/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ // SPDX-License-Identifier: GPL-3.0 #include #include #include #include #ifdef HAVE_Z3_DLOPEN #include #endif using namespace std; using namespace solidity; using namespace solidity::util; using namespace solidity::langutil; using namespace solidity::frontend; BMC::BMC( smt::EncodingContext& _context, ErrorReporter& _errorReporter, map const& _smtlib2Responses, ReadCallback::Callback const& _smtCallback, smtutil::SMTSolverChoice _enabledSolvers, ModelCheckerSettings const& _settings ): SMTEncoder(_context), m_interface(make_unique(_smtlib2Responses, _smtCallback, _enabledSolvers, _settings.timeout)), m_outerErrorReporter(_errorReporter), m_settings(_settings) { #if defined (HAVE_Z3) || defined (HAVE_CVC4) if (_enabledSolvers.some()) if (!_smtlib2Responses.empty()) m_errorReporter.warning( 5622_error, "SMT-LIB2 query responses were given in the auxiliary input, " "but this Solidity binary uses an SMT solver (Z3/CVC4) directly." "These responses will be ignored." "Consider disabling Z3/CVC4 at compilation time in order to use SMT-LIB2 responses." ); #endif } void BMC::analyze(SourceUnit const& _source, map> _solvedTargets) { solAssert(_source.annotation().experimentalFeatures.count(ExperimentalFeature::SMTChecker), ""); /// This is currently used to abort analysis of SourceUnits /// containing file level functions or constants. if (SMTEncoder::analyze(_source)) { m_solvedTargets = move(_solvedTargets); m_context.setSolver(m_interface.get()); m_context.clear(); m_context.setAssertionAccumulation(true); m_variableUsage.setFunctionInlining(shouldInlineFunctionCall); _source.accept(*this); } solAssert(m_interface->solvers() > 0, ""); // If this check is true, Z3 and CVC4 are not available // and the query answers were not provided, since SMTPortfolio // guarantees that SmtLib2Interface is the first solver. if (!m_interface->unhandledQueries().empty() && m_interface->solvers() == 1) { if (!m_noSolverWarning) { m_noSolverWarning = true; m_outerErrorReporter.warning( 8084_error, SourceLocation(), "BMC analysis was not possible since no SMT solver (Z3 or CVC4) was found." #ifdef HAVE_Z3_DLOPEN " Install libz3.so." + to_string(Z3_MAJOR_VERSION) + "." + to_string(Z3_MINOR_VERSION) + " to enable Z3." #endif ); } } else m_outerErrorReporter.append(m_errorReporter.errors()); m_errorReporter.clear(); } bool BMC::shouldInlineFunctionCall( FunctionCall const& _funCall, ContractDefinition const* _scopeContract, ContractDefinition const* _contextContract ) { auto funDef = functionCallToDefinition(_funCall, _scopeContract, _contextContract); if (!funDef || !funDef->isImplemented()) return false; FunctionType const& funType = dynamic_cast(*_funCall.expression().annotation().type); if (funType.kind() == FunctionType::Kind::External) return isTrustedExternalCall(&_funCall.expression()); else if (funType.kind() != FunctionType::Kind::Internal) return false; return true; } /// AST visitors. bool BMC::visit(ContractDefinition const& _contract) { initContract(_contract); SMTEncoder::visit(_contract); return false; } void BMC::endVisit(ContractDefinition const& _contract) { if (auto constructor = _contract.constructor()) constructor->accept(*this); else { /// Visiting implicit constructor - we need a dummy callstack frame pushCallStack({nullptr, nullptr}); inlineConstructorHierarchy(_contract); popCallStack(); /// Check targets created by state variable initialization. checkVerificationTargets(); m_verificationTargets.clear(); } SMTEncoder::endVisit(_contract); } bool BMC::visit(FunctionDefinition const& _function) { auto contract = dynamic_cast(_function.scope()); solAssert(contract, ""); solAssert(m_currentContract, ""); auto const& hierarchy = m_currentContract->annotation().linearizedBaseContracts; if (find(hierarchy.begin(), hierarchy.end(), contract) == hierarchy.end()) createStateVariables(*contract); if (m_callStack.empty()) { reset(); initFunction(_function); m_context.addAssertion(state().txTypeConstraints() && state().txFunctionConstraints(_function)); resetStateVariables(); } if (_function.isConstructor()) inlineConstructorHierarchy(dynamic_cast(*_function.scope())); /// Already visits the children. SMTEncoder::visit(_function); return false; } void BMC::endVisit(FunctionDefinition const& _function) { if (isRootFunction()) { checkVerificationTargets(); m_verificationTargets.clear(); m_pathConditions.clear(); } SMTEncoder::endVisit(_function); } bool BMC::visit(IfStatement const& _node) { // This check needs to be done in its own context otherwise // constraints from the If body might influence it. m_context.pushSolver(); _node.condition().accept(*this); // We ignore called functions here because they have // specific input values. if (isRootFunction()) addVerificationTarget( VerificationTargetType::ConstantCondition, expr(_node.condition()), &_node.condition() ); m_context.popSolver(); _node.condition().accept(*this); auto conditionExpr = expr(_node.condition()); // visit true branch auto [indicesEndTrue, trueEndPathCondition] = visitBranch(&_node.trueStatement(), conditionExpr); // visit false branch decltype(indicesEndTrue) indicesEndFalse; auto falseEndPathCondition = currentPathConditions() && !conditionExpr; if (_node.falseStatement()) std::tie(indicesEndFalse, falseEndPathCondition) = visitBranch(_node.falseStatement(), !conditionExpr); else indicesEndFalse = copyVariableIndices(); // merge the information from branches setPathCondition(trueEndPathCondition || falseEndPathCondition); mergeVariables(expr(_node.condition()), indicesEndTrue, indicesEndFalse); return false; } bool BMC::visit(Conditional const& _op) { m_context.pushSolver(); _op.condition().accept(*this); if (isRootFunction()) addVerificationTarget( VerificationTargetType::ConstantCondition, expr(_op.condition()), &_op.condition() ); m_context.popSolver(); SMTEncoder::visit(_op); return false; } // Here we consider the execution of two branches: // Branch 1 assumes the loop condition to be true and executes the loop once, // after resetting touched variables. // Branch 2 assumes the loop condition to be false and skips the loop after // visiting the condition (it might contain side-effects, they need to be considered) // and does not erase knowledge. // If the loop is a do-while, condition side-effects are lost since the body, // executed once before the condition, might reassign variables. // Variables touched by the loop are merged with Branch 2. bool BMC::visit(WhileStatement const& _node) { auto indicesBeforeLoop = copyVariableIndices(); m_context.resetVariables(touchedVariables(_node)); decltype(indicesBeforeLoop) indicesAfterLoop; if (_node.isDoWhile()) { indicesAfterLoop = visitBranch(&_node.body()).first; // TODO the assertions generated in the body should still be active in the condition _node.condition().accept(*this); if (isRootFunction()) addVerificationTarget( VerificationTargetType::ConstantCondition, expr(_node.condition()), &_node.condition() ); } else { _node.condition().accept(*this); if (isRootFunction()) addVerificationTarget( VerificationTargetType::ConstantCondition, expr(_node.condition()), &_node.condition() ); indicesAfterLoop = visitBranch(&_node.body(), expr(_node.condition())).first; } // We reset the execution to before the loop // and visit the condition in case it's not a do-while. // A do-while's body might have non-precise information // in its first run about variables that are touched. resetVariableIndices(indicesBeforeLoop); if (!_node.isDoWhile()) _node.condition().accept(*this); mergeVariables(expr(_node.condition()), indicesAfterLoop, copyVariableIndices()); m_loopExecutionHappened = true; return false; } // Here we consider the execution of two branches similar to WhileStatement. bool BMC::visit(ForStatement const& _node) { if (_node.initializationExpression()) _node.initializationExpression()->accept(*this); auto indicesBeforeLoop = copyVariableIndices(); // Do not reset the init expression part. auto touchedVars = touchedVariables(_node.body()); if (_node.condition()) touchedVars += touchedVariables(*_node.condition()); if (_node.loopExpression()) touchedVars += touchedVariables(*_node.loopExpression()); m_context.resetVariables(touchedVars); if (_node.condition()) { _node.condition()->accept(*this); if (isRootFunction()) addVerificationTarget( VerificationTargetType::ConstantCondition, expr(*_node.condition()), _node.condition() ); } m_context.pushSolver(); if (_node.condition()) m_context.addAssertion(expr(*_node.condition())); _node.body().accept(*this); if (_node.loopExpression()) _node.loopExpression()->accept(*this); m_context.popSolver(); auto indicesAfterLoop = copyVariableIndices(); // We reset the execution to before the loop // and visit the condition. resetVariableIndices(indicesBeforeLoop); if (_node.condition()) _node.condition()->accept(*this); auto forCondition = _node.condition() ? expr(*_node.condition()) : smtutil::Expression(true); mergeVariables(forCondition, indicesAfterLoop, copyVariableIndices()); m_loopExecutionHappened = true; return false; } bool BMC::visit(TryStatement const& _tryStatement) { FunctionCall const* externalCall = dynamic_cast(&_tryStatement.externalCall()); solAssert(externalCall && externalCall->annotation().tryCall, ""); externalCall->accept(*this); if (_tryStatement.successClause()->parameters()) expressionToTupleAssignment(_tryStatement.successClause()->parameters()->parameters(), *externalCall); smtutil::Expression clauseId = m_context.newVariable("clause_choice_" + to_string(m_context.newUniqueId()), smtutil::SortProvider::uintSort); auto const& clauses = _tryStatement.clauses(); m_context.addAssertion(clauseId >= 0 && clauseId < clauses.size()); solAssert(clauses[0].get() == _tryStatement.successClause(), "First clause of TryStatement should be the success clause"); vector> clausesVisitResults; for (size_t i = 0; i < clauses.size(); ++i) clausesVisitResults.push_back(visitBranch(clauses[i].get())); // merge the information from all clauses smtutil::Expression pathCondition = clausesVisitResults.front().second; auto currentIndices = clausesVisitResults[0].first; for (size_t i = 1; i < clauses.size(); ++i) { mergeVariables(clauseId == i, clausesVisitResults[i].first, currentIndices); currentIndices = copyVariableIndices(); pathCondition = pathCondition || clausesVisitResults[i].second; } setPathCondition(pathCondition); return false; } void BMC::endVisit(UnaryOperation const& _op) { SMTEncoder::endVisit(_op); if ( _op.annotation().type->category() == Type::Category::RationalNumber || _op.annotation().type->category() == Type::Category::FixedPoint ) return; if (_op.getOperator() == Token::Sub && smt::isInteger(*_op.annotation().type)) addVerificationTarget( VerificationTargetType::UnderOverflow, expr(_op), &_op ); } void BMC::endVisit(FunctionCall const& _funCall) { auto functionCallKind = *_funCall.annotation().kind; if (functionCallKind != FunctionCallKind::FunctionCall) { SMTEncoder::endVisit(_funCall); return; } FunctionType const& funType = dynamic_cast(*_funCall.expression().annotation().type); switch (funType.kind()) { case FunctionType::Kind::Assert: visitAssert(_funCall); SMTEncoder::endVisit(_funCall); break; case FunctionType::Kind::Require: visitRequire(_funCall); SMTEncoder::endVisit(_funCall); break; case FunctionType::Kind::Internal: case FunctionType::Kind::External: case FunctionType::Kind::DelegateCall: case FunctionType::Kind::BareCall: case FunctionType::Kind::BareCallCode: case FunctionType::Kind::BareDelegateCall: case FunctionType::Kind::BareStaticCall: case FunctionType::Kind::Creation: SMTEncoder::endVisit(_funCall); internalOrExternalFunctionCall(_funCall); break; case FunctionType::Kind::Send: case FunctionType::Kind::Transfer: { auto value = _funCall.arguments().front(); solAssert(value, ""); smtutil::Expression thisBalance = state().balance(); addVerificationTarget( VerificationTargetType::Balance, thisBalance < expr(*value), &_funCall ); SMTEncoder::endVisit(_funCall); break; } case FunctionType::Kind::KECCAK256: case FunctionType::Kind::ECRecover: case FunctionType::Kind::SHA256: case FunctionType::Kind::RIPEMD160: case FunctionType::Kind::BlockHash: case FunctionType::Kind::AddMod: case FunctionType::Kind::MulMod: [[fallthrough]]; default: SMTEncoder::endVisit(_funCall); break; } } void BMC::endVisit(Return const& _return) { SMTEncoder::endVisit(_return); setPathCondition(smtutil::Expression(false)); } /// Visitor helpers. void BMC::visitAssert(FunctionCall const& _funCall) { auto const& args = _funCall.arguments(); solAssert(args.size() == 1, ""); solAssert(args.front()->annotation().type->category() == Type::Category::Bool, ""); addVerificationTarget( VerificationTargetType::Assert, expr(*args.front()), &_funCall ); } void BMC::visitRequire(FunctionCall const& _funCall) { auto const& args = _funCall.arguments(); solAssert(args.size() >= 1, ""); solAssert(args.front()->annotation().type->category() == Type::Category::Bool, ""); if (isRootFunction()) addVerificationTarget( VerificationTargetType::ConstantCondition, expr(*args.front()), args.front().get() ); } void BMC::visitAddMulMod(FunctionCall const& _funCall) { solAssert(_funCall.arguments().at(2), ""); addVerificationTarget( VerificationTargetType::DivByZero, expr(*_funCall.arguments().at(2)), &_funCall ); SMTEncoder::visitAddMulMod(_funCall); } void BMC::inlineFunctionCall(FunctionCall const& _funCall) { solAssert(shouldInlineFunctionCall(_funCall, currentScopeContract(), m_currentContract), ""); auto funDef = functionCallToDefinition(_funCall, currentScopeContract(), m_currentContract); solAssert(funDef, ""); if (visitedFunction(funDef)) { auto const& returnParams = funDef->returnParameters(); for (auto param: returnParams) { m_context.newValue(*param); m_context.setUnknownValue(*param); } } else { initializeFunctionCallParameters(*funDef, symbolicArguments(_funCall, m_currentContract)); // The reason why we need to pushCallStack here instead of visit(FunctionDefinition) // is that there we don't have `_funCall`. pushCallStack({funDef, &_funCall}); pushPathCondition(currentPathConditions()); auto oldChecked = std::exchange(m_checked, true); funDef->accept(*this); m_checked = oldChecked; popPathCondition(); } createReturnedExpressions(_funCall, m_currentContract); } void BMC::internalOrExternalFunctionCall(FunctionCall const& _funCall) { auto const& funType = dynamic_cast(*_funCall.expression().annotation().type); if (shouldInlineFunctionCall(_funCall, currentScopeContract(), m_currentContract)) inlineFunctionCall(_funCall); else if (isPublicGetter(_funCall.expression())) { // Do nothing here. // The processing happens in SMT Encoder, but we need to prevent the resetting of the state variables. } else if (funType.kind() == FunctionType::Kind::Internal) m_errorReporter.warning( 5729_error, _funCall.location(), "BMC does not yet implement this type of function call." ); else { m_externalFunctionCallHappened = true; resetStorageVariables(); } } pair BMC::arithmeticOperation( Token _op, smtutil::Expression const& _left, smtutil::Expression const& _right, Type const* _commonType, Expression const& _expression ) { // Unchecked does not disable div by 0 checks. if (_op == Token::Div || _op == Token::Mod) addVerificationTarget( VerificationTargetType::DivByZero, _right, &_expression ); auto values = SMTEncoder::arithmeticOperation(_op, _left, _right, _commonType, _expression); if (!m_checked) return values; auto const* intType = dynamic_cast(_commonType); if (!intType) intType = TypeProvider::uint256(); // Mod does not need underflow/overflow checks. if (_op == Token::Mod) return values; VerificationTargetType type; // The order matters here: // If _op is Div and intType is signed, we only care about overflow. if (_op == Token::Div) { if (intType->isSigned()) // Signed division can only overflow. type = VerificationTargetType::Overflow; else // Unsigned division cannot underflow/overflow. return values; } else if (intType->isSigned()) type = VerificationTargetType::UnderOverflow; else if (_op == Token::Sub) type = VerificationTargetType::Underflow; else if (_op == Token::Add || _op == Token::Mul) type = VerificationTargetType::Overflow; else solAssert(false, ""); addVerificationTarget( type, values.second, &_expression ); return values; } void BMC::reset() { m_externalFunctionCallHappened = false; m_loopExecutionHappened = false; } pair, vector> BMC::modelExpressions() { vector expressionsToEvaluate; vector expressionNames; for (auto const& var: m_context.variables()) if (var.first->type()->isValueType()) { expressionsToEvaluate.emplace_back(currentValue(*var.first)); expressionNames.push_back(var.first->name()); } for (auto const& var: m_context.globalSymbols()) { auto const& type = var.second->type(); if ( type->isValueType() && smt::smtKind(*type) != smtutil::Kind::Function ) { expressionsToEvaluate.emplace_back(var.second->currentValue()); expressionNames.push_back(var.first); } } for (auto const& uf: m_uninterpretedTerms) if (uf->annotation().type->isValueType()) { expressionsToEvaluate.emplace_back(expr(*uf)); expressionNames.push_back(uf->location().text()); } return {expressionsToEvaluate, expressionNames}; } /// Verification targets. void BMC::checkVerificationTargets() { for (auto& target: m_verificationTargets) checkVerificationTarget(target); } void BMC::checkVerificationTarget(BMCVerificationTarget& _target) { switch (_target.type) { case VerificationTargetType::ConstantCondition: checkConstantCondition(_target); break; case VerificationTargetType::Underflow: checkUnderflow(_target); break; case VerificationTargetType::Overflow: checkOverflow(_target); break; case VerificationTargetType::UnderOverflow: checkUnderflow(_target); checkOverflow(_target); break; case VerificationTargetType::DivByZero: checkDivByZero(_target); break; case VerificationTargetType::Balance: checkBalance(_target); break; case VerificationTargetType::Assert: checkAssert(_target); break; default: solAssert(false, ""); } } void BMC::checkConstantCondition(BMCVerificationTarget& _target) { checkBooleanNotConstant( *_target.expression, _target.constraints, _target.value, _target.callStack ); } void BMC::checkUnderflow(BMCVerificationTarget& _target) { solAssert( _target.type == VerificationTargetType::Underflow || _target.type == VerificationTargetType::UnderOverflow, "" ); if ( m_solvedTargets.count(_target.expression) && ( m_solvedTargets.at(_target.expression).count(VerificationTargetType::Underflow) || m_solvedTargets.at(_target.expression).count(VerificationTargetType::UnderOverflow) ) ) return; auto const* intType = dynamic_cast(_target.expression->annotation().type); if (!intType) intType = TypeProvider::uint256(); checkCondition( _target.constraints && _target.value < smt::minValue(*intType), _target.callStack, _target.modelExpressions, _target.expression->location(), 4144_error, 8312_error, "Underflow (resulting value less than " + formatNumberReadable(intType->minValue()) + ")", "", &_target.value ); } void BMC::checkOverflow(BMCVerificationTarget& _target) { solAssert( _target.type == VerificationTargetType::Overflow || _target.type == VerificationTargetType::UnderOverflow, "" ); if ( m_solvedTargets.count(_target.expression) && ( m_solvedTargets.at(_target.expression).count(VerificationTargetType::Overflow) || m_solvedTargets.at(_target.expression).count(VerificationTargetType::UnderOverflow) ) ) return; auto const* intType = dynamic_cast(_target.expression->annotation().type); if (!intType) intType = TypeProvider::uint256(); checkCondition( _target.constraints && _target.value > smt::maxValue(*intType), _target.callStack, _target.modelExpressions, _target.expression->location(), 2661_error, 8065_error, "Overflow (resulting value larger than " + formatNumberReadable(intType->maxValue()) + ")", "", &_target.value ); } void BMC::checkDivByZero(BMCVerificationTarget& _target) { solAssert(_target.type == VerificationTargetType::DivByZero, ""); if ( m_solvedTargets.count(_target.expression) && m_solvedTargets.at(_target.expression).count(VerificationTargetType::DivByZero) ) return; checkCondition( _target.constraints && (_target.value == 0), _target.callStack, _target.modelExpressions, _target.expression->location(), 3046_error, 5272_error, "Division by zero", "", &_target.value ); } void BMC::checkBalance(BMCVerificationTarget& _target) { solAssert(_target.type == VerificationTargetType::Balance, ""); checkCondition( _target.constraints && _target.value, _target.callStack, _target.modelExpressions, _target.expression->location(), 1236_error, 4010_error, "Insufficient funds", "address(this).balance" ); } void BMC::checkAssert(BMCVerificationTarget& _target) { solAssert(_target.type == VerificationTargetType::Assert, ""); if ( m_solvedTargets.count(_target.expression) && m_solvedTargets.at(_target.expression).count(_target.type) ) return; checkCondition( _target.constraints && !_target.value, _target.callStack, _target.modelExpressions, _target.expression->location(), 4661_error, 7812_error, "Assertion violation" ); } void BMC::addVerificationTarget( VerificationTargetType _type, smtutil::Expression const& _value, Expression const* _expression ) { if (!m_settings.targets.has(_type) || (m_currentContract && !m_currentContract->canBeDeployed())) return; BMCVerificationTarget target{ { _type, _value, currentPathConditions() && m_context.assertions() }, _expression, m_callStack, modelExpressions() }; if (_type == VerificationTargetType::ConstantCondition) checkVerificationTarget(target); else m_verificationTargets.emplace_back(move(target)); } /// Solving. void BMC::checkCondition( smtutil::Expression _condition, vector const& _callStack, pair, vector> const& _modelExpressions, SourceLocation const& _location, ErrorId _errorHappens, ErrorId _errorMightHappen, string const& _description, string const& _additionalValueName, smtutil::Expression const* _additionalValue ) { m_interface->push(); m_interface->addAssertion(_condition); vector expressionsToEvaluate; vector expressionNames; tie(expressionsToEvaluate, expressionNames) = _modelExpressions; if (_callStack.size()) if (_additionalValue) { expressionsToEvaluate.emplace_back(*_additionalValue); expressionNames.push_back(_additionalValueName); } smtutil::CheckResult result; vector values; tie(result, values) = checkSatisfiableAndGenerateModel(expressionsToEvaluate); string extraComment = SMTEncoder::extraComment(); if (m_loopExecutionHappened) extraComment += "\nNote that some information is erased after the execution of loops.\n" "You can re-introduce information using require()."; if (m_externalFunctionCallHappened) extraComment += "\nNote that external function calls are not inlined," " even if the source code of the function is available." " This is due to the possibility that the actual called contract" " has the same ABI but implements the function differently."; SecondarySourceLocation secondaryLocation{}; secondaryLocation.append(extraComment, SourceLocation{}); switch (result) { case smtutil::CheckResult::SATISFIABLE: { solAssert(!_callStack.empty(), ""); std::ostringstream message; message << "BMC: " << _description << " happens here."; std::ostringstream modelMessage; modelMessage << "Counterexample:\n"; solAssert(values.size() == expressionNames.size(), ""); map sortedModel; for (size_t i = 0; i < values.size(); ++i) if (expressionsToEvaluate.at(i).name != values.at(i)) sortedModel[expressionNames.at(i)] = values.at(i); for (auto const& eval: sortedModel) modelMessage << " " << eval.first << " = " << eval.second << "\n"; m_errorReporter.warning( _errorHappens, _location, message.str(), SecondarySourceLocation().append(modelMessage.str(), SourceLocation{}) .append(SMTEncoder::callStackMessage(_callStack)) .append(move(secondaryLocation)) ); break; } case smtutil::CheckResult::UNSATISFIABLE: break; case smtutil::CheckResult::UNKNOWN: m_errorReporter.warning(_errorMightHappen, _location, "BMC: " + _description + " might happen here.", secondaryLocation); break; case smtutil::CheckResult::CONFLICTING: m_errorReporter.warning(1584_error, _location, "BMC: At least two SMT solvers provided conflicting answers. Results might not be sound."); break; case smtutil::CheckResult::ERROR: m_errorReporter.warning(1823_error, _location, "BMC: Error trying to invoke SMT solver."); break; } m_interface->pop(); } void BMC::checkBooleanNotConstant( Expression const& _condition, smtutil::Expression const& _constraints, smtutil::Expression const& _value, vector const& _callStack ) { // Do not check for const-ness if this is a constant. if (dynamic_cast(&_condition)) return; m_interface->push(); m_interface->addAssertion(_constraints && _value); auto positiveResult = checkSatisfiable(); m_interface->pop(); m_interface->push(); m_interface->addAssertion(_constraints && !_value); auto negatedResult = checkSatisfiable(); m_interface->pop(); if (positiveResult == smtutil::CheckResult::ERROR || negatedResult == smtutil::CheckResult::ERROR) m_errorReporter.warning(8592_error, _condition.location(), "BMC: Error trying to invoke SMT solver."); else if (positiveResult == smtutil::CheckResult::CONFLICTING || negatedResult == smtutil::CheckResult::CONFLICTING) m_errorReporter.warning(3356_error, _condition.location(), "BMC: At least two SMT solvers provided conflicting answers. Results might not be sound."); else if (positiveResult == smtutil::CheckResult::SATISFIABLE && negatedResult == smtutil::CheckResult::SATISFIABLE) { // everything fine. } else if (positiveResult == smtutil::CheckResult::UNKNOWN || negatedResult == smtutil::CheckResult::UNKNOWN) { // can't do anything. } else if (positiveResult == smtutil::CheckResult::UNSATISFIABLE && negatedResult == smtutil::CheckResult::UNSATISFIABLE) m_errorReporter.warning(2512_error, _condition.location(), "BMC: Condition unreachable.", SMTEncoder::callStackMessage(_callStack)); else { string description; if (positiveResult == smtutil::CheckResult::SATISFIABLE) { solAssert(negatedResult == smtutil::CheckResult::UNSATISFIABLE, ""); description = "BMC: Condition is always true."; } else { solAssert(positiveResult == smtutil::CheckResult::UNSATISFIABLE, ""); solAssert(negatedResult == smtutil::CheckResult::SATISFIABLE, ""); description = "BMC: Condition is always false."; } m_errorReporter.warning( 6838_error, _condition.location(), description, SMTEncoder::callStackMessage(_callStack) ); } } pair> BMC::checkSatisfiableAndGenerateModel(vector const& _expressionsToEvaluate) { smtutil::CheckResult result; vector values; try { tie(result, values) = m_interface->check(_expressionsToEvaluate); } catch (smtutil::SolverError const& _e) { string description("BMC: Error querying SMT solver"); if (_e.comment()) description += ": " + *_e.comment(); m_errorReporter.warning(8140_error, description); result = smtutil::CheckResult::ERROR; } for (string& value: values) { try { // Parse and re-format nicely value = formatNumberReadable(bigint(value)); } catch (...) { } } return make_pair(result, values); } smtutil::CheckResult BMC::checkSatisfiable() { return checkSatisfiableAndGenerateModel({}).first; } void BMC::assignment(smt::SymbolicVariable& _symVar, smtutil::Expression const& _value) { auto oldVar = _symVar.currentValue(); auto newVar = _symVar.increaseIndex(); m_context.addAssertion(smtutil::Expression::ite( currentPathConditions(), newVar == _value, newVar == oldVar )); }