition const& _contract) { map, FunctionTypePointer> interfaceFunctions = _contract.interfaceFunctions(); map, evmasm::AssemblyItem const> callDataUnpackerEntryPoints; if (_contract.isLibrary()) { solAssert(m_context.stackHeight() == 1, "CALL / DELEGATECALL flag expected."); } FunctionDefinition const* fallback = _contract.fallbackFunction(); solAssert(!_contract.isLibrary() || !fallback, "Libraries can't have fallback functions"); FunctionDefinition const* etherReceiver = _contract.receiveFunction(); solAssert(!_contract.isLibrary() || !etherReceiver, "Libraries can't have ether receiver functions"); bool needToAddCallvalueCheck = true; if (!hasPayableFunctions(_contract) && !interfaceFunctions.empty() && !_contract.isLibrary()) { appendCallValueCheck(); needToAddCallvalueCheck = false; } evmasm::AssemblyItem notFoundOrReceiveEther = m_context.newTag(); // If there is neither a fallback nor a receive ether function, we only need one label to jump to, which // always reverts. evmasm::AssemblyItem notFound = (!fallback && !etherReceiver) ? notFoundOrReceiveEther : m_context.newTag(); // directly jump to fallback or ether receiver if the data is too short to contain a function selector // also guards against short data m_context << u256(4) << Instruction::CALLDATASIZE << Instruction::LT; m_context.appendConditionalJumpTo(notFoundOrReceiveEther); // retrieve the function signature hash from the calldata if (!interfaceFunctions.empty()) { CompilerUtils(m_context).loadFromMemory(0, IntegerType(CompilerUtils::dataStartOffset * 8), true); // stack now is: ? vector> sortedIDs; for (auto const& it: interfaceFunctions) { callDataUnpackerEntryPoints.emplace(it.first, m_context.newTag()); sortedIDs.emplace_back(it.first); } std::sort(sortedIDs.begin(), sortedIDs.end()); appendInternalSelector(callDataUnpackerEntryPoints, sortedIDs, notFound, m_optimiserSettings.expectedExecutionsPerDeployment); } m_context << notFoundOrReceiveEther; if (!fallback && !etherReceiver) m_context.appendRevert("Contract does not have fallback nor receive functions"); else { if (etherReceiver) { // directly jump to fallback, if there is calldata m_context << Instruction::CALLDATASIZE; m_context.appendConditionalJumpTo(notFound); solAssert(!_contract.isLibrary(), ""); solAssert(etherReceiver->isReceive(), ""); solAssert(FunctionType(*etherReceiver).parameterTypes().empty(), ""); solAssert(FunctionType(*etherReceiver).returnParameterTypes().empty(), ""); etherReceiver->accept(*this); m_context << Instruction::STOP; } m_context << notFound; if (fallback) { solAssert(!_contract.isLibrary(), ""); if (!fallback->isPayable() && needToAddCallvalueCheck) appendCallValueCheck(); solAssert(fallback->isFallback(), ""); m_context.setStackOffset(0); if (!FunctionType(*fallback).parameterTypes().empty()) m_context << u256(0) << Instruction::CALLDATASIZE; fallback->accept(*this); if (FunctionType(*fallback).returnParameterTypes().empty()) m_context << Instruction::STOP; else { m_context << Instruction::DUP1 << Instruction::MLOAD << Instruction::SWAP1; m_context << u256(0x20) << Instruction::ADD; m_context << Instruction::RETURN; } } else m_context.appendRevert("Unknown signature and no fallback defined"); } for (auto const& it: interfaceFunctions) { m_context.setStackOffset(1); FunctionTypePointer const& functionType = it.second; solAssert(functionType->hasDeclaration(), ""); CompilerContext::LocationSetter locationSetter(m_context, functionType->declaration()); m_context << callDataUnpackerEntryPoints.at(it.first); if (_contract.isLibrary() && functionType->stateMutability() > StateMutability::View) { // If the function is not a view function and is called without DELEGATECALL, // we revert. m_context << dupInstruction(2); m_context.appendConditionalRevert(false, "Non-view function of library called without DELEGATECALL"); } m_context.setStackOffset(0); // We have to allow this for libraries, because value of the previous // call is still visible in the delegatecall. if (!functionType->isPayable() && !_contract.isLibrary() && needToAddCallvalueCheck) appendCallValueCheck(); // Return tag is used to jump out of the function. evmasm::AssemblyItem returnTag = m_context.pushNewTag(); if (!functionType->parameterTypes().empty()) { // Parameter for calldataUnpacker m_context << CompilerUtils::dataStartOffset; m_context << Instruction::DUP1 << Instruction::CALLDATASIZE << Instruction::SUB; CompilerUtils(m_context).abiDecode(functionType->parameterTypes()); } m_context.appendJumpTo( m_context.functionEntryLabel(functionType->declaration()), evmasm::AssemblyItem::JumpType::IntoFunction ); m_context << returnTag; // Return tag and input parameters get consumed. m_context.adjustStackOffset( static_cast(CompilerUtils::sizeOnStack(functionType->returnParameterTypes())) - static_cast(CompilerUtils::sizeOnStack(functionType->parameterTypes())) - 1 ); // Consumes the return parameters. appendReturnValuePacker(functionType->returnParameterTypes(), _contract.isLibrary()); } } void ContractCompiler::appendReturnValuePacker(TypePointers const& _typeParameters, bool _isLibrary) { CompilerUtils utils(m_context); if (_typeParameters.empty()) m_context << Instruction::STOP; else { utils.fetchFreeMemoryPointer(); //@todo optimization: if we return a single memory array, there should be enough space before // its data to add the needed parts and we avoid a memory copy. utils.abiEncode(_typeParameters, _typeParameters, _isLibrary); utils.toSizeAfterFreeMemoryPointer(); m_context << Instruction::RETURN; } } void ContractCompiler::registerStateVariables(ContractDefinition const& _contract) { for (auto const& var: ContractType(_contract).stateVariables()) m_context.addStateVariable(*get<0>(var), get<1>(var), get<2>(var)); } void ContractCompiler::registerImmutableVariables(ContractDefinition const& _contract) { solAssert(m_runtimeCompiler, "Attempted to register immutables for runtime code generation."); for (auto const& var: ContractType(_contract).immutableVariables()) m_context.addImmutable(*var); } void ContractCompiler::initializeStateVariables(ContractDefinition const& _contract) { solAssert(!_contract.isLibrary(), "Tried to initialize state variables of library."); for (VariableDeclaration const* variable: _contract.stateVariables()) if (variable->value() && !variable->isConstant()) ExpressionCompiler(m_context, m_optimiserSettings.runOrderLiterals).appendStateVariableInitialization(*variable); } bool ContractCompiler::visit(VariableDeclaration const& _variableDeclaration) { solAssert(_variableDeclaration.isStateVariable(), "Compiler visit to non-state variable declaration."); CompilerContext::LocationSetter locationSetter(m_context, _variableDeclaration); m_context.startFunction(_variableDeclaration); m_breakTags.clear(); m_continueTags.clear(); if (_variableDeclaration.isConstant()) ExpressionCompiler(m_context, m_optimiserSettings.runOrderLiterals) .appendConstStateVariableAccessor(_variableDeclaration); else ExpressionCompiler(m_context, m_optimiserSettings.runOrderLiterals) .appendStateVariableAccessor(_variableDeclaration); return false; } bool ContractCompiler::visit(FunctionDefinition const& _function) { solAssert(_function.isImplemented(), ""); CompilerContext::LocationSetter locationSetter(m_context, _function); m_context.startFunction(_function); // stack upon entry: [return address] [arg0] [arg1] ... [argn] // reserve additional slots: [retarg0] ... [retargm] unsigned parametersSize = CompilerUtils::sizeOnStack(_function.parameters()); if (_function.isFallback()) m_context.adjustStackOffset(static_cast(parametersSize)); else if (!_function.isConstructor()) // adding 1 for return address. m_context.adjustStackOffset(static_cast(parametersSize) + 1); for (ASTPointer const& variable: _function.parameters()) { m_context.addVariable(*variable, parametersSize); parametersSize -= variable->annotation().type->sizeOnStack(); } for (ASTPointer const& variable: _function.returnParameters()) appendStackVariableInitialisation(*variable, /* _provideDefaultValue = */ true); if (_function.isConstructor()) if (auto c = dynamic_cast(*_function.scope()).nextConstructor( m_context.mostDerivedContract() )) appendBaseConstructor(*c); solAssert(m_returnTags.empty(), ""); m_breakTags.clear(); m_continueTags.clear(); m_currentFunction = &_function; m_modifierDepth = numeric_limits::max(); m_scopeStackHeight.clear(); m_context.setModifierDepth(0); appendModifierOrFunctionCode(); m_context.setModifierDepth(0); solAssert(m_returnTags.empty(), ""); // Now we need to re-shuffle the stack. For this we keep a record of the stack layout // that shows the target positions of the elements, where "-1" denotes that this element needs // to be removed from the stack. // Note that the fact that the return arguments are of increasing index is vital for this // algorithm to work. unsigned const c_argumentsSize = CompilerUtils::sizeOnStack(_function.parameters()); unsigned const c_returnValuesSize = CompilerUtils::sizeOnStack(_function.returnParameters()); vector stackLayout; if (!_function.isConstructor() && !_function.isFallback()) stackLayout.push_back(static_cast(c_returnValuesSize)); // target of return address stackLayout += vector(c_argumentsSize, -1); // discard all arguments for (size_t i = 0; i < c_returnValuesSize; ++i) stackLayout.push_back(static_cast(i)); if (stackLayout.size() > 17) BOOST_THROW_EXCEPTION( StackTooDeepError() << errinfo_sourceLocation(_function.location()) << errinfo_comment("Stack too deep, try removing local variables.") ); while (!stackLayout.empty() && stackLayout.back() != static_cast(stackLayout.size() - 1)) if (stackLayout.back() < 0) { m_context << Instruction::POP; stackLayout.pop_back(); } else { m_context << swapInstruction(static_cast(stackLayout.size()) - static_cast(stackLayout.back()) - 1u); swap(stackLayout[static_cast(stackLayout.back())], stackLayout.back()); } for (size_t i = 0; i < stackLayout.size(); ++i) if (stackLayout[i] != static_cast(i)) solAssert(false, "Invalid stack layout on cleanup."); for (ASTPointer const& variable: _function.parameters() + _function.returnParameters()) m_context.removeVariable(*variable); m_context.adjustStackOffset(-(int)c_returnValuesSize); /// The constructor and the fallback function doesn't to jump out. if (!_function.isConstructor()) { solAssert(m_context.numberOfLocalVariables() == 0, ""); if (!_function.isFallback() && !_function.isReceive()) m_context.appendJump(evmasm::AssemblyItem::JumpType::OutOfFunction); } return false; } bool ContractCompiler::visit(InlineAssembly const& _inlineAssembly) { unsigned startStackHeight = m_context.stackHeight(); yul::ExternalIdentifierAccess::CodeGenerator identifierAccessCodeGen = [&]( yul::Identifier const& _identifier, yul::IdentifierContext _context, yul::AbstractAssembly& _assembly ) { solAssert(_context == yul::IdentifierContext::RValue || _context == yul::IdentifierContext::LValue, ""); auto ref = _inlineAssembly.annotation().externalReferences.find(&_identifier); solAssert(ref != _inlineAssembly.annotation().externalReferences.end(), ""); Declaration const* decl = ref->second.declaration; solAssert(!!decl, ""); if (_context == yul::IdentifierContext::RValue) { int const depositBefore = _assembly.stackHeight(); solAssert(!!decl->type(), "Type of declaration required but not yet determined."); if (auto variable = dynamic_cast(decl)) { solAssert(!variable->immutable(), ""); if (variable->isConstant()) { variable = rootConstVariableDeclaration(*variable); // If rootConstVariableDeclaration fails and returns nullptr, // it should have failed in TypeChecker already, causing a compilation error. // In such case we should not get here. solAssert(variable, ""); u256 value; if (variable->value()->annotation().type->category() == Type::Category::RationalNumber) { value = dynamic_cast(*variable->value()->annotation().type).literalValue(nullptr); if (FixedBytesType const* bytesType = dynamic_cast(variable->type())) value = value << (256 - 8 * bytesType->numBytes()); else solAssert(variable->type()->category() == Type::Category::Integer, ""); } else if (Literal const* literal = dynamic_cast(variable->value().get())) { Type const* type = literal->annotation().type; switch (type->category()) { case Type::Category::Bool: case Type::Category::Address: // Either both the literal and the variable are bools, or they are both addresses. // If they are both bools, comparing category is the same as comparing the types. // If they are both addresses, compare category so that payable/nonpayable is not compared. solAssert(type->category() == variable->annotation().type->category(), ""); value = type->literalValue(literal); break; case Type::Category::StringLiteral: { StringLiteralType const& stringLiteral = dynamic_cast(*type); solAssert(variable->type()->category() == Type::Category::FixedBytes, ""); unsigned const numBytes = dynamic_cast(*variable->type()).numBytes(); solAssert(stringLiteral.value().size() <= numBytes, ""); value = u256(h256(stringLiteral.value(), h256::AlignLeft)); break; } default: solAssert(false, ""); } } else solAssert(false, "Invalid constant in inline assembly."); m_context << value; } else if (m_context.isStateVariable(decl)) { auto const& location = m_context.storageLocationOfVariable(*decl); if (ref->second.suffix == "slot") m_context << location.first; else if (ref->second.suffix == "offset") m_context << u256(location.second); else solAssert(false, ""); } else if (m_context.isLocalVariable(decl)) { unsigned stackDiff = static_cast(_assembly.stackHeight()) - m_context.baseStackOffsetOfVariable(*variable); if (!ref->second.suffix.empty()) { string const& suffix = ref->second.suffix; if (variable->type()->dataStoredIn(DataLocation::Storage)) { solAssert(suffix == "offset" || suffix == "slot", ""); unsigned size = variable->type()->sizeOnStack(); if (size == 2) { // slot plus offset if (suffix == "offset") stackDiff--; } else { solAssert(size == 1, ""); // only slot, offset is zero if (suffix == "offset") { _assembly.appendConstant(u256(0)); return; } } } else if (variable->type()->dataStoredIn(DataLocation::CallData)) { auto const* arrayType = dynamic_cast(variable->type()); solAssert( arrayType && arrayType->isDynamicallySized() && arrayType->dataStoredIn(DataLocation::CallData), "" ); solAssert(suffix == "offset" || suffix == "length", ""); solAssert(variable->type()->sizeOnStack() == 2, ""); if (suffix == "length") stackDiff--; } else solAssert(false, ""); } else solAssert(variable->type()->sizeOnStack() == 1, ""); if (stackDiff < 1 || stackDiff > 16) BOOST_THROW_EXCEPTION( StackTooDeepError() << errinfo_sourceLocation(_inlineAssembly.location()) << errinfo_comment("Stack too deep, try removing local variables.") ); _assembly.appendInstruction(dupInstruction(stackDiff)); } else solAssert(false, ""); } else if (auto contract = dynamic_cast(decl)) { solAssert(ref->second.suffix.empty(), ""); solAssert(contract->isLibrary(), ""); _assembly.appendLinkerSymbol(contract->fullyQualifiedName()); } else solAssert(false, "Invalid declaration type."); solAssert(_assembly.stackHeight() - depositBefore == static_cast(ref->second.valueSize), ""); } else { // lvalue context auto variable = dynamic_cast(decl); unsigned stackDiff = static_cast(_assembly.stackHeight()) - m_context.baseStackOffsetOfVariable(*variable) - 1; string const& suffix = ref->second.suffix; if (variable->type()->dataStoredIn(DataLocation::Storage)) { solAssert( !!variable && m_context.isLocalVariable(variable), "Can only assign to stack variables in inline assembly." ); solAssert(variable->type()->sizeOnStack() == 1, ""); solAssert(suffix == "slot", ""); } else if (variable->type()->dataStoredIn(DataLocation::CallData)) { if (auto const* arrayType = dynamic_cast(variable->type())) { if (arrayType->isDynamicallySized()) { solAssert(suffix == "offset" || suffix == "length", ""); solAssert(variable->type()->sizeOnStack() == 2, ""); if (suffix == "length") stackDiff--; } else { solAssert(variable->type()->sizeOnStack() == 1, ""); solAssert(suffix.empty(), ""); } } else { auto const* structType = dynamic_cast(variable->type()); solAssert(structType, ""); solAssert(variable->type()->sizeOnStack() == 1, ""); solAssert(suffix.empty(), ""); } } else solAssert(suffix.empty(), ""); if (stackDiff > 16 || stackDiff < 1) BOOST_THROW_EXCEPTION( StackTooDeepError() << errinfo_sourceLocation(_inlineAssembly.location()) << errinfo_comment("Stack too deep(" + to_string(stackDiff) + "), try removing local variables.") ); _assembly.appendInstruction(swapInstruction(stackDiff)); _assembly.appendInstruction(Instruction::POP); } }; yul::Block const* code = &_inlineAssembly.operations(); yul::AsmAnalysisInfo* analysisInfo = _inlineAssembly.annotation().analysisInfo.get(); // Only used in the scope below, but required to live outside to keep the // shared_ptr's alive yul::Object object = {}; // The optimiser cannot handle external references if ( m_optimiserSettings.runYulOptimiser && _inlineAssembly.annotation().externalReferences.empty() ) { yul::EVMDialect const* dialect = dynamic_cast(&_inlineAssembly.dialect()); solAssert(dialect, ""); // Create a modifiable copy of the code and analysis object.code = make_shared(yul::ASTCopier().translate(*code)); object.analysisInfo = make_shared(yul::AsmAnalyzer::analyzeStrictAssertCorrect(*dialect, object)); m_context.optimizeYul(object, *dialect, m_optimiserSettings); code = object.code.get(); analysisInfo = object.analysisInfo.get(); } yul::CodeGenerator::assemble( *code, *analysisInfo, *m_context.assemblyPtr(), m_context.evmVersion(), identifierAccessCodeGen, false, m_optimiserSettings.optimizeStackAllocation ); m_context.setStackOffset(static_cast(startStackHeight)); return false; } bool ContractCompiler::visit(TryStatement const& _tryStatement) { StackHeightChecker checker(m_context); CompilerContext::LocationSetter locationSetter(m_context, _tryStatement); compileExpression(_tryStatement.externalCall()); int const returnSize = static_cast(_tryStatement.externalCall().annotation().type->sizeOnStack()); // Stack: [ return values] evmasm::AssemblyItem successTag = m_context.appendConditionalJump(); // Catch case. m_context.adjustStackOffset(-returnSize); handleCatch(_tryStatement.clauses()); evmasm::AssemblyItem endTag = m_context.appendJumpToNew(); m_context << successTag; m_context.adjustStackOffset(returnSize); { // Success case. // Stack: return values TryCatchClause const& successClause = *_tryStatement.clauses().front(); if (successClause.parameters()) { vector exprTypes{_tryStatement.externalCall().annotation().type}; if (auto tupleType = dynamic_cast(exprTypes.front())) exprTypes = tupleType->components(); vector> const& params = successClause.parameters()->parameters(); solAssert(exprTypes.size() == params.size(), ""); for (size_t i = 0; i < exprTypes.size(); ++i) solAssert(params[i] && exprTypes[i] && *params[i]->annotation().type == *exprTypes[i], ""); } else CompilerUtils(m_context).popStackSlots(static_cast(returnSize)); _tryStatement.clauses().front()->accept(*this); } m_context << endTag; checker.check(); return false; } void ContractCompiler::handleCatch(vector> const& _catchClauses) { // Stack is empty. ASTPointer error{}; ASTPointer panic{}; ASTPointer fallback{}; for (size_t i = 1; i < _catchClauses.size(); ++i) if (_catchClauses[i]->errorName() == "Error") error = _catchClauses[i]; else if (_catchClauses[i]->errorName() == "Panic") panic = _catchClauses[i]; else if (_catchClauses[i]->errorName().empty()) fallback = _catchClauses[i]; else solAssert(false, ""); solAssert(_catchClauses.size() == 1ul + (error ? 1 : 0) + (panic ? 1 : 0) + (fallback ? 1 : 0), ""); evmasm::AssemblyItem endTag = m_context.newTag(); evmasm::AssemblyItem fallbackTag = m_context.newTag(); evmasm::AssemblyItem panicTag = m_context.newTag(); if (error || panic) // Note that this function returns zero on failure, which is not a problem yet, // but will be a problem once we allow user-defined errors. m_context.callYulFunction(m_context.utilFunctions().returnDataSelectorFunction(), 0, 1); // stack: if (error) { solAssert( error->parameters() && error->parameters()->parameters().size() == 1 && error->parameters()->parameters().front() && *error->parameters()->parameters().front()->annotation().type == *TypeProvider::stringMemory(), "" ); solAssert(m_context.evmVersion().supportsReturndata(), ""); // stack: m_context << Instruction::DUP1 << selectorFromSignature32("Error(string)") << Instruction::EQ; m_context << Instruction::ISZERO; m_context.appendConditionalJumpTo(panicTag); m_context << Instruction::POP; // remove selector // Try to decode the error message. // If this fails, leaves 0 on the stack, otherwise the pointer to the data string. m_context.callYulFunction(m_context.utilFunctions().tryDecodeErrorMessageFunction(), 0, 1); m_context << Instruction::DUP1; AssemblyItem decodeSuccessTag = m_context.appendConditionalJump(); m_context << Instruction::POP; m_context.appendJumpTo(fallbackTag); m_context.adjustStackOffset(1); m_context << decodeSuccessTag; error->accept(*this); m_context.appendJumpTo(endTag); m_context.adjustStackOffset(1); } m_context << panicTag; if (panic) { solAssert( panic->parameters() && panic->parameters()->parameters().size() == 1 && panic->parameters()->parameters().front() && *panic->parameters()->parameters().front()->annotation().type == *TypeProvider::uint256(), "" ); solAssert(m_context.evmVersion().supportsReturndata(), ""); // stack: m_context << selectorFromSignature32("Panic(uint256)") << Instruction::EQ; m_context << Instruction::ISZERO; m_context.appendConditionalJumpTo(fallbackTag); m_context.callYulFunction(m_context.utilFunctions().tryDecodePanicDataFunction(), 0, 2); m_context << Instruction::SWAP1; // stack: AssemblyItem decodeSuccessTag = m_context.appendConditionalJump(); m_context << Instruction::POP; m_context.appendJumpTo(fallbackTag); m_context.adjustStackOffset(1); m_context << decodeSuccessTag; panic->accept(*this); m_context.appendJumpTo(endTag); m_context.adjustStackOffset(1); } if (error || panic) m_context << Instruction::POP; // selector m_context << fallbackTag; if (fallback) { if (fallback->parameters()) { solAssert(m_context.evmVersion().supportsReturndata(), ""); solAssert( fallback->parameters()->parameters().size() == 1 && fallback->parameters()->parameters().front() && *fallback->parameters()->parameters().front()->annotation().type == *TypeProvider::bytesMemory(), "" ); CompilerUtils(m_context).returnDataToArray(); } fallback->accept(*this); } else { // re-throw if (m_context.evmVersion().supportsReturndata()) m_context.appendInlineAssembly(R"({ returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) })"); else // Since both returndata and revert are >=byzantium, this should be unreachable. solAssert(false, ""); } m_context << endTag; } bool ContractCompiler::visit(TryCatchClause const& _clause) { CompilerContext::LocationSetter locationSetter(m_context, _clause); unsigned varSize = 0; if (_clause.parameters()) for (ASTPointer const& varDecl: _clause.parameters()->parameters() | ranges::views::reverse) { solAssert(varDecl, ""); varSize += varDecl->annotation().type->sizeOnStack(); m_context.addVariable(*varDecl, varSize); } _clause.block().accept(*this); m_context.removeVariablesAboveStackHeight(m_context.stackHeight() - varSize); CompilerUtils(m_context).popStackSlots(varSize); return false; } bool ContractCompiler::visit(IfStatement const& _ifStatement) { StackHeightChecker checker(m_context); CompilerContext::LocationSetter locationSetter(m_context, _ifStatement); compileExpression(_ifStatement.condition()); m_context << Instruction::ISZERO; evmasm::AssemblyItem falseTag = m_context.appendConditionalJump(); evmasm::AssemblyItem endTag = falseTag; _ifStatement.trueStatement().accept(*this); if (_ifStatement.falseStatement()) { endTag = m_context.appendJumpToNew(); m_context << falseTag; _ifStatement.falseStatement()->accept(*this); } m_context << endTag; checker.check(); return false; } bool ContractCompiler::visit(WhileStatement const& _whileStatement) { StackHeightChecker checker(m_context); CompilerContext::LocationSetter locationSetter(m_context, _whileStatement); evmasm::AssemblyItem loopStart = m_context.newTag(); evmasm::AssemblyItem loopEnd = m_context.newTag(); m_breakTags.emplace_back(loopEnd, m_context.stackHeight()); m_context << loopStart; if (_whileStatement.isDoWhile()) { evmasm::AssemblyItem condition = m_context.newTag(); m_continueTags.emplace_back(condition, m_context.stackHeight()); _whileStatement.body().accept(*this); m_context << condition; compileExpression(_whileStatement.condition()); m_context << Instruction::ISZERO << Instruction::ISZERO; m_context.appendConditionalJumpTo(loopStart); } else { m_continueTags.emplace_back(loopStart, m_context.stackHeight()); compileExpression(_whileStatement.condition()); m_context << Instruction::ISZERO; m_context.appendConditionalJumpTo(loopEnd); _whileStatement.body().accept(*this); m_context.appendJumpTo(loopStart); } m_context << loopEnd; m_continueTags.pop_back(); m_breakTags.pop_back(); checker.check(); return false; } bool ContractCompiler::visit(ForStatement const& _forStatement) { StackHeightChecker checker(m_context); CompilerContext::LocationSetter locationSetter(m_context, _forStatement); evmasm::AssemblyItem loopStart = m_context.newTag(); evmasm::AssemblyItem loopEnd = m_context.newTag(); evmasm::AssemblyItem loopNext = m_context.newTag(); storeStackHeight(&_forStatement); if (_forStatement.initializationExpression()) _forStatement.initializationExpression()->accept(*this); m_breakTags.emplace_back(loopEnd, m_context.stackHeight()); m_continueTags.emplace_back(loopNext, m_context.stackHeight()); m_context << loopStart; // if there is no terminating condition in for, default is to always be true if (_forStatement.condition()) { compileExpression(*_forStatement.condition()); m_context << Instruction::ISZERO; m_context.appendConditionalJumpTo(loopEnd); } _forStatement.body().accept(*this); m_context << loopNext; // for's loop expression if existing if (_forStatement.loopExpression()) _forStatement.loopExpression()->accept(*this); m_context.appendJumpTo(loopStart); m_context << loopEnd; m_continueTags.pop_back(); m_breakTags.pop_back(); // For the case where no break/return is executed: // loop initialization variables have to be freed popScopedVariables(&_forStatement); checker.check(); return false; } bool ContractCompiler::visit(Continue const& _continueStatement) { CompilerContext::LocationSetter locationSetter(m_context, _continueStatement); solAssert(!m_continueTags.empty(), ""); CompilerUtils(m_context).popAndJump(m_continueTags.back().second, m_continueTags.back().first); return false; } bool ContractCompiler::visit(Break const& _breakStatement) { CompilerContext::LocationSetter locationSetter(m_context, _breakStatement); solAssert(!m_breakTags.empty(), ""); CompilerUtils(m_context).popAndJump(m_breakTags.back().second, m_breakTags.back().first); return false; } bool ContractCompiler::visit(Return const& _return) { CompilerContext::LocationSetter locationSetter(m_context, _return); if (Expression const* expression = _return.expression()) { solAssert(_return.annotation().functionReturnParameters, "Invalid return parameters pointer."); vector> const& returnParameters = _return.annotation().functionReturnParameters->parameters(); TypePointers types; for (auto const& retVariable: returnParameters) types.push_back(retVariable->annotation().type); Type const* expectedType; if (expression->annotation().type->category() == Type::Category::Tuple || types.size() != 1) expectedType = TypeProvider::tuple(move(types)); else expectedType = types.front(); compileExpression(*expression, expectedType); for (auto const& retVariable: returnParameters | ranges::views::reverse) CompilerUtils(m_context).moveToStackVariable(*retVariable); } CompilerUtils(m_context).popAndJump(m_returnTags.back().second, m_returnTags.back().first); return false; } bool ContractCompiler::visit(Throw const&) { solAssert(false, "Throw statement is disallowed."); return false; } bool ContractCompiler::visit(EmitStatement const& _emit) { CompilerContext::LocationSetter locationSetter(m_context, _emit); StackHeightChecker checker(m_context); compileExpression(_emit.eventCall()); checker.check(); return false; } bool ContractCompiler::visit(RevertStatement const& _revert) { CompilerContext::LocationSetter locationSetter(m_context, _revert); StackHeightChecker checker(m_context); compileExpression(_revert.errorCall()); checker.check(); return false; } bool ContractCompiler::visit(VariableDeclarationStatement const& _variableDeclarationStatement) { CompilerContext::LocationSetter locationSetter(m_context, _variableDeclarationStatement); // Local variable slots are reserved when their declaration is visited, // and freed in the end of their scope. for (auto decl: _variableDeclarationStatement.declarations()) if (decl) appendStackVariableInitialisation(*decl, !_variableDeclarationStatement.initialValue()); StackHeightChecker checker(m_context); if (Expression const* expression = _variableDeclarationStatement.initialValue()) { CompilerUtils utils(m_context); compileExpression(*expression); TypePointers valueTypes; if (auto tupleType = dynamic_cast(expression->annotation().type)) valueTypes = tupleType->components(); else valueTypes = TypePointers{expression->annotation().type}; auto const& declarations = _variableDeclarationStatement.declarations(); solAssert(declarations.size() == valueTypes.size(), ""); for (size_t i = 0; i < declarations.size(); ++i) { size_t j = declarations.size() - i - 1; solAssert(!!valueTypes[j], ""); if (VariableDeclaration const* varDecl = declarations[j].get()) { utils.convertType(*valueTypes[j], *varDecl->annotation().type); utils.moveToStackVariable(*varDecl); } else utils.popStackElement(*valueTypes[j]); } } checker.check(); return false; } bool ContractCompiler::visit(ExpressionStatement const& _expressionStatement) { StackHeightChecker checker(m_context); CompilerContext::LocationSetter locationSetter(m_context, _expressionStatement); Expression const& expression = _expressionStatement.expression(); compileExpression(expression); CompilerUtils(m_context).popStackElement(*expression.annotation().type); checker.check(); return false; } bool ContractCompiler::visit(PlaceholderStatement const& _placeholderStatement) { StackHeightChecker checker(m_context); CompilerContext::LocationSetter locationSetter(m_context, _placeholderStatement); solAssert(m_context.arithmetic() == Arithmetic::Checked, "Placeholder cannot be used inside checked block."); appendModifierOrFunctionCode(); solAssert(m_context.arithmetic() == Arithmetic::Checked, "Arithmetic not reset to 'checked'."); checker.check(); return true; } bool ContractCompiler::visit(Block const& _block) { m_context.pushVisitedNodes(&_block); if (_block.unchecked()) { solAssert(m_context.arithmetic() == Arithmetic::Checked, ""); m_context.setArithmetic(Arithmetic::Wrapping); } storeStackHeight(&_block); return true; } void ContractCompiler::endVisit(Block const& _block) { if (_block.unchecked()) { solAssert(m_context.arithmetic() == Arithmetic::Wrapping, ""); m_context.setArithmetic(Arithmetic::Checked); } // Frees local variables declared in the scope of this block. popScopedVariables(&_block); m_context.popVisitedNodes(); } void ContractCompiler::appendMissingFunctions() { while (Declaration const* function = m_context.nextFunctionToCompile()) { m_context.setStackOffset(0); function->accept(*this); solAssert(m_context.nextFunctionToCompile() != function, "Compiled the wrong function?"); } m_context.appendMissingLowLevelFunctions(); m_context.appendYulUtilityFunctions(m_optimiserSettings); } void ContractCompiler::appendModifierOrFunctionCode() { solAssert(m_currentFunction, ""); unsigned stackSurplus = 0; Block const* codeBlock = nullptr; vector addedVariables; m_modifierDepth++; m_context.setModifierDepth(m_modifierDepth); if (m_modifierDepth >= m_currentFunction->modifiers().size()) { solAssert(m_currentFunction->isImplemented(), ""); codeBlock = &m_currentFunction->body(); } else { ASTPointer const& modifierInvocation = m_currentFunction->modifiers()[m_modifierDepth]; // constructor call should be excluded if (dynamic_cast(modifierInvocation->name().annotation().referencedDeclaration)) appendModifierOrFunctionCode(); else { ModifierDefinition const& referencedModifier = dynamic_cast( *modifierInvocation->name().annotation().referencedDeclaration ); VirtualLookup lookup = *modifierInvocation->name().annotation().requiredLookup; solAssert(lookup == VirtualLookup::Virtual || lookup == VirtualLookup::Static, ""); ModifierDefinition const& modifier = lookup == VirtualLookup::Virtual ? referencedModifier.resolveVirtual(m_context.mostDerivedContract()) : referencedModifier; CompilerContext::LocationSetter locationSetter(m_context, modifier); std::vector> const& modifierArguments = modifierInvocation->arguments() ? *modifierInvocation->arguments() : std::vector>(); solAssert(modifier.parameters().size() == modifierArguments.size(), ""); for (unsigned i = 0; i < modifier.parameters().size(); ++i) { m_context.addVariable(*modifier.parameters()[i]); addedVariables.push_back(modifier.parameters()[i].get()); compileExpression( *modifierArguments[i], modifier.parameters()[i]->annotation().type ); } stackSurplus = CompilerUtils::sizeOnStack(modifier.parameters()); codeBlock = &modifier.body(); } } if (codeBlock) { m_context.setArithmetic(Arithmetic::Checked); bool coderV2Outside = m_context.useABICoderV2(); m_context.setUseABICoderV2(*codeBlock->sourceUnit().annotation().useABICoderV2); m_returnTags.emplace_back(m_context.newTag(), m_context.stackHeight()); codeBlock->accept(*this); m_context.setUseABICoderV2(coderV2Outside); solAssert(!m_returnTags.empty(), ""); m_context << m_returnTags.back().first; m_returnTags.pop_back(); CompilerUtils(m_context).popStackSlots(stackSurplus); for (auto var: addedVariables) m_context.removeVariable(*var); } m_modifierDepth--; m_context.setModifierDepth(m_modifierDepth); } void ContractCompiler::appendStackVariableInitialisation( VariableDeclaration const& _variable, bool _provideDefaultValue ) { CompilerContext::LocationSetter location(m_context, _variable); m_context.addVariable(_variable); if (!_provideDefaultValue && _variable.type()->dataStoredIn(DataLocation::Memory)) { solAssert(_variable.type()->sizeOnStack() == 1, ""); m_context << u256(0); } else CompilerUtils(m_context).pushZeroValue(*_variable.annotation().type); } void ContractCompiler::compileExpression(Expression const& _expression, Type const* _targetType) { ExpressionCompiler expressionCompiler(m_context, m_optimiserSettings.runOrderLiterals); expressionCompiler.compile(_expression); if (_targetType) CompilerUtils(m_context).convertType(*_expression.annotation().type, *_targetType); } void ContractCompiler::popScopedVariables(ASTNode const* _node) { unsigned blockHeight = m_scopeStackHeight.at(m_modifierDepth).at(_node); m_context.removeVariablesAboveStackHeight(blockHeight); solAssert(m_context.stackHeight() >= blockHeight, ""); unsigned stackDiff = m_context.stackHeight() - blockHeight; CompilerUtils(m_context).popStackSlots(stackDiff); m_scopeStackHeight[m_modifierDepth].erase(_node); if (m_scopeStackHeight[m_modifierDepth].empty()) m_scopeStackHeight.erase(m_modifierDepth); } void ContractCompiler::storeStackHeight(ASTNode const* _node) { m_scopeStackHeight[m_modifierDepth][_node] = m_context.stackHeight(); }