/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** @file crypto.cpp * @author Gav Wood * @date 2014 * Crypto test functions. */ #include #include #include #include #include #include #include #include "TestHelperCrypto.h" using namespace std; using namespace dev; namespace dev { namespace crypto { inline CryptoPP::AutoSeededRandomPool& PRNG() { static CryptoPP::AutoSeededRandomPool prng; return prng; } } } using namespace CryptoPP; BOOST_AUTO_TEST_SUITE(crypto) BOOST_AUTO_TEST_CASE(cryptopp_ecies_message) { cnote << "Testing cryptopp_ecies_message..."; string const message("Now is the time for all good men to come to the aide of humanity."); AutoSeededRandomPool prng; ECIES::Decryptor localDecryptor(prng, ASN1::secp256r1()); SavePrivateKey(localDecryptor.GetPrivateKey()); ECIES::Encryptor localEncryptor(localDecryptor); SavePublicKey(localEncryptor.GetPublicKey()); ECIES::Decryptor futureDecryptor; LoadPrivateKey(futureDecryptor.AccessPrivateKey()); futureDecryptor.GetPrivateKey().ThrowIfInvalid(prng, 3); ECIES::Encryptor futureEncryptor; LoadPublicKey(futureEncryptor.AccessPublicKey()); futureEncryptor.GetPublicKey().ThrowIfInvalid(prng, 3); // encrypt/decrypt with local string cipherLocal; StringSource ss1 (message, true, new PK_EncryptorFilter(prng, localEncryptor, new StringSink(cipherLocal) ) ); string plainLocal; StringSource ss2 (cipherLocal, true, new PK_DecryptorFilter(prng, localDecryptor, new StringSink(plainLocal) ) ); // encrypt/decrypt with future string cipherFuture; StringSource ss3 (message, true, new PK_EncryptorFilter(prng, futureEncryptor, new StringSink(cipherFuture) ) ); string plainFuture; StringSource ss4 (cipherFuture, true, new PK_DecryptorFilter(prng, futureDecryptor, new StringSink(plainFuture) ) ); // decrypt local w/future string plainFutureFromLocal; StringSource ss5 (cipherLocal, true, new PK_DecryptorFilter(prng, futureDecryptor, new StringSink(plainFutureFromLocal) ) ); // decrypt future w/local string plainLocalFromFuture; StringSource ss6 (cipherFuture, true, new PK_DecryptorFilter(prng, localDecryptor, new StringSink(plainLocalFromFuture) ) ); assert(plainLocal == message); assert(plainFuture == plainLocal); assert(plainFutureFromLocal == plainLocal); assert(plainLocalFromFuture == plainLocal); } BOOST_AUTO_TEST_CASE(cryptopp_ecdh_prime) { cnote << "Testing cryptopp_ecdh_prime..."; using namespace CryptoPP; OID curve = ASN1::secp256r1(); ECDH::Domain dhLocal(curve); SecByteBlock privLocal(dhLocal.PrivateKeyLength()); SecByteBlock pubLocal(dhLocal.PublicKeyLength()); dhLocal.GenerateKeyPair(dev::crypto::PRNG(), privLocal, pubLocal); ECDH::Domain dhRemote(curve); SecByteBlock privRemote(dhRemote.PrivateKeyLength()); SecByteBlock pubRemote(dhRemote.PublicKeyLength()); dhRemote.GenerateKeyPair(dev::crypto::PRNG(), privRemote, pubRemote); assert(dhLocal.AgreedValueLength() == dhRemote.AgreedValueLength()); // local: send public to remote; remote: send public to local // Local SecByteBlock sharedLocal(dhLocal.AgreedValueLength()); assert(dhLocal.Agree(sharedLocal, privLocal, pubRemote)); // Remote SecByteBlock sharedRemote(dhRemote.AgreedValueLength()); assert(dhRemote.Agree(sharedRemote, privRemote, pubLocal)); // Test Integer ssLocal, ssRemote; ssLocal.Decode(sharedLocal.BytePtr(), sharedLocal.SizeInBytes()); ssRemote.Decode(sharedRemote.BytePtr(), sharedRemote.SizeInBytes()); assert(ssLocal != 0); assert(ssLocal == ssRemote); } BOOST_AUTO_TEST_CASE(cryptopp_ecdh_aes128_cbc_noauth) { // ECDH gives 256-bit shared while aes uses 128-bits // Use first 128-bits of shared secret as symmetric key // IV is 0 // New connections require new ECDH keypairs } BOOST_AUTO_TEST_CASE(cryptopp_eth_fbba) { // Initial Authentication: // // New/Known Peer: // pubkeyL = knownR? ? myKnown : myECDH // pubkeyR = knownR? ? theirKnown : theirECDH // // Initial message = hmac(k=sha3(shared-secret[128..255]), address(pubkeyL)) || ECIES encrypt(pubkeyR, pubkeyL) // // Key Exchange (this could occur after handshake messages): // If peers do not know each other they will need to exchange public keys. // // Drop ECDH (this could occur after handshake messages): // After authentication and/or key exchange, both sides generate shared key // from their 'known' keys and use this to encrypt all future messages. // // v2: If one side doesn't trust the other then a single-use key maybe sent. // This will need to be tracked for future connections; when non-trusting peer // wants to trust the other, it can request that it's old, 'new', public key be // accepted. And, if the peer *really* doesn't trust the other side, it can request // that a new, 'new', public key be accepted. // // Handshake (all or nothing, padded): // All Peers (except blacklisted): // // // New Peer: // // // Known Untrusted Peer: // // // Known Trusted Peer: // // // Blacklisted Peeer: // Already dropped by now. // // // MAC: // ... } BOOST_AUTO_TEST_CASE(eth_keypairs) { cnote << "Testing Crypto..."; secp256k1_start(); KeyPair p(Secret(fromHex("3ecb44df2159c26e0f995712d4f39b6f6e499b40749b1cf1246c37f9516cb6a4"))); BOOST_REQUIRE(p.pub() == Public(fromHex("97466f2b32bc3bb76d4741ae51cd1d8578b48d3f1e68da206d47321aec267ce78549b514e4453d74ef11b0cd5e4e4c364effddac8b51bcfc8de80682f952896f"))); BOOST_REQUIRE(p.address() == Address(fromHex("8a40bfaa73256b60764c1bf40675a99083efb075"))); { eth::Transaction t; t.nonce = 0; t.receiveAddress = h160(fromHex("944400f4b88ac9589a0f17ed4671da26bddb668b")); t.value = 1000; auto rlp = t.rlp(false); cnote << RLP(rlp); cnote << toHex(rlp); cnote << t.sha3(false); t.sign(p.secret()); rlp = t.rlp(true); cnote << RLP(rlp); cnote << toHex(rlp); cnote << t.sha3(true); BOOST_REQUIRE(t.sender() == p.address()); } } int cryptoTest() { cnote << "Testing Crypto..."; secp256k1_start(); KeyPair p(Secret(fromHex("3ecb44df2159c26e0f995712d4f39b6f6e499b40749b1cf1246c37f9516cb6a4"))); assert(p.pub() == Public(fromHex("97466f2b32bc3bb76d4741ae51cd1d8578b48d3f1e68da206d47321aec267ce78549b514e4453d74ef11b0cd5e4e4c364effddac8b51bcfc8de80682f952896f"))); assert(p.address() == Address(fromHex("8a40bfaa73256b60764c1bf40675a99083efb075"))); { eth::Transaction t; t.nonce = 0; t.receiveAddress = h160(fromHex("944400f4b88ac9589a0f17ed4671da26bddb668b")); t.value = 1000; auto rlp = t.rlp(false); cnote << RLP(rlp); cnote << toHex(rlp); cnote << t.sha3(false); t.sign(p.secret()); rlp = t.rlp(true); cnote << RLP(rlp); cnote << toHex(rlp); cnote << t.sha3(true); assert(t.sender() == p.address()); } #if 0 // Test transaction. bytes tx = fromHex("88005401010101010101010101010101010101010101011f0de0b6b3a76400001ce8d4a5100080181c373130a009ba1f10285d4e659568bfcfec85067855c5a3c150100815dad4ef98fd37cf0593828c89db94bd6c64e210a32ef8956eaa81ea9307194996a3b879441f5d"); cout << "TX: " << RLP(tx) << endl; Transaction t2(tx); cout << "SENDER: " << hex << t2.sender() << dec << endl; secp256k1_start(); Transaction t; t.nonce = 0; t.value = 1; // 1 wei. t.receiveAddress = toAddress(sha3("123")); bytes sig64 = toBigEndian(t.vrs.r) + toBigEndian(t.vrs.s); cout << "SIG: " << sig64.size() << " " << toHex(sig64) << " " << t.vrs.v << endl; auto msg = t.rlp(false); cout << "TX w/o SIG: " << RLP(msg) << endl; cout << "RLP(TX w/o SIG): " << toHex(t.rlpString(false)) << endl; std::string hmsg = sha3(t.rlpString(false), false); cout << "SHA256(RLP(TX w/o SIG)): 0x" << toHex(hmsg) << endl; bytes privkey = sha3Bytes("123"); { bytes pubkey(65); int pubkeylen = 65; int ret = secp256k1_ecdsa_seckey_verify(privkey.data()); cout << "SEC: " << dec << ret << " " << toHex(privkey) << endl; ret = secp256k1_ecdsa_pubkey_create(pubkey.data(), &pubkeylen, privkey.data(), 1); pubkey.resize(pubkeylen); int good = secp256k1_ecdsa_pubkey_verify(pubkey.data(), (int)pubkey.size()); cout << "PUB: " << dec << ret << " " << pubkeylen << " " << toHex(pubkey) << (good ? " GOOD" : " BAD") << endl; } // Test roundtrip... { bytes sig(64); u256 nonce = 0; int v = 0; cout << toHex(hmsg) << endl; cout << toHex(privkey) << endl; cout << hex << nonce << dec << endl; int ret = secp256k1_ecdsa_sign_compact((byte const*)hmsg.data(), (int)hmsg.size(), sig.data(), privkey.data(), (byte const*)&nonce, &v); cout << "MYSIG: " << dec << ret << " " << sig.size() << " " << toHex(sig) << " " << v << endl; bytes pubkey(65); int pubkeylen = 65; ret = secp256k1_ecdsa_recover_compact((byte const*)hmsg.data(), (int)hmsg.size(), (byte const*)sig.data(), pubkey.data(), &pubkeylen, 0, v); pubkey.resize(pubkeylen); cout << "MYREC: " << dec << ret << " " << pubkeylen << " " << toHex(pubkey) << endl; } { bytes pubkey(65); int pubkeylen = 65; int ret = secp256k1_ecdsa_recover_compact((byte const*)hmsg.data(), (int)hmsg.size(), (byte const*)sig64.data(), pubkey.data(), &pubkeylen, 0, (int)t.vrs.v - 27); pubkey.resize(pubkeylen); cout << "RECPUB: " << dec << ret << " " << pubkeylen << " " << toHex(pubkey) << endl; cout << "SENDER: " << hex << toAddress(dev::sha3(bytesConstRef(&pubkey).cropped(1))) << dec << endl; } #endif return 0; } BOOST_AUTO_TEST_SUITE_END()