/*
This file is part of solidity.
solidity is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
solidity is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with solidity. If not, see .
*/
/**
* Unit tests for Solidity's test expectation parser.
*/
#include
#include
#include
#include
#include
#include
#include
using namespace std;
using namespace solidity::util;
using namespace solidity::test;
namespace solidity::frontend::test
{
using fmt = ExecutionFramework;
using Mode = FunctionCall::DisplayMode;
vector parse(string const& _source)
{
istringstream stream{_source, ios_base::out};
TestFileParser parser{stream};
return parser.parseFunctionCalls(0);
}
void testFunctionCall(
FunctionCall const& _call,
FunctionCall::DisplayMode _mode,
string _signature = "",
bool _failure = true,
bytes _arguments = bytes{},
bytes _expectations = bytes{},
u256 _value = 0,
string _argumentComment = "",
string _expectationComment = "",
vector _rawArguments = vector{},
bool _isConstructor = false,
bool _isLibrary = false
)
{
BOOST_REQUIRE_EQUAL(_call.expectations.failure, _failure);
BOOST_REQUIRE_EQUAL(_call.signature, _signature);
ABI_CHECK(_call.arguments.rawBytes(), _arguments);
ABI_CHECK(_call.expectations.rawBytes(), _expectations);
BOOST_REQUIRE_EQUAL(_call.displayMode, _mode);
BOOST_REQUIRE_EQUAL(_call.value, _value);
BOOST_REQUIRE_EQUAL(_call.arguments.comment, _argumentComment);
BOOST_REQUIRE_EQUAL(_call.expectations.comment, _expectationComment);
if (!_rawArguments.empty())
{
BOOST_REQUIRE_EQUAL(_call.arguments.parameters.size(), _rawArguments.size());
size_t index = 0;
for (Parameter const& param: _call.arguments.parameters)
{
BOOST_REQUIRE_EQUAL(param.rawString, _rawArguments[index]);
++index;
}
}
BOOST_REQUIRE_EQUAL(_call.isConstructor, _isConstructor);
BOOST_REQUIRE_EQUAL(_call.isLibrary, _isLibrary);
}
BOOST_AUTO_TEST_SUITE(TestFileParserTest)
BOOST_AUTO_TEST_CASE(smoke_test)
{
char const* source = R"()";
BOOST_REQUIRE_EQUAL(parse(source).size(), 0);
}
BOOST_AUTO_TEST_CASE(call_succees)
{
char const* source = R"(
// success() ->
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 1);
testFunctionCall(calls.at(0), Mode::SingleLine, "success()", false);
}
BOOST_AUTO_TEST_CASE(non_existent_call_revert_single_line)
{
char const* source = R"(
// i_am_not_there() -> FAILURE
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 1);
testFunctionCall(calls.at(0), Mode::SingleLine, "i_am_not_there()", true);
}
BOOST_AUTO_TEST_CASE(call_arguments_success)
{
char const* source = R"(
// f(uint256): 1
// ->
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 1);
testFunctionCall(calls.at(0), Mode::MultiLine, "f(uint256)", false, fmt::encodeArgs(u256{1}));
}
BOOST_AUTO_TEST_CASE(call_arguments_comments_success)
{
char const* source = R"(
// f(uint256, uint256): 1, 1
// # Comment on the parameters. #
// ->
// # This call should not return a value, but still succeed. #
// f()
// # Comment on no parameters. #
// -> 1
// # This comment should be parsed. #
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 2);
testFunctionCall(
calls.at(0),
Mode::MultiLine,
"f(uint256,uint256)",
false,
fmt::encodeArgs(1, 1),
fmt::encodeArgs(),
0,
" Comment on the parameters. ",
" This call should not return a value, but still succeed. "
);
testFunctionCall(
calls.at(1),
Mode::MultiLine,
"f()",
false,
fmt::encodeArgs(),
fmt::encodeArgs(1),
0,
" Comment on no parameters. ",
" This comment should be parsed. "
);
}
BOOST_AUTO_TEST_CASE(simple_single_line_call_comment_success)
{
char const* source = R"(
// f(uint256): 1 -> # f(uint256) does not return a value. #
// f(uint256): 1 -> 1
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 2);
testFunctionCall(
calls.at(0),
Mode::SingleLine,
"f(uint256)",
false,
fmt::encodeArgs(1),
fmt::encodeArgs(),
0,
"",
" f(uint256) does not return a value. "
);
testFunctionCall(calls.at(1), Mode::SingleLine, "f(uint256)", false, fmt::encode(1), fmt::encode(1));
}
BOOST_AUTO_TEST_CASE(multiple_single_line)
{
char const* source = R"(
// f(uint256): 1 -> 1
// g(uint256): 1 ->
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 2);
testFunctionCall(calls.at(0), Mode::SingleLine, "f(uint256)", false, fmt::encodeArgs(1), fmt::encodeArgs(1));
testFunctionCall(calls.at(1), Mode::SingleLine, "g(uint256)", false, fmt::encodeArgs(1));
}
BOOST_AUTO_TEST_CASE(multiple_single_line_swapped)
{
char const* source = R"(
// f(uint256): 1 ->
// g(uint256): 1 -> 1
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 2);
testFunctionCall(calls.at(0), Mode::SingleLine, "f(uint256)", false, fmt::encodeArgs(1));
testFunctionCall(calls.at(1), Mode::SingleLine, "g(uint256)", false, fmt::encodeArgs(1), fmt::encodeArgs(1));
}
BOOST_AUTO_TEST_CASE(non_existent_call_revert)
{
char const* source = R"(
// i_am_not_there()
// -> FAILURE
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 1);
testFunctionCall(calls.at(0), Mode::MultiLine, "i_am_not_there()", true);
}
BOOST_AUTO_TEST_CASE(call_revert_message)
{
char const* source = R"(
// f() -> FAILURE, hex"08c379a0", 0x20, 6, "Revert"
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 1);
testFunctionCall(
calls.at(0),
Mode::SingleLine,
"f()",
true,
fmt::encodeArgs(),
fromHex("08c379a0") + fmt::encodeDyn(string{"Revert"})
);
}
BOOST_AUTO_TEST_CASE(call_expectations_empty_single_line)
{
char const* source = R"(
// _exp_() ->
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 1);
testFunctionCall(calls.at(0), Mode::SingleLine, "_exp_()", false);
}
BOOST_AUTO_TEST_CASE(call_expectations_empty_multiline)
{
char const* source = R"(
// _exp_()
// ->
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 1);
testFunctionCall(calls.at(0), Mode::MultiLine, "_exp_()", false);
}
BOOST_AUTO_TEST_CASE(call_comments)
{
char const* source = R"(
// f() # Parameter comment # -> 1 # Expectation comment #
// f() # Parameter comment #
// -> 1 # Expectation comment #
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 2);
testFunctionCall(
calls.at(0),
Mode::SingleLine,
"f()",
false,
fmt::encodeArgs(),
fmt::encodeArgs(1),
0,
" Parameter comment ",
" Expectation comment "
);
testFunctionCall(
calls.at(1),
Mode::MultiLine,
"f()",
false,
fmt::encodeArgs(),
fmt::encodeArgs(1),
0,
" Parameter comment ",
" Expectation comment "
);
}
BOOST_AUTO_TEST_CASE(call_arguments)
{
char const* source = R"(
// f(uint256), 314 ether: 5 # optional ether value #
// -> 4
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 1);
testFunctionCall(
calls.at(0),
Mode::MultiLine,
"f(uint256)",
false,
fmt::encodeArgs(5),
fmt::encodeArgs(4),
314,
" optional ether value "
);
}
BOOST_AUTO_TEST_CASE(call_arguments_bool)
{
char const* source = R"(
// f(bool): true -> false
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 1);
testFunctionCall(
calls.at(0),
Mode::SingleLine,
"f(bool)",
false,
fmt::encodeArgs(true),
fmt::encodeArgs(false)
);
}
BOOST_AUTO_TEST_CASE(scanner_hex_values)
{
char const* source = R"(
// f(uint256): "\x20\x00\xFf" ->
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 1);
testFunctionCall(calls.at(0), Mode::SingleLine, "f(uint256)", false, fmt::encodeArgs(string("\x20\x00\xff", 3)));
}
BOOST_AUTO_TEST_CASE(scanner_hex_values_invalid1)
{
char const* source = R"(
// f(uint256): "\x" ->
)";
BOOST_REQUIRE_THROW(parse(source), langutil::Error);
}
BOOST_AUTO_TEST_CASE(scanner_hex_values_invalid2)
{
char const* source = R"(
// f(uint256): "\x1" ->
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 1);
testFunctionCall(calls.at(0), Mode::SingleLine, "f(uint256)", false, fmt::encodeArgs(string("\x1", 1)));
}
BOOST_AUTO_TEST_CASE(scanner_hex_values_invalid3)
{
char const* source = R"(
// f(uint256): "\xZ" ->
)";
BOOST_REQUIRE_THROW(parse(source), langutil::Error);
}
BOOST_AUTO_TEST_CASE(scanner_hex_values_invalid4)
{
char const* source = R"(
// f(uint256): "\xZZ" ->
)";
BOOST_REQUIRE_THROW(parse(source), langutil::Error);
}
BOOST_AUTO_TEST_CASE(call_arguments_hex_string)
{
char const* source = R"(
// f(bytes): hex"4200ef" -> hex"ab0023"
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 1);
testFunctionCall(
calls.at(0),
Mode::SingleLine,
"f(bytes)",
false,
fromHex("4200ef"),
fromHex("ab0023")
);
}
BOOST_AUTO_TEST_CASE(call_arguments_hex_string_lowercase)
{
char const* source = R"(
// f(bytes): hex"4200ef" -> hex"23ef00"
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 1);
testFunctionCall(
calls.at(0),
Mode::SingleLine,
"f(bytes)",
false,
fromHex("4200EF"),
fromHex("23EF00")
);
}
BOOST_AUTO_TEST_CASE(call_arguments_string)
{
char const* source = R"(
// f(string): 0x20, 3, "any" ->
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 1);
testFunctionCall(
calls.at(0),
Mode::SingleLine,
"f(string)",
false,
fmt::encodeDyn(string{"any"})
);
}
BOOST_AUTO_TEST_CASE(call_hex_number)
{
char const* source = R"(
// f(bytes32, bytes32): 0x616, 0x1042 -> 1
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 1);
testFunctionCall(
calls.at(0),
Mode::SingleLine,
"f(bytes32,bytes32)",
false,
fmt::encodeArgs(
fromHex("0x616"),
fromHex("0x1042")
),
fmt::encodeArgs(1)
);
}
BOOST_AUTO_TEST_CASE(call_return_string)
{
char const* source = R"(
// f() -> 0x20, 3, "any"
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 1);
testFunctionCall(
calls.at(0),
Mode::SingleLine,
"f()",
false,
fmt::encodeArgs(),
fmt::encodeDyn(string{"any"})
);
}
BOOST_AUTO_TEST_CASE(call_arguments_tuple)
{
char const* source = R"(
// f((uint256, bytes32), uint256) ->
// f((uint8), uint8) ->
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 2);
testFunctionCall(calls.at(0), Mode::SingleLine, "f((uint256,bytes32),uint256)", false);
testFunctionCall(calls.at(1), Mode::SingleLine, "f((uint8),uint8)", false);
}
BOOST_AUTO_TEST_CASE(call_arguments_left_aligned)
{
char const* source = R"(
// f(bytes32, bytes32): 0x6161, 0x420000EF -> 1
// g(bytes32, bytes32): 0x0616, 0x0042EF00 -> 1
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 2);
testFunctionCall(
calls.at(0),
Mode::SingleLine,
"f(bytes32,bytes32)",
false,
fmt::encodeArgs(
fromHex("0x6161"),
fromHex("0x420000EF")
),
fmt::encodeArgs(1)
);
testFunctionCall(
calls.at(1),
Mode::SingleLine,
"g(bytes32,bytes32)",
false,
fmt::encodeArgs(
fromHex("0x0616"),
fromHex("0x0042EF00")
),
fmt::encodeArgs(1)
);
}
BOOST_AUTO_TEST_CASE(call_arguments_tuple_of_tuples)
{
char const* source = R"(
// f(((uint256, bytes32), bytes32), uint256)
// # f(S memory s, uint256 b) #
// ->
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 1);
testFunctionCall(
calls.at(0),
Mode::MultiLine,
"f(((uint256,bytes32),bytes32),uint256)",
false,
fmt::encodeArgs(),
fmt::encodeArgs(),
0,
" f(S memory s, uint256 b) "
);
}
BOOST_AUTO_TEST_CASE(call_arguments_recursive_tuples)
{
char const* source = R"(
// f(((((bytes, bytes, bytes), bytes), bytes), bytes), bytes) ->
// f(((((bytes, bytes, (bytes)), bytes), bytes), (bytes, bytes)), (bytes, bytes)) ->
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 2);
testFunctionCall(
calls.at(0),
Mode::SingleLine,
"f(((((bytes,bytes,bytes),bytes),bytes),bytes),bytes)",
false
);
testFunctionCall(
calls.at(1),
Mode::SingleLine,
"f(((((bytes,bytes,(bytes)),bytes),bytes),(bytes,bytes)),(bytes,bytes))",
false
);
}
BOOST_AUTO_TEST_CASE(call_arguments_mismatch)
{
char const* source = R"(
// f(uint256):
// 1, 2
// # This only throws at runtime #
// -> 1
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 1);
testFunctionCall(
calls.at(0),
Mode::MultiLine,
"f(uint256)",
false,
fmt::encodeArgs(1, 2),
fmt::encodeArgs(1),
0,
" This only throws at runtime "
);
}
BOOST_AUTO_TEST_CASE(call_multiple_arguments)
{
char const* source = R"(
// test(uint256, uint256):
// 1,
// 2
// -> 1,
// 1
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 1);
testFunctionCall(
calls.at(0),
Mode::MultiLine,
"test(uint256,uint256)",
false,
fmt::encodeArgs(1, 2),
fmt::encodeArgs(1, 1)
);
}
BOOST_AUTO_TEST_CASE(call_multiple_arguments_mixed_format)
{
char const* source = R"(
// test(uint256, uint256), 314 ether:
// 1, -2
// -> -1, 2
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 1);
testFunctionCall(
calls.at(0),
Mode::MultiLine,
"test(uint256,uint256)",
false,
fmt::encodeArgs(1, -2),
fmt::encodeArgs(-1, 2),
314
);
}
BOOST_AUTO_TEST_CASE(call_signature_array)
{
char const* source = R"(
// f(uint256[]) ->
// f(uint256[3]) ->
// f(uint256[3][][], uint8[9]) ->
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 3);
testFunctionCall(calls.at(0), Mode::SingleLine, "f(uint256[])", false);
testFunctionCall(calls.at(1), Mode::SingleLine, "f(uint256[3])", false);
testFunctionCall(calls.at(2), Mode::SingleLine, "f(uint256[3][][],uint8[9])", false);
}
BOOST_AUTO_TEST_CASE(call_signature_struct_array)
{
char const* source = R"(
// f((uint256)[]) ->
// f((uint256)[3]) ->
// f((uint256, uint8)[3]) ->
// f((uint256)[3][][], (uint8, bool)[9]) ->
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 4);
testFunctionCall(calls.at(0), Mode::SingleLine, "f((uint256)[])", false);
testFunctionCall(calls.at(1), Mode::SingleLine, "f((uint256)[3])", false);
testFunctionCall(calls.at(2), Mode::SingleLine, "f((uint256,uint8)[3])", false);
testFunctionCall(calls.at(3), Mode::SingleLine, "f((uint256)[3][][],(uint8,bool)[9])", false);
}
BOOST_AUTO_TEST_CASE(call_signature_valid)
{
char const* source = R"(
// f(uint256, uint8, string) -> FAILURE
// f(invalid, xyz, foo) -> FAILURE
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 2);
testFunctionCall(calls.at(0), Mode::SingleLine, "f(uint256,uint8,string)", true);
testFunctionCall(calls.at(1), Mode::SingleLine, "f(invalid,xyz,foo)", true);
}
BOOST_AUTO_TEST_CASE(call_raw_arguments)
{
char const* source = R"(
// f(): 1, -2, -3 ->
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 1);
testFunctionCall(
calls.at(0),
Mode::SingleLine,
"f()",
false,
fmt::encodeArgs(1, -2, -3),
fmt::encodeArgs(),
0,
"",
"",
{"1", "-2", "-3"}
);
}
BOOST_AUTO_TEST_CASE(call_builtin_left_decimal)
{
char const* source = R"(
// f(): left(1), left(0x20) -> left(-2), left(true)
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 1);
testFunctionCall(
calls.at(0),
Mode::SingleLine,
"f()",
false,
fmt::encodeArgs(
fmt::encode(toCompactBigEndian(u256{1}), false),
fmt::encode(fromHex("0x20"), false)
),
fmt::encodeArgs(
fmt::encode(toCompactBigEndian(u256{-2}), false),
fmt::encode(bytes{true}, false)
)
);
}
BOOST_AUTO_TEST_CASE(call_builtin_right_decimal)
{
char const* source = R"(
// f(): right(1), right(0x20) -> right(-2), right(true)
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 1);
testFunctionCall(
calls.at(0),
Mode::SingleLine,
"f()",
false,
fmt::encodeArgs(1, fromHex("0x20")),
fmt::encodeArgs(-2, true)
);
}
BOOST_AUTO_TEST_CASE(call_arguments_hex_string_left_align)
{
char const* source = R"(
// f(bytes): left(hex"4200ef") ->
)";
BOOST_REQUIRE_THROW(parse(source), langutil::Error);
}
BOOST_AUTO_TEST_CASE(call_arguments_hex_string_right_align)
{
char const* source = R"(
// f(bytes): right(hex"4200ef") ->
)";
BOOST_REQUIRE_THROW(parse(source), langutil::Error);
}
BOOST_AUTO_TEST_CASE(call_newline_invalid)
{
char const* source = R"(
/
)";
BOOST_REQUIRE_THROW(parse(source), langutil::Error);
}
BOOST_AUTO_TEST_CASE(call_invalid)
{
char const* source = R"(
/ f() ->
)";
BOOST_REQUIRE_THROW(parse(source), langutil::Error);
}
BOOST_AUTO_TEST_CASE(call_signature_invalid)
{
char const* source = R"(
// f(uint8,) -> FAILURE
)";
BOOST_REQUIRE_THROW(parse(source), langutil::Error);
}
BOOST_AUTO_TEST_CASE(call_arguments_tuple_invalid)
{
char const* source = R"(
// f((uint8,) -> FAILURE
)";
BOOST_REQUIRE_THROW(parse(source), langutil::Error);
}
BOOST_AUTO_TEST_CASE(call_arguments_tuple_invalid_empty)
{
char const* source = R"(
// f(uint8, ()) -> FAILURE
)";
BOOST_REQUIRE_THROW(parse(source), langutil::Error);
}
BOOST_AUTO_TEST_CASE(call_arguments_tuple_invalid_parantheses)
{
char const* source = R"(
// f((uint8,() -> FAILURE
)";
BOOST_REQUIRE_THROW(parse(source), langutil::Error);
}
BOOST_AUTO_TEST_CASE(call_ether_value_expectations_missing)
{
char const* source = R"(
// f(), 0)";
BOOST_REQUIRE_THROW(parse(source), langutil::Error);
}
BOOST_AUTO_TEST_CASE(call_arguments_invalid)
{
char const* source = R"(
// f(uint256): abc -> 1
)";
BOOST_REQUIRE_THROW(parse(source), langutil::Error);
}
BOOST_AUTO_TEST_CASE(call_arguments_invalid_decimal)
{
char const* source = R"(
// sig(): 0.h3 ->
)";
BOOST_REQUIRE_THROW(parse(source), langutil::Error);
}
BOOST_AUTO_TEST_CASE(call_ether_value_invalid)
{
char const* source = R"(
// f(uint256), abc : 1 -> 1
)";
BOOST_REQUIRE_THROW(parse(source), langutil::Error);
}
BOOST_AUTO_TEST_CASE(call_ether_value_invalid_decimal)
{
char const* source = R"(
// sig(): 0.1hd ether ->
)";
BOOST_REQUIRE_THROW(parse(source), langutil::Error);
}
BOOST_AUTO_TEST_CASE(call_ether_type_invalid)
{
char const* source = R"(
// f(uint256), 2 btc : 1 -> 1
)";
BOOST_REQUIRE_THROW(parse(source), langutil::Error);
}
BOOST_AUTO_TEST_CASE(call_signed_bool_invalid)
{
char const* source = R"(
// f() -> -true
)";
BOOST_REQUIRE_THROW(parse(source), langutil::Error);
}
BOOST_AUTO_TEST_CASE(call_signed_failure_invalid)
{
char const* source = R"(
// f() -> -FAILURE
)";
BOOST_REQUIRE_THROW(parse(source), langutil::Error);
}
BOOST_AUTO_TEST_CASE(call_signed_hex_number_invalid)
{
char const* source = R"(
// f() -> -0x42
)";
BOOST_REQUIRE_THROW(parse(source), langutil::Error);
}
BOOST_AUTO_TEST_CASE(call_arguments_colon)
{
char const* source = R"(
// h256():
// -> 1
)";
BOOST_REQUIRE_THROW(parse(source), langutil::Error);
}
BOOST_AUTO_TEST_CASE(call_arguments_newline_colon)
{
char const* source = R"(
// h256()
// :
// -> 1
)";
BOOST_REQUIRE_THROW(parse(source), langutil::Error);
}
BOOST_AUTO_TEST_CASE(call_arrow_missing)
{
char const* source = R"(
// h256() FAILURE
)";
BOOST_REQUIRE_THROW(parse(source), langutil::Error);
}
BOOST_AUTO_TEST_CASE(call_unexpected_character)
{
char const* source = R"(
// f() -> ??
)";
BOOST_REQUIRE_THROW(parse(source), langutil::Error);
}
BOOST_AUTO_TEST_CASE(constructor)
{
char const* source = R"(
// constructor()
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 1);
testFunctionCall(
calls.at(0),
Mode::SingleLine,
"constructor()",
false,
{},
{},
0,
"",
"",
{},
true
);
}
BOOST_AUTO_TEST_CASE(library)
{
char const* source = R"(
// library: L
)";
auto const calls = parse(source);
BOOST_REQUIRE_EQUAL(calls.size(), 1);
testFunctionCall(
calls.at(0),
Mode::SingleLine,
"L",
false,
{},
{},
0,
"",
"",
{},
false,
true
);
}
BOOST_AUTO_TEST_SUITE_END()
}