/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** * @author Christian * @date 2014 * Solidity abstract syntax tree. */ #include #include #include #include using namespace std; namespace dev { namespace solidity { void SourceUnit::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) listAccept(m_nodes, _visitor); _visitor.endVisit(*this); } void SourceUnit::accept(ASTConstVisitor& _visitor) const { if (_visitor.visit(*this)) listAccept(m_nodes, _visitor); _visitor.endVisit(*this); } void ImportDirective::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void ImportDirective::accept(ASTConstVisitor& _visitor) const { _visitor.visit(*this); _visitor.endVisit(*this); } void ContractDefinition::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { listAccept(m_definedStructs, _visitor); listAccept(m_stateVariables, _visitor); listAccept(m_definedFunctions, _visitor); } _visitor.endVisit(*this); } void ContractDefinition::accept(ASTConstVisitor& _visitor) const { if (_visitor.visit(*this)) { listAccept(m_definedStructs, _visitor); listAccept(m_stateVariables, _visitor); listAccept(m_definedFunctions, _visitor); } _visitor.endVisit(*this); } void StructDefinition::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) listAccept(m_members, _visitor); _visitor.endVisit(*this); } void StructDefinition::accept(ASTConstVisitor& _visitor) const { if (_visitor.visit(*this)) listAccept(m_members, _visitor); _visitor.endVisit(*this); } void StructDefinition::checkValidityOfMembers() const { checkMemberTypes(); checkRecursion(); } void ParameterList::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) listAccept(m_parameters, _visitor); _visitor.endVisit(*this); } void ParameterList::accept(ASTConstVisitor& _visitor) const { if (_visitor.visit(*this)) listAccept(m_parameters, _visitor); _visitor.endVisit(*this); } void FunctionDefinition::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_parameters->accept(_visitor); if (m_returnParameters) m_returnParameters->accept(_visitor); m_body->accept(_visitor); } _visitor.endVisit(*this); } void FunctionDefinition::accept(ASTConstVisitor& _visitor) const { if (_visitor.visit(*this)) { m_parameters->accept(_visitor); if (m_returnParameters) m_returnParameters->accept(_visitor); m_body->accept(_visitor); } _visitor.endVisit(*this); } void VariableDeclaration::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) if (m_typeName) m_typeName->accept(_visitor); _visitor.endVisit(*this); } void VariableDeclaration::accept(ASTConstVisitor& _visitor) const { if (_visitor.visit(*this)) if (m_typeName) m_typeName->accept(_visitor); _visitor.endVisit(*this); } void TypeName::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void TypeName::accept(ASTConstVisitor& _visitor) const { _visitor.visit(*this); _visitor.endVisit(*this); } void ElementaryTypeName::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void ElementaryTypeName::accept(ASTConstVisitor& _visitor) const { _visitor.visit(*this); _visitor.endVisit(*this); } void UserDefinedTypeName::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void UserDefinedTypeName::accept(ASTConstVisitor& _visitor) const { _visitor.visit(*this); _visitor.endVisit(*this); } void Mapping::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_keyType->accept(_visitor); m_valueType->accept(_visitor); } _visitor.endVisit(*this); } void Mapping::accept(ASTConstVisitor& _visitor) const { if (_visitor.visit(*this)) { m_keyType->accept(_visitor); m_valueType->accept(_visitor); } _visitor.endVisit(*this); } void Block::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) listAccept(m_statements, _visitor); _visitor.endVisit(*this); } void Block::accept(ASTConstVisitor& _visitor) const { if (_visitor.visit(*this)) listAccept(m_statements, _visitor); _visitor.endVisit(*this); } void IfStatement::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_condition->accept(_visitor); m_trueBody->accept(_visitor); if (m_falseBody) m_falseBody->accept(_visitor); } _visitor.endVisit(*this); } void IfStatement::accept(ASTConstVisitor& _visitor) const { if (_visitor.visit(*this)) { m_condition->accept(_visitor); m_trueBody->accept(_visitor); if (m_falseBody) m_falseBody->accept(_visitor); } _visitor.endVisit(*this); } void WhileStatement::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_condition->accept(_visitor); m_body->accept(_visitor); } _visitor.endVisit(*this); } void WhileStatement::accept(ASTConstVisitor& _visitor) const { if (_visitor.visit(*this)) { m_condition->accept(_visitor); m_body->accept(_visitor); } _visitor.endVisit(*this); } void Continue::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void Continue::accept(ASTConstVisitor& _visitor) const { _visitor.visit(*this); _visitor.endVisit(*this); } void Break::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void Break::accept(ASTConstVisitor& _visitor) const { _visitor.visit(*this); _visitor.endVisit(*this); } void Return::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) if (m_expression) m_expression->accept(_visitor); _visitor.endVisit(*this); } void Return::accept(ASTConstVisitor& _visitor) const { if (_visitor.visit(*this)) if (m_expression) m_expression->accept(_visitor); _visitor.endVisit(*this); } void ExpressionStatement::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) if (m_expression) m_expression->accept(_visitor); _visitor.endVisit(*this); } void ExpressionStatement::accept(ASTConstVisitor& _visitor) const { if (_visitor.visit(*this)) if (m_expression) m_expression->accept(_visitor); _visitor.endVisit(*this); } void VariableDefinition::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_variable->accept(_visitor); if (m_value) m_value->accept(_visitor); } _visitor.endVisit(*this); } void VariableDefinition::accept(ASTConstVisitor& _visitor) const { if (_visitor.visit(*this)) { m_variable->accept(_visitor); if (m_value) m_value->accept(_visitor); } _visitor.endVisit(*this); } void Assignment::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_leftHandSide->accept(_visitor); m_rightHandSide->accept(_visitor); } _visitor.endVisit(*this); } void Assignment::accept(ASTConstVisitor& _visitor) const { if (_visitor.visit(*this)) { m_leftHandSide->accept(_visitor); m_rightHandSide->accept(_visitor); } _visitor.endVisit(*this); } void UnaryOperation::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) m_subExpression->accept(_visitor); _visitor.endVisit(*this); } void UnaryOperation::accept(ASTConstVisitor& _visitor) const { if (_visitor.visit(*this)) m_subExpression->accept(_visitor); _visitor.endVisit(*this); } void BinaryOperation::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_left->accept(_visitor); m_right->accept(_visitor); } _visitor.endVisit(*this); } void BinaryOperation::accept(ASTConstVisitor& _visitor) const { if (_visitor.visit(*this)) { m_left->accept(_visitor); m_right->accept(_visitor); } _visitor.endVisit(*this); } void FunctionCall::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_expression->accept(_visitor); listAccept(m_arguments, _visitor); } _visitor.endVisit(*this); } void FunctionCall::accept(ASTConstVisitor& _visitor) const { if (_visitor.visit(*this)) { m_expression->accept(_visitor); listAccept(m_arguments, _visitor); } _visitor.endVisit(*this); } void MemberAccess::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) m_expression->accept(_visitor); _visitor.endVisit(*this); } void MemberAccess::accept(ASTConstVisitor& _visitor) const { if (_visitor.visit(*this)) m_expression->accept(_visitor); _visitor.endVisit(*this); } void IndexAccess::accept(ASTVisitor& _visitor) { if (_visitor.visit(*this)) { m_base->accept(_visitor); m_index->accept(_visitor); } _visitor.endVisit(*this); } void IndexAccess::accept(ASTConstVisitor& _visitor) const { if (_visitor.visit(*this)) { m_base->accept(_visitor); m_index->accept(_visitor); } _visitor.endVisit(*this); } void Identifier::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void Identifier::accept(ASTConstVisitor& _visitor) const { _visitor.visit(*this); _visitor.endVisit(*this); } void ElementaryTypeNameExpression::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void ElementaryTypeNameExpression::accept(ASTConstVisitor& _visitor) const { _visitor.visit(*this); _visitor.endVisit(*this); } void Literal::accept(ASTVisitor& _visitor) { _visitor.visit(*this); _visitor.endVisit(*this); } void Literal::accept(ASTConstVisitor& _visitor) const { _visitor.visit(*this); _visitor.endVisit(*this); } TypeError ASTNode::createTypeError(string const& _description) const { return TypeError() << errinfo_sourceLocation(getLocation()) << errinfo_comment(_description); } vector ContractDefinition::getInterfaceFunctions() const { vector exportedFunctions; for (ASTPointer const& f: m_definedFunctions) if (f->isPublic() && f->getName() != getName()) exportedFunctions.push_back(f.get()); auto compareNames = [](FunctionDefinition const* _a, FunctionDefinition const* _b) { return _a->getName().compare(_b->getName()) < 0; }; sort(exportedFunctions.begin(), exportedFunctions.end(), compareNames); return exportedFunctions; } void StructDefinition::checkMemberTypes() const { for (ASTPointer const& member: getMembers()) if (!member->getType()->canBeStored()) BOOST_THROW_EXCEPTION(member->createTypeError("Type cannot be used in struct.")); } void StructDefinition::checkRecursion() const { set definitionsSeen; vector queue = {this}; while (!queue.empty()) { StructDefinition const* def = queue.back(); queue.pop_back(); if (definitionsSeen.count(def)) BOOST_THROW_EXCEPTION(ParserError() << errinfo_sourceLocation(def->getLocation()) << errinfo_comment("Recursive struct definition.")); definitionsSeen.insert(def); for (ASTPointer const& member: def->getMembers()) if (member->getType()->getCategory() == Type::Category::STRUCT) { UserDefinedTypeName const& typeName = dynamic_cast(*member->getTypeName()); queue.push_back(&dynamic_cast(*typeName.getReferencedDeclaration())); } } } void FunctionDefinition::checkTypeRequirements() { for (ASTPointer const& var: getParameters() + getReturnParameters()) if (!var->getType()->canLiveOutsideStorage()) BOOST_THROW_EXCEPTION(var->createTypeError("Type is required to live outside storage.")); m_body->checkTypeRequirements(); } void Block::checkTypeRequirements() { for (shared_ptr const& statement: m_statements) statement->checkTypeRequirements(); } void IfStatement::checkTypeRequirements() { m_condition->expectType(BoolType()); m_trueBody->checkTypeRequirements(); if (m_falseBody) m_falseBody->checkTypeRequirements(); } void WhileStatement::checkTypeRequirements() { m_condition->expectType(BoolType()); m_body->checkTypeRequirements(); } void Return::checkTypeRequirements() { if (!m_expression) return; if (asserts(m_returnParameters)) BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Return parameters not assigned.")); if (m_returnParameters->getParameters().size() != 1) BOOST_THROW_EXCEPTION(createTypeError("Different number of arguments in return statement " "than in returns declaration.")); // this could later be changed such that the paramaters type is an anonymous struct type, // but for now, we only allow one return parameter m_expression->expectType(*m_returnParameters->getParameters().front()->getType()); } void VariableDefinition::checkTypeRequirements() { // Variables can be declared without type (with "var"), in which case the first assignment // sets the type. // Note that assignments before the first declaration are legal because of the special scoping // rules inherited from JavaScript. if (m_value) { if (m_variable->getType()) m_value->expectType(*m_variable->getType()); else { // no type declared and no previous assignment, infer the type m_value->checkTypeRequirements(); m_variable->setType(m_value->getType()); } } } void Assignment::checkTypeRequirements() { m_leftHandSide->checkTypeRequirements(); m_leftHandSide->requireLValue(); //@todo later, assignments to structs might be possible, but not to mappings if (!m_leftHandSide->getType()->isValueType() && !m_leftHandSide->isLocalLValue()) BOOST_THROW_EXCEPTION(createTypeError("Assignment to non-local non-value lvalue.")); m_rightHandSide->expectType(*m_leftHandSide->getType()); m_type = m_leftHandSide->getType(); if (m_assigmentOperator != Token::ASSIGN) // compound assignment if (!m_type->acceptsBinaryOperator(Token::AssignmentToBinaryOp(m_assigmentOperator))) BOOST_THROW_EXCEPTION(createTypeError("Operator not compatible with type.")); } void ExpressionStatement::checkTypeRequirements() { m_expression->checkTypeRequirements(); } void Expression::expectType(Type const& _expectedType) { checkTypeRequirements(); Type const& type = *getType(); if (!type.isImplicitlyConvertibleTo(_expectedType)) BOOST_THROW_EXCEPTION(createTypeError("Type " + type.toString() + " not implicitly convertible to expected type " + _expectedType.toString() + ".")); } void Expression::requireLValue() { if (!isLValue()) BOOST_THROW_EXCEPTION(createTypeError("Expression has to be an lvalue.")); m_lvalueRequested = true; } void UnaryOperation::checkTypeRequirements() { // INC, DEC, ADD, SUB, NOT, BIT_NOT, DELETE m_subExpression->checkTypeRequirements(); if (m_operator == Token::Value::INC || m_operator == Token::Value::DEC || m_operator == Token::Value::DELETE) m_subExpression->requireLValue(); m_type = m_subExpression->getType(); if (!m_type->acceptsUnaryOperator(m_operator)) BOOST_THROW_EXCEPTION(createTypeError("Unary operator not compatible with type.")); } void BinaryOperation::checkTypeRequirements() { m_left->checkTypeRequirements(); m_right->checkTypeRequirements(); if (m_right->getType()->isImplicitlyConvertibleTo(*m_left->getType())) m_commonType = m_left->getType(); else if (m_left->getType()->isImplicitlyConvertibleTo(*m_right->getType())) m_commonType = m_right->getType(); else BOOST_THROW_EXCEPTION(createTypeError("No common type found in binary operation: " + m_left->getType()->toString() + " vs. " + m_right->getType()->toString())); if (Token::isCompareOp(m_operator)) m_type = make_shared(); else { m_type = m_commonType; if (!m_commonType->acceptsBinaryOperator(m_operator)) BOOST_THROW_EXCEPTION(createTypeError("Operator " + string(Token::toString(m_operator)) + " not compatible with type " + m_commonType->toString())); } } void FunctionCall::checkTypeRequirements() { m_expression->checkTypeRequirements(); for (ASTPointer const& argument: m_arguments) argument->checkTypeRequirements(); Type const* expressionType = m_expression->getType().get(); if (isTypeConversion()) { TypeType const& type = dynamic_cast(*expressionType); //@todo for structs, we have to check the number of arguments to be equal to the // number of non-mapping members if (m_arguments.size() != 1) BOOST_THROW_EXCEPTION(createTypeError("More than one argument for " "explicit type conersion.")); if (!m_arguments.front()->getType()->isExplicitlyConvertibleTo(*type.getActualType())) BOOST_THROW_EXCEPTION(createTypeError("Explicit type conversion not allowed.")); m_type = type.getActualType(); } else { //@todo would be nice to create a struct type from the arguments // and then ask if that is implicitly convertible to the struct represented by the // function parameters FunctionType const& functionType = dynamic_cast(*expressionType); TypePointers const& parameterTypes = functionType.getParameterTypes(); if (parameterTypes.size() != m_arguments.size()) BOOST_THROW_EXCEPTION(createTypeError("Wrong argument count for function call.")); for (size_t i = 0; i < m_arguments.size(); ++i) if (!m_arguments[i]->getType()->isImplicitlyConvertibleTo(*parameterTypes[i])) BOOST_THROW_EXCEPTION(createTypeError("Invalid type for argument in function call.")); // @todo actually the return type should be an anonymous struct, // but we change it to the type of the first return value until we have structs if (functionType.getReturnParameterTypes().empty()) m_type = make_shared(); else m_type = functionType.getReturnParameterTypes().front(); } } bool FunctionCall::isTypeConversion() const { return m_expression->getType()->getCategory() == Type::Category::TYPE; } void MemberAccess::checkTypeRequirements() { m_expression->checkTypeRequirements(); Type const& type = *m_expression->getType(); m_type = type.getMemberType(*m_memberName); if (!m_type) BOOST_THROW_EXCEPTION(createTypeError("Member \"" + *m_memberName + "\" not found in " + type.toString())); //@todo later, this will not always be STORAGE m_lvalue = type.getCategory() == Type::Category::STRUCT ? LValueType::STORAGE : LValueType::NONE; } void IndexAccess::checkTypeRequirements() { m_base->checkTypeRequirements(); if (m_base->getType()->getCategory() != Type::Category::MAPPING) BOOST_THROW_EXCEPTION(m_base->createTypeError("Indexed expression has to be a mapping (is " + m_base->getType()->toString() + ")")); MappingType const& type = dynamic_cast(*m_base->getType()); m_index->expectType(*type.getKeyType()); m_type = type.getValueType(); m_lvalue = LValueType::STORAGE; } void Identifier::checkTypeRequirements() { if (asserts(m_referencedDeclaration)) BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Identifier not resolved.")); VariableDeclaration const* variable = dynamic_cast(m_referencedDeclaration); if (variable) { if (!variable->getType()) BOOST_THROW_EXCEPTION(createTypeError("Variable referenced before type could be determined.")); m_type = variable->getType(); m_lvalue = variable->isLocalVariable() ? LValueType::LOCAL : LValueType::STORAGE; return; } //@todo can we unify these with TypeName::toType()? StructDefinition const* structDef = dynamic_cast(m_referencedDeclaration); if (structDef) { // note that we do not have a struct type here m_type = make_shared(make_shared(*structDef)); return; } FunctionDefinition const* functionDef = dynamic_cast(m_referencedDeclaration); if (functionDef) { // a function reference is not a TypeType, because calling a TypeType converts to the type. // Calling a function (e.g. function(12), otherContract.function(34)) does not do a type // conversion. m_type = make_shared(*functionDef); return; } ContractDefinition const* contractDef = dynamic_cast(m_referencedDeclaration); if (contractDef) { m_type = make_shared(make_shared(*contractDef)); return; } MagicVariableDeclaration const* magicVariable = dynamic_cast(m_referencedDeclaration); if (magicVariable) { m_type = magicVariable->getType(); return; } BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Declaration reference of unknown/forbidden type.")); } void ElementaryTypeNameExpression::checkTypeRequirements() { m_type = make_shared(Type::fromElementaryTypeName(m_typeToken)); } void Literal::checkTypeRequirements() { m_type = Type::forLiteral(*this); if (!m_type) BOOST_THROW_EXCEPTION(createTypeError("Literal value too large.")); } } }