/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ // SPDX-License-Identifier: GPL-3.0 /** * @author Christian * @author Gav Wood * @date 2014 * Full-stack compiler that converts a source code string to bytecode. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace solidity; using namespace solidity::langutil; using namespace solidity::frontend; using namespace solidity::stdlib; using namespace std::string_literals; using solidity::util::errinfo_comment; static int g_compilerStackCounts = 0; CompilerStack::CompilerStack(ReadCallback::Callback _readFile): m_readFile{std::move(_readFile)}, m_errorReporter{m_errorList} { // Because TypeProvider is currently a singleton API, we must ensure that // no more than one entity is actually using it at a time. solAssert(g_compilerStackCounts == 0, "You shall not have another CompilerStack aside me."); ++g_compilerStackCounts; } CompilerStack::~CompilerStack() { --g_compilerStackCounts; TypeProvider::reset(); } void CompilerStack::createAndAssignCallGraphs() { for (Source const* source: m_sourceOrder) { if (!source->ast) continue; for (ContractDefinition const* contract: ASTNode::filteredNodes(source->ast->nodes())) { ContractDefinitionAnnotation& annotation = m_contracts.at(contract->fullyQualifiedName()).contract->annotation(); annotation.creationCallGraph = std::make_unique( FunctionCallGraphBuilder::buildCreationGraph(*contract) ); annotation.deployedCallGraph = std::make_unique( FunctionCallGraphBuilder::buildDeployedGraph( *contract, **annotation.creationCallGraph ) ); solAssert(annotation.contractDependencies.empty(), "contractDependencies expected to be empty?!"); annotation.contractDependencies = annotation.creationCallGraph->get()->bytecodeDependency; for (auto const& [dependencyContract, referencee]: annotation.deployedCallGraph->get()->bytecodeDependency) annotation.contractDependencies.emplace(dependencyContract, referencee); } } } void CompilerStack::findAndReportCyclicContractDependencies() { // Cycles we found, used to avoid duplicate reports for the same reference std::set foundCycles; for (Source const* source: m_sourceOrder) { if (!source->ast) continue; for (ContractDefinition const* contractDefinition: ASTNode::filteredNodes(source->ast->nodes())) { util::CycleDetector cycleDetector{[&]( ContractDefinition const& _contract, util::CycleDetector& _cycleDetector, size_t _depth ) { // No specific reason for exactly that number, just a limit we're unlikely to hit. if (_depth >= 256) m_errorReporter.fatalTypeError( 7864_error, _contract.location(), "Contract dependencies exhausting cyclic dependency validator" ); for (auto& [dependencyContract, referencee]: _contract.annotation().contractDependencies) if (_cycleDetector.run(*dependencyContract)) return; }}; ContractDefinition const* cycle = cycleDetector.run(*contractDefinition); if (!cycle) continue; ASTNode const* referencee = contractDefinition->annotation().contractDependencies.at(cycle); if (foundCycles.find(referencee) != foundCycles.end()) continue; SecondarySourceLocation secondaryLocation{}; secondaryLocation.append("Referenced contract is here:"s, cycle->location()); m_errorReporter.typeError( 7813_error, referencee->location(), secondaryLocation, "Circular reference to contract bytecode either via \"new\" or \"type(...).creationCode\" / \"type(...).runtimeCode\"." ); foundCycles.emplace(referencee); } } } void CompilerStack::setRemappings(std::vector _remappings) { if (m_stackState >= ParsedAndImported) solThrow(CompilerError, "Must set remappings before parsing."); for (auto const& remapping: _remappings) solAssert(!remapping.prefix.empty(), ""); m_importRemapper.setRemappings(std::move(_remappings)); } void CompilerStack::setViaIR(bool _viaIR) { if (m_stackState >= ParsedAndImported) solThrow(CompilerError, "Must set viaIR before parsing."); m_viaIR = _viaIR; } void CompilerStack::setEVMVersion(langutil::EVMVersion _version) { if (m_stackState >= ParsedAndImported) solThrow(CompilerError, "Must set EVM version before parsing."); m_evmVersion = _version; } void CompilerStack::setEOFVersion(std::optional _version) { if (m_stackState >= CompilationSuccessful) solThrow(CompilerError, "Must set EOF version before compiling."); if (_version && _version != 1) solThrow(CompilerError, "Invalid EOF version."); m_eofVersion = _version; } void CompilerStack::setModelCheckerSettings(ModelCheckerSettings _settings) { if (m_stackState >= ParsedAndImported) solThrow(CompilerError, "Must set model checking settings before parsing."); m_modelCheckerSettings = _settings; } void CompilerStack::setLibraries(std::map const& _libraries) { if (m_stackState >= ParsedAndImported) solThrow(CompilerError, "Must set libraries before parsing."); m_libraries = _libraries; } void CompilerStack::setOptimiserSettings(bool _optimize, size_t _runs) { OptimiserSettings settings = _optimize ? OptimiserSettings::standard() : OptimiserSettings::minimal(); settings.expectedExecutionsPerDeployment = _runs; setOptimiserSettings(std::move(settings)); } void CompilerStack::setOptimiserSettings(OptimiserSettings _settings) { if (m_stackState >= ParsedAndImported) solThrow(CompilerError, "Must set optimiser settings before parsing."); m_optimiserSettings = std::move(_settings); } void CompilerStack::setRevertStringBehaviour(RevertStrings _revertStrings) { if (m_stackState >= ParsedAndImported) solThrow(CompilerError, "Must set revert std::string settings before parsing."); solUnimplementedAssert(_revertStrings != RevertStrings::VerboseDebug); m_revertStrings = _revertStrings; } void CompilerStack::useMetadataLiteralSources(bool _metadataLiteralSources) { if (m_stackState >= ParsedAndImported) solThrow(CompilerError, "Must set use literal sources before parsing."); m_metadataLiteralSources = _metadataLiteralSources; } void CompilerStack::setMetadataHash(MetadataHash _metadataHash) { if (m_stackState >= ParsedAndImported) solThrow(CompilerError, "Must set metadata hash before parsing."); m_metadataHash = _metadataHash; } void CompilerStack::selectDebugInfo(DebugInfoSelection _debugInfoSelection) { if (m_stackState >= CompilationSuccessful) BOOST_THROW_EXCEPTION(CompilerError() << util::errinfo_comment("Must select debug info components before compilation.")); m_debugInfoSelection = _debugInfoSelection; } void CompilerStack::addSMTLib2Response(h256 const& _hash, std::string const& _response) { if (m_stackState >= ParsedAndImported) solThrow(CompilerError, "Must add SMTLib2 responses before parsing."); m_smtlib2Responses[_hash] = _response; } void CompilerStack::reset(bool _keepSettings) { m_stackState = Empty; m_hasError = false; m_sources.clear(); m_smtlib2Responses.clear(); m_unhandledSMTLib2Queries.clear(); if (!_keepSettings) { m_importRemapper.clear(); m_libraries.clear(); m_viaIR = false; m_evmVersion = langutil::EVMVersion(); m_modelCheckerSettings = ModelCheckerSettings{}; m_generateIR = false; m_revertStrings = RevertStrings::Default; m_optimiserSettings = OptimiserSettings::minimal(); m_metadataLiteralSources = false; m_metadataFormat = defaultMetadataFormat(); m_metadataHash = MetadataHash::IPFS; m_stopAfter = State::CompilationSuccessful; } m_globalContext.reset(); m_sourceOrder.clear(); m_contracts.clear(); m_errorReporter.clear(); TypeProvider::reset(); } void CompilerStack::setSources(StringMap _sources) { if (m_stackState == SourcesSet) solThrow(CompilerError, "Cannot change sources once set."); if (m_stackState != Empty) solThrow(CompilerError, "Must set sources before parsing."); for (auto source: _sources) m_sources[source.first].charStream = std::make_unique(/*content*/std::move(source.second), /*name*/source.first); m_stackState = SourcesSet; } bool CompilerStack::parse() { if (m_stackState != SourcesSet) solThrow(CompilerError, "Must call parse only after the SourcesSet state."); m_errorReporter.clear(); if (SemVerVersion{std::string(VersionString)}.isPrerelease()) m_errorReporter.warning(3805_error, "This is a pre-release compiler version, please do not use it in production."); Parser parser{m_errorReporter, m_evmVersion, m_parserErrorRecovery}; std::vector sourcesToParse; for (auto const& s: m_sources) sourcesToParse.push_back(s.first); for (size_t i = 0; i < sourcesToParse.size(); ++i) { std::string const& path = sourcesToParse[i]; Source& source = m_sources[path]; source.ast = parser.parse(*source.charStream); if (!source.ast) solAssert(Error::containsErrors(m_errorReporter.errors()), "Parser returned null but did not report error."); else { source.ast->annotation().path = path; for (auto const& import: ASTNode::filteredNodes(source.ast->nodes())) { solAssert(!import->path().empty(), "Import path cannot be empty."); // Check whether the import directive is for the standard library, // and if yes, add specified file to source units to be parsed. auto it = stdlib::sources.find(import->path()); if (it != stdlib::sources.end()) { auto [name, content] = *it; m_sources[name].charStream = std::make_unique(content, name); sourcesToParse.push_back(name); } // The current value of `path` is the absolute path as seen from this source file. // We first have to apply remappings before we can store the actual absolute path // as seen globally. import->annotation().absolutePath = applyRemapping(util::absolutePath( import->path(), path ), path); } if (m_stopAfter >= ParsedAndImported) for (auto const& newSource: loadMissingSources(*source.ast)) { std::string const& newPath = newSource.first; std::string const& newContents = newSource.second; m_sources[newPath].charStream = std::make_shared(newContents, newPath); sourcesToParse.push_back(newPath); } } } if (m_stopAfter <= Parsed) m_stackState = Parsed; else m_stackState = ParsedAndImported; if (Error::containsErrors(m_errorReporter.errors())) m_hasError = true; storeContractDefinitions(); return !m_hasError; } void CompilerStack::importASTs(std::map const& _sources) { if (m_stackState != Empty) solThrow(CompilerError, "Must call importASTs only before the SourcesSet state."); std::map> reconstructedSources = ASTJsonImporter(m_evmVersion).jsonToSourceUnit(_sources); for (auto& src: reconstructedSources) { std::string const& path = src.first; Source source; source.ast = src.second; source.charStream = std::make_shared( util::jsonCompactPrint(_sources.at(src.first)), src.first, true // imported from AST ); m_sources[path] = std::move(source); } m_stackState = ParsedAndImported; m_compilationSourceType = CompilationSourceType::SolidityAST; storeContractDefinitions(); } bool CompilerStack::analyze() { if (m_stackState != ParsedAndImported || m_stackState >= AnalysisPerformed) solThrow(CompilerError, "Must call analyze only after parsing was performed."); if (!resolveImports()) return false; for (Source const* source: m_sourceOrder) if (source->ast) Scoper::assignScopes(*source->ast); bool noErrors = true; try { SyntaxChecker syntaxChecker(m_errorReporter, m_optimiserSettings.runYulOptimiser); for (Source const* source: m_sourceOrder) if (source->ast && !syntaxChecker.checkSyntax(*source->ast)) noErrors = false; m_globalContext = std::make_shared(); // We need to keep the same resolver during the whole process. NameAndTypeResolver resolver(*m_globalContext, m_evmVersion, m_errorReporter); for (Source const* source: m_sourceOrder) if (source->ast && !resolver.registerDeclarations(*source->ast)) return false; std::map sourceUnitsByName; for (auto& source: m_sources) sourceUnitsByName[source.first] = source.second.ast.get(); for (Source const* source: m_sourceOrder) if (source->ast && !resolver.performImports(*source->ast, sourceUnitsByName)) return false; resolver.warnHomonymDeclarations(); DocStringTagParser docStringTagParser(m_errorReporter); for (Source const* source: m_sourceOrder) if (source->ast && !docStringTagParser.parseDocStrings(*source->ast)) noErrors = false; // Requires DocStringTagParser for (Source const* source: m_sourceOrder) if (source->ast && !resolver.resolveNamesAndTypes(*source->ast)) return false; DeclarationTypeChecker declarationTypeChecker(m_errorReporter, m_evmVersion); for (Source const* source: m_sourceOrder) if (source->ast && !declarationTypeChecker.check(*source->ast)) return false; // Requires DeclarationTypeChecker to have run for (Source const* source: m_sourceOrder) if (source->ast && !docStringTagParser.validateDocStringsUsingTypes(*source->ast)) noErrors = false; // Next, we check inheritance, overrides, function collisions and other things at // contract or function level. // This also calculates whether a contract is abstract, which is needed by the // type checker. ContractLevelChecker contractLevelChecker(m_errorReporter); for (Source const* source: m_sourceOrder) if (auto sourceAst = source->ast) noErrors = contractLevelChecker.check(*sourceAst); // Now we run full type checks that go down to the expression level. This // cannot be done earlier, because we need cross-contract types and information // about whether a contract is abstract for the `new` expression. // This populates the `type` annotation for all expressions. // // Note: this does not resolve overloaded functions. In order to do that, types of arguments are needed, // which is only done one step later. TypeChecker typeChecker(m_evmVersion, m_errorReporter); for (Source const* source: m_sourceOrder) if (source->ast && !typeChecker.checkTypeRequirements(*source->ast)) noErrors = false; if (noErrors) { // Requires ContractLevelChecker and TypeChecker DocStringAnalyser docStringAnalyser(m_errorReporter); for (Source const* source: m_sourceOrder) if (source->ast && !docStringAnalyser.analyseDocStrings(*source->ast)) noErrors = false; } if (noErrors) { // Checks that can only be done when all types of all AST nodes are known. PostTypeChecker postTypeChecker(m_errorReporter); for (Source const* source: m_sourceOrder) if (source->ast && !postTypeChecker.check(*source->ast)) noErrors = false; if (!postTypeChecker.finalize()) noErrors = false; } // Create & assign callgraphs and check for contract dependency cycles if (noErrors) { createAndAssignCallGraphs(); annotateInternalFunctionIDs(); findAndReportCyclicContractDependencies(); } if (noErrors) for (Source const* source: m_sourceOrder) if (source->ast && !PostTypeContractLevelChecker{m_errorReporter}.check(*source->ast)) noErrors = false; // Check that immutable variables are never read in c'tors and assigned // exactly once if (noErrors) for (Source const* source: m_sourceOrder) if (source->ast) for (ASTPointer const& node: source->ast->nodes()) if (ContractDefinition* contract = dynamic_cast(node.get())) ImmutableValidator(m_errorReporter, *contract).analyze(); if (noErrors) { // Control flow graph generator and analyzer. It can check for issues such as // variable is used before it is assigned to. CFG cfg(m_errorReporter); for (Source const* source: m_sourceOrder) if (source->ast && !cfg.constructFlow(*source->ast)) noErrors = false; if (noErrors) { ControlFlowRevertPruner pruner(cfg); pruner.run(); ControlFlowAnalyzer controlFlowAnalyzer(cfg, m_errorReporter); if (!controlFlowAnalyzer.run()) noErrors = false; } } if (noErrors) { // Checks for common mistakes. Only generates warnings. StaticAnalyzer staticAnalyzer(m_errorReporter); for (Source const* source: m_sourceOrder) if (source->ast && !staticAnalyzer.analyze(*source->ast)) noErrors = false; } if (noErrors) { // Check for state mutability in every function. std::vector> ast; for (Source const* source: m_sourceOrder) if (source->ast) ast.push_back(source->ast); if (!ViewPureChecker(ast, m_errorReporter).check()) noErrors = false; } if (noErrors) { // Run SMTChecker auto allSources = util::applyMap(m_sourceOrder, [](Source const* _source) { return _source->ast; }); if (ModelChecker::isPragmaPresent(allSources)) m_modelCheckerSettings.engine = ModelCheckerEngine::All(); // m_modelCheckerSettings is spread to engines and solver interfaces, // so we need to check whether the enabled ones are available before building the classes. if (m_modelCheckerSettings.engine.any()) m_modelCheckerSettings.solvers = ModelChecker::checkRequestedSolvers(m_modelCheckerSettings.solvers, m_errorReporter); ModelChecker modelChecker(m_errorReporter, *this, m_smtlib2Responses, m_modelCheckerSettings, m_readFile); modelChecker.checkRequestedSourcesAndContracts(allSources); for (Source const* source: m_sourceOrder) if (source->ast) modelChecker.analyze(*source->ast); m_unhandledSMTLib2Queries += modelChecker.unhandledQueries(); } } catch (FatalError const&) { if (m_errorReporter.errors().empty()) throw; // Something is weird here, rather throw again. noErrors = false; } m_stackState = AnalysisPerformed; if (!noErrors) m_hasError = true; return !m_hasError; } bool CompilerStack::parseAndAnalyze(State _stopAfter) { m_stopAfter = _stopAfter; bool success = parse(); if (m_stackState >= m_stopAfter) return success; if (success || m_parserErrorRecovery) success = analyze(); return success; } bool CompilerStack::isRequestedSource(std::string const& _sourceName) const { return m_requestedContractNames.empty() || m_requestedContractNames.count("") || m_requestedContractNames.count(_sourceName); } bool CompilerStack::isRequestedContract(ContractDefinition const& _contract) const { /// In case nothing was specified in outputSelection. if (m_requestedContractNames.empty()) return true; for (auto const& key: std::vector{"", _contract.sourceUnitName()}) { auto const& it = m_requestedContractNames.find(key); if (it != m_requestedContractNames.end()) if (it->second.count(_contract.name()) || it->second.count("")) return true; } return false; } bool CompilerStack::compile(State _stopAfter) { m_stopAfter = _stopAfter; if (m_stackState < AnalysisPerformed) if (!parseAndAnalyze(_stopAfter)) return false; if (m_stackState >= m_stopAfter) return true; if (m_hasError) solThrow(CompilerError, "Called compile with errors."); // Only compile contracts individually which have been requested. std::map> otherCompilers; for (Source const* source: m_sourceOrder) for (ASTPointer const& node: source->ast->nodes()) if (auto contract = dynamic_cast(node.get())) if (isRequestedContract(*contract)) { try { if (m_viaIR || m_generateIR) generateIR(*contract); if (m_generateEvmBytecode) { if (m_viaIR) generateEVMFromIR(*contract); else compileContract(*contract, otherCompilers); } } catch (Error const& _error) { if (_error.type() != Error::Type::CodeGenerationError) throw; m_errorReporter.error(_error.errorId(), _error.type(), SourceLocation(), _error.what()); return false; } catch (UnimplementedFeatureError const& _unimplementedError) { if ( SourceLocation const* sourceLocation = boost::get_error_info(_unimplementedError) ) { std::string const* comment = _unimplementedError.comment(); m_errorReporter.error( 1834_error, Error::Type::CodeGenerationError, *sourceLocation, fmt::format( "Unimplemented feature error {} in {}", (comment && !comment->empty()) ? ": " + *comment : "", _unimplementedError.lineInfo() ) ); return false; } else throw; } } m_stackState = CompilationSuccessful; this->link(); return true; } void CompilerStack::link() { solAssert(m_stackState >= CompilationSuccessful, ""); for (auto& contract: m_contracts) { contract.second.object.link(m_libraries); contract.second.runtimeObject.link(m_libraries); } } std::vector CompilerStack::contractNames() const { if (m_stackState < Parsed) solThrow(CompilerError, "Parsing was not successful."); std::vector contractNames; for (auto const& contract: m_contracts) contractNames.push_back(contract.first); return contractNames; } std::string const CompilerStack::lastContractName(std::optional const& _sourceName) const { if (m_stackState < AnalysisPerformed) solThrow(CompilerError, "Parsing was not successful."); // try to find some user-supplied contract std::string contractName; for (auto const& it: m_sources) if (_sourceName.value_or(it.first) == it.first) for (auto const* contract: ASTNode::filteredNodes(it.second.ast->nodes())) contractName = contract->fullyQualifiedName(); return contractName; } evmasm::AssemblyItems const* CompilerStack::assemblyItems(std::string const& _contractName) const { if (m_stackState != CompilationSuccessful) solThrow(CompilerError, "Compilation was not successful."); Contract const& currentContract = contract(_contractName); return currentContract.evmAssembly ? ¤tContract.evmAssembly->items() : nullptr; } evmasm::AssemblyItems const* CompilerStack::runtimeAssemblyItems(std::string const& _contractName) const { if (m_stackState != CompilationSuccessful) solThrow(CompilerError, "Compilation was not successful."); Contract const& currentContract = contract(_contractName); return currentContract.evmRuntimeAssembly ? ¤tContract.evmRuntimeAssembly->items() : nullptr; } Json::Value CompilerStack::generatedSources(std::string const& _contractName, bool _runtime) const { if (m_stackState != CompilationSuccessful) solThrow(CompilerError, "Compilation was not successful."); Contract const& c = contract(_contractName); util::LazyInit const& sources = _runtime ? c.runtimeGeneratedSources : c.generatedSources; return sources.init([&]{ Json::Value sources{Json::arrayValue}; // If there is no compiler, then no bytecode was generated and thus no // sources were generated (or we compiled "via IR"). if (c.compiler) { solAssert(!m_viaIR, ""); std::string source = _runtime ? c.compiler->runtimeGeneratedYulUtilityCode() : c.compiler->generatedYulUtilityCode(); if (!source.empty()) { std::string sourceName = CompilerContext::yulUtilityFileName(); unsigned sourceIndex = sourceIndices()[sourceName]; ErrorList errors; ErrorReporter errorReporter(errors); CharStream charStream(source, sourceName); yul::EVMDialect const& dialect = yul::EVMDialect::strictAssemblyForEVM(m_evmVersion); std::shared_ptr parserResult = yul::Parser{errorReporter, dialect}.parse(charStream); solAssert(parserResult, ""); sources[0]["ast"] = yul::AsmJsonConverter{sourceIndex}(*parserResult); sources[0]["name"] = sourceName; sources[0]["id"] = sourceIndex; sources[0]["language"] = "Yul"; sources[0]["contents"] = std::move(source); } } return sources; }); } std::string const* CompilerStack::sourceMapping(std::string const& _contractName) const { if (m_stackState != CompilationSuccessful) solThrow(CompilerError, "Compilation was not successful."); Contract const& c = contract(_contractName); if (!c.sourceMapping) { if (auto items = assemblyItems(_contractName)) c.sourceMapping.emplace(evmasm::AssemblyItem::computeSourceMapping(*items, sourceIndices())); } return c.sourceMapping ? &*c.sourceMapping : nullptr; } std::string const* CompilerStack::runtimeSourceMapping(std::string const& _contractName) const { if (m_stackState != CompilationSuccessful) solThrow(CompilerError, "Compilation was not successful."); Contract const& c = contract(_contractName); if (!c.runtimeSourceMapping) { if (auto items = runtimeAssemblyItems(_contractName)) c.runtimeSourceMapping.emplace( evmasm::AssemblyItem::computeSourceMapping(*items, sourceIndices()) ); } return c.runtimeSourceMapping ? &*c.runtimeSourceMapping : nullptr; } std::string const CompilerStack::filesystemFriendlyName(std::string const& _contractName) const { if (m_stackState < AnalysisPerformed) solThrow(CompilerError, "No compiled contracts found."); // Look up the contract (by its fully-qualified name) Contract const& matchContract = m_contracts.at(_contractName); // Check to see if it could collide on name for (auto const& contract: m_contracts) { if (contract.second.contract->name() == matchContract.contract->name() && contract.second.contract != matchContract.contract) { // If it does, then return its fully-qualified name, made fs-friendly std::string friendlyName = boost::algorithm::replace_all_copy(_contractName, "/", "_"); boost::algorithm::replace_all(friendlyName, ":", "_"); boost::algorithm::replace_all(friendlyName, ".", "_"); return friendlyName; } } // If no collision, return the contract's name return matchContract.contract->name(); } std::string const& CompilerStack::yulIR(std::string const& _contractName) const { if (m_stackState != CompilationSuccessful) solThrow(CompilerError, "Compilation was not successful."); return contract(_contractName).yulIR; } Json::Value const& CompilerStack::yulIRAst(std::string const& _contractName) const { if (m_stackState != CompilationSuccessful) solThrow(CompilerError, "Compilation was not successful."); return contract(_contractName).yulIRAst; } std::string const& CompilerStack::yulIROptimized(std::string const& _contractName) const { if (m_stackState != CompilationSuccessful) solThrow(CompilerError, "Compilation was not successful."); return contract(_contractName).yulIROptimized; } Json::Value const& CompilerStack::yulIROptimizedAst(std::string const& _contractName) const { if (m_stackState != CompilationSuccessful) solThrow(CompilerError, "Compilation was not successful."); return contract(_contractName).yulIROptimizedAst; } evmasm::LinkerObject const& CompilerStack::object(std::string const& _contractName) const { if (m_stackState != CompilationSuccessful) solThrow(CompilerError, "Compilation was not successful."); return contract(_contractName).object; } evmasm::LinkerObject const& CompilerStack::runtimeObject(std::string const& _contractName) const { if (m_stackState != CompilationSuccessful) solThrow(CompilerError, "Compilation was not successful."); return contract(_contractName).runtimeObject; } /// TODO: cache this std::string std::string CompilerStack::assemblyString(std::string const& _contractName, StringMap const& _sourceCodes) const { if (m_stackState != CompilationSuccessful) solThrow(CompilerError, "Compilation was not successful."); Contract const& currentContract = contract(_contractName); if (currentContract.evmAssembly) return currentContract.evmAssembly->assemblyString(m_debugInfoSelection, _sourceCodes); else return std::string(); } /// TODO: cache the JSON Json::Value CompilerStack::assemblyJSON(std::string const& _contractName) const { if (m_stackState != CompilationSuccessful) solThrow(CompilerError, "Compilation was not successful."); Contract const& currentContract = contract(_contractName); if (currentContract.evmAssembly) return currentContract.evmAssembly->assemblyJSON(sourceIndices()); else return Json::Value(); } std::vector CompilerStack::sourceNames() const { return ranges::to(m_sources | ranges::views::keys); } std::map CompilerStack::sourceIndices() const { std::map indices; unsigned index = 0; for (auto const& s: m_sources) indices[s.first] = index++; solAssert(!indices.count(CompilerContext::yulUtilityFileName()), ""); indices[CompilerContext::yulUtilityFileName()] = index++; return indices; } Json::Value const& CompilerStack::contractABI(std::string const& _contractName) const { if (m_stackState < AnalysisPerformed) solThrow(CompilerError, "Analysis was not successful."); return contractABI(contract(_contractName)); } Json::Value const& CompilerStack::contractABI(Contract const& _contract) const { if (m_stackState < AnalysisPerformed) solThrow(CompilerError, "Analysis was not successful."); solAssert(_contract.contract, ""); return _contract.abi.init([&]{ return ABI::generate(*_contract.contract); }); } Json::Value const& CompilerStack::storageLayout(std::string const& _contractName) const { if (m_stackState < AnalysisPerformed) solThrow(CompilerError, "Analysis was not successful."); return storageLayout(contract(_contractName)); } Json::Value const& CompilerStack::storageLayout(Contract const& _contract) const { if (m_stackState < AnalysisPerformed) solThrow(CompilerError, "Analysis was not successful."); solAssert(_contract.contract, ""); return _contract.storageLayout.init([&]{ return StorageLayout().generate(*_contract.contract); }); } Json::Value const& CompilerStack::natspecUser(std::string const& _contractName) const { if (m_stackState < AnalysisPerformed) solThrow(CompilerError, "Analysis was not successful."); return natspecUser(contract(_contractName)); } Json::Value const& CompilerStack::natspecUser(Contract const& _contract) const { if (m_stackState < AnalysisPerformed) solThrow(CompilerError, "Analysis was not successful."); solAssert(_contract.contract, ""); return _contract.userDocumentation.init([&]{ return Natspec::userDocumentation(*_contract.contract); }); } Json::Value const& CompilerStack::natspecDev(std::string const& _contractName) const { if (m_stackState < AnalysisPerformed) solThrow(CompilerError, "Analysis was not successful."); return natspecDev(contract(_contractName)); } Json::Value const& CompilerStack::natspecDev(Contract const& _contract) const { if (m_stackState < AnalysisPerformed) solThrow(CompilerError, "Analysis was not successful."); solAssert(_contract.contract, ""); return _contract.devDocumentation.init([&]{ return Natspec::devDocumentation(*_contract.contract); }); } Json::Value CompilerStack::interfaceSymbols(std::string const& _contractName) const { if (m_stackState < AnalysisPerformed) solThrow(CompilerError, "Analysis was not successful."); Json::Value interfaceSymbols(Json::objectValue); // Always have a methods object interfaceSymbols["methods"] = Json::objectValue; for (auto const& it: contractDefinition(_contractName).interfaceFunctions()) interfaceSymbols["methods"][it.second->externalSignature()] = it.first.hex(); for (ErrorDefinition const* error: contractDefinition(_contractName).interfaceErrors()) { std::string signature = error->functionType(true)->externalSignature(); interfaceSymbols["errors"][signature] = util::toHex(toCompactBigEndian(util::selectorFromSignatureU32(signature), 4)); } for (EventDefinition const* event: ranges::concat_view( contractDefinition(_contractName).definedInterfaceEvents(), contractDefinition(_contractName).usedInterfaceEvents() )) if (!event->isAnonymous()) { std::string signature = event->functionType(true)->externalSignature(); interfaceSymbols["events"][signature] = toHex(u256(h256::Arith(util::keccak256(signature)))); } return interfaceSymbols; } bytes CompilerStack::cborMetadata(std::string const& _contractName, bool _forIR) const { if (m_stackState < AnalysisPerformed) solThrow(CompilerError, "Analysis was not successful."); return createCBORMetadata(contract(_contractName), _forIR); } std::string const& CompilerStack::metadata(Contract const& _contract) const { if (m_stackState < AnalysisPerformed) solThrow(CompilerError, "Analysis was not successful."); solAssert(_contract.contract, ""); return _contract.metadata.init([&]{ return createMetadata(_contract, m_viaIR); }); } CharStream const& CompilerStack::charStream(std::string const& _sourceName) const { if (m_stackState < SourcesSet) solThrow(CompilerError, "No sources set."); solAssert(source(_sourceName).charStream, ""); return *source(_sourceName).charStream; } SourceUnit const& CompilerStack::ast(std::string const& _sourceName) const { if (m_stackState < Parsed) solThrow(CompilerError, "Parsing not yet performed."); if (!source(_sourceName).ast && !m_parserErrorRecovery) solThrow(CompilerError, "Parsing was not successful."); return *source(_sourceName).ast; } ContractDefinition const& CompilerStack::contractDefinition(std::string const& _contractName) const { if (m_stackState < AnalysisPerformed) solThrow(CompilerError, "Analysis was not successful."); return *contract(_contractName).contract; } size_t CompilerStack::functionEntryPoint( std::string const& _contractName, FunctionDefinition const& _function ) const { if (m_stackState != CompilationSuccessful) solThrow(CompilerError, "Compilation was not successful."); for (auto&& [name, data]: contract(_contractName).runtimeObject.functionDebugData) if (data.sourceID == _function.id()) if (data.instructionIndex) return *data.instructionIndex; return 0; } h256 const& CompilerStack::Source::keccak256() const { if (keccak256HashCached == h256{}) keccak256HashCached = util::keccak256(charStream->source()); return keccak256HashCached; } h256 const& CompilerStack::Source::swarmHash() const { if (swarmHashCached == h256{}) swarmHashCached = util::bzzr1Hash(charStream->source()); return swarmHashCached; } std::string const& CompilerStack::Source::ipfsUrl() const { if (ipfsUrlCached.empty()) ipfsUrlCached = "dweb:/ipfs/" + util::ipfsHashBase58(charStream->source()); return ipfsUrlCached; } StringMap CompilerStack::loadMissingSources(SourceUnit const& _ast) { solAssert(m_stackState < ParsedAndImported, ""); StringMap newSources; try { for (auto const& node: _ast.nodes()) if (ImportDirective const* import = dynamic_cast(node.get())) { std::string const& importPath = *import->annotation().absolutePath; if (m_sources.count(importPath) || newSources.count(importPath)) continue; ReadCallback::Result result{false, std::string("File not supplied initially.")}; if (m_readFile) result = m_readFile(ReadCallback::kindString(ReadCallback::Kind::ReadFile), importPath); if (result.success) newSources[importPath] = result.responseOrErrorMessage; else { m_errorReporter.parserError( 6275_error, import->location(), std::string("Source \"" + importPath + "\" not found: " + result.responseOrErrorMessage) ); continue; } } } catch (FatalError const&) { solAssert(m_errorReporter.hasErrors(), ""); } return newSources; } std::string CompilerStack::applyRemapping(std::string const& _path, std::string const& _context) { solAssert(m_stackState < ParsedAndImported, ""); return m_importRemapper.apply(_path, _context); } bool CompilerStack::resolveImports() { solAssert(m_stackState == ParsedAndImported, ""); // topological sorting (depth first search) of the import graph, cutting potential cycles std::vector sourceOrder; std::set sourcesSeen; std::function toposort = [&](Source const* _source) { if (sourcesSeen.count(_source)) return; sourcesSeen.insert(_source); if (_source->ast) for (ASTPointer const& node: _source->ast->nodes()) if (ImportDirective const* import = dynamic_cast(node.get())) { std::string const& path = *import->annotation().absolutePath; solAssert(m_sources.count(path), ""); import->annotation().sourceUnit = m_sources[path].ast.get(); toposort(&m_sources[path]); } sourceOrder.push_back(_source); }; std::vector experimentalPragmaDirectives; for (auto const& sourcePair: m_sources) { if (isRequestedSource(sourcePair.first)) toposort(&sourcePair.second); if (sourcePair.second.ast && sourcePair.second.ast->experimentalSolidity()) for (ASTPointer const& node: sourcePair.second.ast->nodes()) if (PragmaDirective const* pragma = dynamic_cast(node.get())) if (pragma->literals().size() >=2 && pragma->literals()[0] == "experimental" && pragma->literals()[1] == "solidity") { experimentalPragmaDirectives.push_back(pragma); break; } } if (!experimentalPragmaDirectives.empty() && experimentalPragmaDirectives.size() != m_sources.size()) { for (auto &&pragma: experimentalPragmaDirectives) m_errorReporter.parserError( 2141_error, pragma->location(), "File declares \"pragma experimental solidity\". If you want to enable the experimental mode, all source units must include the pragma." ); return false; } swap(m_sourceOrder, sourceOrder); return true; } void CompilerStack::storeContractDefinitions() { for (auto const& pair: m_sources) if (pair.second.ast) for ( ContractDefinition const* contract: ASTNode::filteredNodes(pair.second.ast->nodes()) ) { std::string fullyQualifiedName = *pair.second.ast->annotation().path + ":" + contract->name(); // Note that we now reference contracts by their fully qualified names, and // thus contracts can only conflict if declared in the same source file. This // should already cause a double-declaration error elsewhere. if (!m_contracts.count(fullyQualifiedName)) m_contracts[fullyQualifiedName].contract = contract; } } void CompilerStack::annotateInternalFunctionIDs() { for (Source const* source: m_sourceOrder) { if (!source->ast) continue; for (ContractDefinition const* contract: ASTNode::filteredNodes(source->ast->nodes())) { uint64_t internalFunctionID = 1; ContractDefinitionAnnotation& annotation = contract->annotation(); if (auto const* deployTimeInternalDispatch = util::valueOrNullptr((*annotation.deployedCallGraph)->edges, CallGraph::SpecialNode::InternalDispatch)) for (auto const& node: *deployTimeInternalDispatch) if (auto const* callable = std::get_if(&node)) if (auto const* function = dynamic_cast(*callable)) { solAssert(contract->annotation().internalFunctionIDs.count(function) == 0); contract->annotation().internalFunctionIDs[function] = internalFunctionID++; } if (auto const* creationTimeInternalDispatch = util::valueOrNullptr((*annotation.creationCallGraph)->edges, CallGraph::SpecialNode::InternalDispatch)) for (auto const& node: *creationTimeInternalDispatch) if (auto const* callable = std::get_if(&node)) if (auto const* function = dynamic_cast(*callable)) // Make sure the function already got an ID since it also occurs in the deploy-time internal dispatch. solAssert(contract->annotation().internalFunctionIDs.count(function) != 0); } } } namespace { bool onlySafeExperimentalFeaturesActivated(std::set const& features) { for (auto const feature: features) if (!ExperimentalFeatureWithoutWarning.count(feature)) return false; return true; } } void CompilerStack::assembleYul( ContractDefinition const& _contract, std::shared_ptr _assembly, std::shared_ptr _runtimeAssembly ) { solAssert(m_stackState >= AnalysisPerformed, ""); solAssert(!m_hasError, ""); Contract& compiledContract = m_contracts.at(_contract.fullyQualifiedName()); compiledContract.evmAssembly = _assembly; solAssert(compiledContract.evmAssembly, ""); try { // Assemble deployment (incl. runtime) object. compiledContract.object = compiledContract.evmAssembly->assemble(); } catch (evmasm::AssemblyException const&) { solAssert(false, "Assembly exception for bytecode"); } solAssert(compiledContract.object.immutableReferences.empty(), "Leftover immutables."); compiledContract.evmRuntimeAssembly = _runtimeAssembly; solAssert(compiledContract.evmRuntimeAssembly, ""); try { // Assemble runtime object. compiledContract.runtimeObject = compiledContract.evmRuntimeAssembly->assemble(); } catch (evmasm::AssemblyException const&) { solAssert(false, "Assembly exception for deployed bytecode"); } // Throw a warning if EIP-170 limits are exceeded: // If contract creation returns data with length greater than 0x6000 (2^14 + 2^13) bytes, // contract creation fails with an out of gas error. if ( m_evmVersion >= langutil::EVMVersion::spuriousDragon() && compiledContract.runtimeObject.bytecode.size() > 0x6000 ) m_errorReporter.warning( 5574_error, _contract.location(), "Contract code size is "s + std::to_string(compiledContract.runtimeObject.bytecode.size()) + " bytes and exceeds 24576 bytes (a limit introduced in Spurious Dragon). " "This contract may not be deployable on Mainnet. " "Consider enabling the optimizer (with a low \"runs\" value!), " "turning off revert strings, or using libraries." ); // Throw a warning if EIP-3860 limits are exceeded: // If initcode is larger than 0xC000 bytes (twice the runtime code limit), // then contract creation fails with an out of gas error. if ( m_evmVersion >= langutil::EVMVersion::shanghai() && compiledContract.object.bytecode.size() > 0xC000 ) m_errorReporter.warning( 3860_error, _contract.location(), "Contract initcode size is "s + std::to_string(compiledContract.object.bytecode.size()) + " bytes and exceeds 49152 bytes (a limit introduced in Shanghai). " "This contract may not be deployable on Mainnet. " "Consider enabling the optimizer (with a low \"runs\" value!), " "turning off revert strings, or using libraries." ); } void CompilerStack::compileContract( ContractDefinition const& _contract, std::map>& _otherCompilers ) { solAssert(!m_viaIR, ""); solUnimplementedAssert(!m_eofVersion.has_value(), "Experimental EOF support is only available for via-IR compilation."); solAssert(m_stackState >= AnalysisPerformed, ""); if (m_hasError) solThrow(CompilerError, "Called compile with errors."); if (_otherCompilers.count(&_contract)) return; for (auto const& [dependency, referencee]: _contract.annotation().contractDependencies) compileContract(*dependency, _otherCompilers); if (!_contract.canBeDeployed()) return; Contract& compiledContract = m_contracts.at(_contract.fullyQualifiedName()); std::shared_ptr compiler = std::make_shared(m_evmVersion, m_revertStrings, m_optimiserSettings); compiledContract.compiler = compiler; solAssert(!m_viaIR, ""); bytes cborEncodedMetadata = createCBORMetadata(compiledContract, /* _forIR */ false); try { // Run optimiser and compile the contract. compiler->compileContract(_contract, _otherCompilers, cborEncodedMetadata); } catch(evmasm::OptimizerException const&) { solAssert(false, "Optimizer exception during compilation"); } _otherCompilers[compiledContract.contract] = compiler; assembleYul(_contract, compiler->assemblyPtr(), compiler->runtimeAssemblyPtr()); } void CompilerStack::generateIR(ContractDefinition const& _contract) { solAssert(m_stackState >= AnalysisPerformed, ""); if (m_hasError) solThrow(CompilerError, "Called generateIR with errors."); Contract& compiledContract = m_contracts.at(_contract.fullyQualifiedName()); if (!compiledContract.yulIR.empty()) return; if (!*_contract.sourceUnit().annotation().useABICoderV2) m_errorReporter.warning( 2066_error, _contract.location(), "Contract requests the ABI coder v1, which is incompatible with the IR. " "Using ABI coder v2 instead." ); std::string dependenciesSource; for (auto const& [dependency, referencee]: _contract.annotation().contractDependencies) generateIR(*dependency); if (!_contract.canBeDeployed()) return; std::map otherYulSources; for (auto const& pair: m_contracts) otherYulSources.emplace(pair.second.contract, pair.second.yulIR); IRGenerator generator( m_evmVersion, m_eofVersion, m_revertStrings, sourceIndices(), m_debugInfoSelection, this ); compiledContract.yulIR = generator.run( _contract, createCBORMetadata(compiledContract, /* _forIR */ true), otherYulSources ); yul::YulStack stack( m_evmVersion, m_eofVersion, yul::YulStack::Language::StrictAssembly, m_optimiserSettings, m_debugInfoSelection ); bool yulAnalysisSuccessful = stack.parseAndAnalyze("", compiledContract.yulIR); solAssert( yulAnalysisSuccessful, compiledContract.yulIR + "\n\n" "Invalid IR generated:\n" + langutil::SourceReferenceFormatter::formatErrorInformation(stack.errors(), stack) + "\n" ); compiledContract.yulIRAst = stack.astJson(); stack.optimize(); compiledContract.yulIROptimized = stack.print(this); compiledContract.yulIROptimizedAst = stack.astJson(); } void CompilerStack::generateEVMFromIR(ContractDefinition const& _contract) { solAssert(m_stackState >= AnalysisPerformed, ""); if (m_hasError) solThrow(CompilerError, "Called generateEVMFromIR with errors."); if (!_contract.canBeDeployed()) return; Contract& compiledContract = m_contracts.at(_contract.fullyQualifiedName()); solAssert(!compiledContract.yulIROptimized.empty(), ""); if (!compiledContract.object.bytecode.empty()) return; // Re-parse the Yul IR in EVM dialect yul::YulStack stack( m_evmVersion, m_eofVersion, yul::YulStack::Language::StrictAssembly, m_optimiserSettings, m_debugInfoSelection ); bool analysisSuccessful = stack.parseAndAnalyze("", compiledContract.yulIROptimized); solAssert(analysisSuccessful); //cout << yul::AsmPrinter{}(*stack.parserResult()->code) << endl; std::string deployedName = IRNames::deployedObject(_contract); solAssert(!deployedName.empty(), ""); tie(compiledContract.evmAssembly, compiledContract.evmRuntimeAssembly) = stack.assembleEVMWithDeployed(deployedName); assembleYul(_contract, compiledContract.evmAssembly, compiledContract.evmRuntimeAssembly); } CompilerStack::Contract const& CompilerStack::contract(std::string const& _contractName) const { solAssert(m_stackState >= AnalysisPerformed, ""); auto it = m_contracts.find(_contractName); if (it != m_contracts.end()) return it->second; // To provide a measure of backward-compatibility, if a contract is not located by its // fully-qualified name, a lookup will be attempted purely on the contract's name to see // if anything will satisfy. if (_contractName.find(':') == std::string::npos) { for (auto const& contractEntry: m_contracts) { std::stringstream ss; ss.str(contractEntry.first); // All entries are : std::string source; std::string foundName; getline(ss, source, ':'); getline(ss, foundName, ':'); if (foundName == _contractName) return contractEntry.second; } } // If we get here, both lookup methods failed. solThrow(CompilerError, "Contract \"" + _contractName + "\" not found."); } CompilerStack::Source const& CompilerStack::source(std::string const& _sourceName) const { auto it = m_sources.find(_sourceName); if (it == m_sources.end()) solThrow(CompilerError, "Given source file not found: " + _sourceName); return it->second; } std::string CompilerStack::createMetadata(Contract const& _contract, bool _forIR) const { Json::Value meta{Json::objectValue}; meta["version"] = 1; std::string sourceType; switch (m_compilationSourceType) { case CompilationSourceType::Solidity: sourceType = "Solidity"; break; case CompilationSourceType::SolidityAST: sourceType = "SolidityAST"; break; } meta["language"] = sourceType; meta["compiler"]["version"] = VersionStringStrict; /// All the source files (including self), which should be included in the metadata. std::set referencedSources; referencedSources.insert(*_contract.contract->sourceUnit().annotation().path); for (auto const sourceUnit: _contract.contract->sourceUnit().referencedSourceUnits(true)) referencedSources.insert(*sourceUnit->annotation().path); meta["sources"] = Json::objectValue; for (auto const& s: m_sources) { if (!referencedSources.count(s.first)) continue; solAssert(s.second.charStream, "Character stream not available"); meta["sources"][s.first]["keccak256"] = "0x" + util::toHex(s.second.keccak256().asBytes()); if (std::optional licenseString = s.second.ast->licenseString()) meta["sources"][s.first]["license"] = *licenseString; if (m_metadataLiteralSources) meta["sources"][s.first]["content"] = s.second.charStream->source(); else { meta["sources"][s.first]["urls"] = Json::arrayValue; meta["sources"][s.first]["urls"].append("bzz-raw://" + util::toHex(s.second.swarmHash().asBytes())); meta["sources"][s.first]["urls"].append(s.second.ipfsUrl()); } } static_assert(sizeof(m_optimiserSettings.expectedExecutionsPerDeployment) <= sizeof(Json::LargestUInt), "Invalid word size."); solAssert(static_cast(m_optimiserSettings.expectedExecutionsPerDeployment) < std::numeric_limits::max(), ""); meta["settings"]["optimizer"]["runs"] = Json::Value(Json::LargestUInt(m_optimiserSettings.expectedExecutionsPerDeployment)); /// Backwards compatibility: If set to one of the default settings, do not provide details. OptimiserSettings settingsWithoutRuns = m_optimiserSettings; // reset to default settingsWithoutRuns.expectedExecutionsPerDeployment = OptimiserSettings::minimal().expectedExecutionsPerDeployment; if (settingsWithoutRuns == OptimiserSettings::minimal()) meta["settings"]["optimizer"]["enabled"] = false; else if (settingsWithoutRuns == OptimiserSettings::standard()) meta["settings"]["optimizer"]["enabled"] = true; else { Json::Value details{Json::objectValue}; details["orderLiterals"] = m_optimiserSettings.runOrderLiterals; details["inliner"] = m_optimiserSettings.runInliner; details["jumpdestRemover"] = m_optimiserSettings.runJumpdestRemover; details["peephole"] = m_optimiserSettings.runPeephole; details["deduplicate"] = m_optimiserSettings.runDeduplicate; details["cse"] = m_optimiserSettings.runCSE; details["constantOptimizer"] = m_optimiserSettings.runConstantOptimiser; details["yul"] = m_optimiserSettings.runYulOptimiser; if (m_optimiserSettings.runYulOptimiser) { details["yulDetails"] = Json::objectValue; details["yulDetails"]["stackAllocation"] = m_optimiserSettings.optimizeStackAllocation; details["yulDetails"]["optimizerSteps"] = m_optimiserSettings.yulOptimiserSteps + ":" + m_optimiserSettings.yulOptimiserCleanupSteps; } meta["settings"]["optimizer"]["details"] = std::move(details); } if (m_revertStrings != RevertStrings::Default) meta["settings"]["debug"]["revertStrings"] = revertStringsToString(m_revertStrings); if (m_metadataFormat == MetadataFormat::NoMetadata) meta["settings"]["metadata"]["appendCBOR"] = false; if (m_metadataLiteralSources) meta["settings"]["metadata"]["useLiteralContent"] = true; static std::vector hashes{"ipfs", "bzzr1", "none"}; meta["settings"]["metadata"]["bytecodeHash"] = hashes.at(unsigned(m_metadataHash)); if (_forIR) meta["settings"]["viaIR"] = _forIR; meta["settings"]["evmVersion"] = m_evmVersion.name(); if (m_eofVersion.has_value()) meta["settings"]["eofVersion"] = *m_eofVersion; meta["settings"]["compilationTarget"][_contract.contract->sourceUnitName()] = *_contract.contract->annotation().canonicalName; meta["settings"]["remappings"] = Json::arrayValue; std::set remappings; for (auto const& r: m_importRemapper.remappings()) remappings.insert(r.context + ":" + r.prefix + "=" + r.target); for (auto const& r: remappings) meta["settings"]["remappings"].append(r); meta["settings"]["libraries"] = Json::objectValue; for (auto const& library: m_libraries) meta["settings"]["libraries"][library.first] = "0x" + util::toHex(library.second.asBytes()); meta["output"]["abi"] = contractABI(_contract); meta["output"]["userdoc"] = natspecUser(_contract); meta["output"]["devdoc"] = natspecDev(_contract); return util::jsonCompactPrint(meta); } class MetadataCBOREncoder { public: void pushBytes(std::string const& key, bytes const& value) { m_entryCount++; pushTextString(key); pushByteString(value); } void pushString(std::string const& key, std::string const& value) { m_entryCount++; pushTextString(key); pushTextString(value); } void pushBool(std::string const& key, bool value) { m_entryCount++; pushTextString(key); pushBool(value); } bytes serialise() const { size_t size = m_data.size() + 1; solAssert(size <= 0xffff, "Metadata too large."); solAssert(m_entryCount <= 0x1f, "Too many map entries."); // CBOR fixed-length map bytes ret{static_cast(0xa0 + m_entryCount)}; // The already encoded key-value pairs ret += m_data; // 16-bit big endian length ret += toCompactBigEndian(size, 2); return ret; } private: void pushTextString(std::string const& key) { size_t length = key.size(); if (length < 24) { m_data += bytes{static_cast(0x60 + length)}; m_data += key; } else if (length <= 256) { m_data += bytes{0x78, static_cast(length)}; m_data += key; } else solAssert(false, "Text std::string too large."); } void pushByteString(bytes const& key) { size_t length = key.size(); if (length < 24) { m_data += bytes{static_cast(0x40 + length)}; m_data += key; } else if (length <= 256) { m_data += bytes{0x58, static_cast(length)}; m_data += key; } else solAssert(false, "Byte std::string too large."); } void pushBool(bool value) { if (value) m_data += bytes{0xf5}; else m_data += bytes{0xf4}; } unsigned m_entryCount = 0; bytes m_data; }; bytes CompilerStack::createCBORMetadata(Contract const& _contract, bool _forIR) const { if (m_metadataFormat == MetadataFormat::NoMetadata) return bytes{}; bool const experimentalMode = !onlySafeExperimentalFeaturesActivated( _contract.contract->sourceUnit().annotation().experimentalFeatures ); std::string meta = (_forIR == m_viaIR ? metadata(_contract) : createMetadata(_contract, _forIR)); MetadataCBOREncoder encoder; if (m_metadataHash == MetadataHash::IPFS) encoder.pushBytes("ipfs", util::ipfsHash(meta)); else if (m_metadataHash == MetadataHash::Bzzr1) encoder.pushBytes("bzzr1", util::bzzr1Hash(meta).asBytes()); else solAssert(m_metadataHash == MetadataHash::None, "Invalid metadata hash"); if (experimentalMode || m_eofVersion.has_value()) encoder.pushBool("experimental", true); if (m_metadataFormat == MetadataFormat::WithReleaseVersionTag) encoder.pushBytes("solc", VersionCompactBytes); else { solAssert( m_metadataFormat == MetadataFormat::WithPrereleaseVersionTag, "Invalid metadata format." ); encoder.pushString("solc", VersionStringStrict); } return encoder.serialise(); } namespace { Json::Value gasToJson(GasEstimator::GasConsumption const& _gas) { if (_gas.isInfinite) return Json::Value("infinite"); else return Json::Value(util::toString(_gas.value)); } } Json::Value CompilerStack::gasEstimates(std::string const& _contractName) const { if (m_stackState != CompilationSuccessful) solThrow(CompilerError, "Compilation was not successful."); if (!assemblyItems(_contractName) && !runtimeAssemblyItems(_contractName)) return Json::Value(); using Gas = GasEstimator::GasConsumption; GasEstimator gasEstimator(m_evmVersion); Json::Value output(Json::objectValue); if (evmasm::AssemblyItems const* items = assemblyItems(_contractName)) { Gas executionGas = gasEstimator.functionalEstimation(*items); Gas codeDepositGas{evmasm::GasMeter::dataGas(runtimeObject(_contractName).bytecode, false, m_evmVersion)}; Json::Value creation(Json::objectValue); creation["codeDepositCost"] = gasToJson(codeDepositGas); creation["executionCost"] = gasToJson(executionGas); /// TODO: implement + overload to avoid the need of += executionGas += codeDepositGas; creation["totalCost"] = gasToJson(executionGas); output["creation"] = creation; } if (evmasm::AssemblyItems const* items = runtimeAssemblyItems(_contractName)) { /// External functions ContractDefinition const& contract = contractDefinition(_contractName); Json::Value externalFunctions(Json::objectValue); for (auto it: contract.interfaceFunctions()) { std::string sig = it.second->externalSignature(); externalFunctions[sig] = gasToJson(gasEstimator.functionalEstimation(*items, sig)); } if (contract.fallbackFunction()) /// This needs to be set to an invalid signature in order to trigger the fallback, /// without the shortcut (of CALLDATSIZE == 0), and therefore to receive the upper bound. /// An empty string ("") would work to trigger the shortcut only. externalFunctions[""] = gasToJson(gasEstimator.functionalEstimation(*items, "INVALID")); if (!externalFunctions.empty()) output["external"] = externalFunctions; /// Internal functions Json::Value internalFunctions(Json::objectValue); for (auto const& it: contract.definedFunctions()) { /// Exclude externally visible functions, constructor, fallback and receive ether function if (it->isPartOfExternalInterface() || !it->isOrdinary()) continue; size_t entry = functionEntryPoint(_contractName, *it); GasEstimator::GasConsumption gas = GasEstimator::GasConsumption::infinite(); if (entry > 0) gas = gasEstimator.functionalEstimation(*items, entry, *it); /// TODO: This could move into a method shared with externalSignature() FunctionType type(*it); std::string sig = it->name() + "("; auto paramTypes = type.parameterTypes(); for (auto it = paramTypes.begin(); it != paramTypes.end(); ++it) sig += (*it)->toString() + (it + 1 == paramTypes.end() ? "" : ","); sig += ")"; internalFunctions[sig] = gasToJson(gas); } if (!internalFunctions.empty()) output["internal"] = internalFunctions; } return output; }