/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ /** @file CodeFragment.cpp * @author Gav Wood * @date 2014 */ #include "CodeFragment.h" #include #pragma warning(push) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #include #pragma warning(pop) #pragma GCC diagnostic pop #include #include #include "CompilerState.h" #include "Parser.h" using namespace std; using namespace dev; using namespace dev::eth; void CodeFragment::finalise(CompilerState const& _cs) { if (_cs.usedAlloc && _cs.vars.size() && !m_finalised) { m_finalised = true; m_asm.injectStart(Instruction::MSTORE8); m_asm.injectStart((u256)((_cs.vars.size() + 2) * 32) - 1); m_asm.injectStart((u256)1); } } CodeFragment::CodeFragment(sp::utree const& _t, CompilerState& _s, bool _allowASM) { /* std::cout << "CodeFragment. Locals:"; for (auto const& i: _s.defs) std::cout << i.first << ":" << i.second.m_asm.out(); std::cout << "Args:"; for (auto const& i: _s.args) std::cout << i.first << ":" << i.second.m_asm.out(); std::cout << "Outers:"; for (auto const& i: _s.outers) std::cout << i.first << ":" << i.second.m_asm.out(); debugOutAST(std::cout, _t); std::cout << endl << flush; */ switch (_t.which()) { case sp::utree_type::list_type: constructOperation(_t, _s); break; case sp::utree_type::string_type: { auto sr = _t.get, sp::utree_type::string_type>>(); string s(sr.begin(), sr.end()); m_asm.append(s); break; } case sp::utree_type::symbol_type: { auto sr = _t.get, sp::utree_type::symbol_type>>(); string s(sr.begin(), sr.end()); string us = boost::algorithm::to_upper_copy(s); if (_allowASM && c_instructions.count(us)) m_asm.append(c_instructions.at(us)); else if (_s.defs.count(s)) m_asm.append(_s.defs.at(s).m_asm); else if (_s.args.count(s)) m_asm.append(_s.args.at(s).m_asm); else if (_s.outers.count(s)) m_asm.append(_s.outers.at(s).m_asm); else if (us.find_first_of("1234567890") != 0 && us.find_first_not_of("QWERTYUIOPASDFGHJKLZXCVBNM1234567890_-") == string::npos) { auto it = _s.vars.find(s); if (it == _s.vars.end()) error(std::string("Symbol not found: ") + s); m_asm.append((u256)it->second.first); } else error(s); break; } case sp::utree_type::any_type: { bigint i = *_t.get(); if (i < 0 || i > bigint(u256(0) - 1)) error(toString(i)); m_asm.append((u256)i); break; } default: error("Unexpected fragment type"); break; } } namespace { /// Returns true iff the instruction is valid as a function. bool validFunctionalInstruction(string us) { auto it = c_instructions.find(us); return !( it == c_instructions.end() || solidity::isPushInstruction(it->second) || solidity::isDupInstruction(it->second) || solidity::isSwapInstruction(it->second) || it->second == solidity::Instruction::JUMPDEST ); } } void CodeFragment::constructOperation(sp::utree const& _t, CompilerState& _s) { if (_t.tag() == 0 && _t.empty()) error(); else if (_t.tag() == 0 && _t.front().which() != sp::utree_type::symbol_type) error(); else { string s; string us; switch (_t.tag()) { case 0: { auto sr = _t.front().get, sp::utree_type::symbol_type>>(); s = string(sr.begin(), sr.end()); us = boost::algorithm::to_upper_copy(s); break; } case 1: us = "MLOAD"; break; case 2: us = "SLOAD"; break; case 3: us = "MSTORE"; break; case 4: us = "SSTORE"; break; case 5: us = "SEQ"; break; case 6: us = "CALLDATALOAD"; break; default:; } auto firstAsString = [&]() { auto i = *++_t.begin(); if (i.tag()) error(toString(i)); if (i.which() == sp::utree_type::string_type) { auto sr = i.get, sp::utree_type::string_type>>(); return string(sr.begin(), sr.end()); } else if (i.which() == sp::utree_type::symbol_type) { auto sr = i.get, sp::utree_type::symbol_type>>(); return _s.getDef(string(sr.begin(), sr.end())).m_asm.backString(); } return string(); }; auto varAddress = [&](string const& n, bool createMissing = false) { if (n.empty()) error("Empty variable name not allowed"); auto it = _s.vars.find(n); if (it == _s.vars.end()) { if (createMissing) { // Create new variable bool ok; tie(it, ok) = _s.vars.insert(make_pair(n, make_pair(_s.stackSize, 32))); _s.stackSize += 32; } else error(std::string("Symbol not found: ") + n); } return it->second.first; }; // Operations who args are not standard stack-pushers. bool nonStandard = true; if (us == "ASM") { int c = 0; for (auto const& i: _t) if (c++) m_asm.append(CodeFragment(i, _s, true).m_asm); } else if (us == "INCLUDE") { if (_t.size() != 2) error(us); string fileName = firstAsString(); if (fileName.empty()) error("Empty file name provided"); string contents = contentsString(fileName); if (contents.empty()) error(std::string("File not found (or empty): ") + fileName); m_asm.append(CodeFragment::compile(contents, _s).m_asm); } else if (us == "SET") { if (_t.size() != 3) error(us); int c = 0; for (auto const& i: _t) if (c++ == 2) m_asm.append(CodeFragment(i, _s, false).m_asm); m_asm.append((u256)varAddress(firstAsString(), true)); m_asm.append(Instruction::MSTORE); } else if (us == "GET") { if (_t.size() != 2) error(us); m_asm.append((u256)varAddress(firstAsString())); m_asm.append(Instruction::MLOAD); } else if (us == "REF") m_asm.append((u256)varAddress(firstAsString())); else if (us == "DEF") { string n; unsigned ii = 0; if (_t.size() != 3 && _t.size() != 4) error(us); vector args; for (auto const& i: _t) { if (ii == 1) { if (i.tag()) error(toString(i)); if (i.which() == sp::utree_type::string_type) { auto sr = i.get, sp::utree_type::string_type>>(); n = string(sr.begin(), sr.end()); } else if (i.which() == sp::utree_type::symbol_type) { auto sr = i.get, sp::utree_type::symbol_type>>(); n = _s.getDef(string(sr.begin(), sr.end())).m_asm.backString(); } } else if (ii == 2) if (_t.size() == 3) { /// NOTE: some compilers could do the assignment first if this is done in a single line CodeFragment code = CodeFragment(i, _s); _s.defs[n] = code; } else for (auto const& j: i) { if (j.tag() || j.which() != sp::utree_type::symbol_type) error(); auto sr = j.get, sp::utree_type::symbol_type>>(); args.push_back(string(sr.begin(), sr.end())); } else if (ii == 3) { auto k = make_pair(n, args.size()); _s.macros[k].code = i; _s.macros[k].env = _s.outers; _s.macros[k].args = args; for (auto const& i: _s.args) _s.macros[k].env[i.first] = i.second; for (auto const& i: _s.defs) _s.macros[k].env[i.first] = i.second; } ++ii; } } else if (us == "LIT") { if (_t.size() < 3) error(us); unsigned ii = 0; CodeFragment pos; bytes data; for (auto const& i: _t) { if (ii == 0) { ii++; continue; } else if (ii == 1) { pos = CodeFragment(i, _s); if (pos.m_asm.deposit() != 1) error(toString(i)); } else if (i.tag() != 0) { error(toString(i)); } else if (i.which() == sp::utree_type::string_type) { auto sr = i.get, sp::utree_type::string_type>>(); data.insert(data.end(), (byte const *)sr.begin(), (byte const*)sr.end()); } else if (i.which() == sp::utree_type::any_type) { bigint bi = *i.get(); if (bi < 0) error(toString(i)); else { bytes tmp = toCompactBigEndian(bi); data.insert(data.end(), tmp.begin(), tmp.end()); } } else { error(toString(i)); } ii++; } m_asm.append((u256)data.size()); m_asm.append(Instruction::DUP1); m_asm.append(data); m_asm.append(pos.m_asm, 1); m_asm.append(Instruction::CODECOPY); } else nonStandard = false; if (nonStandard) return; std::map const c_arith = { { "+", Instruction::ADD }, { "-", Instruction::SUB }, { "*", Instruction::MUL }, { "/", Instruction::DIV }, { "%", Instruction::MOD }, { "&", Instruction::AND }, { "|", Instruction::OR }, { "^", Instruction::XOR } }; std::map> const c_binary = { { "<", { Instruction::LT, false } }, { "<=", { Instruction::GT, true } }, { ">", { Instruction::GT, false } }, { ">=", { Instruction::LT, true } }, { "S<", { Instruction::SLT, false } }, { "S<=", { Instruction::SGT, true } }, { "S>", { Instruction::SGT, false } }, { "S>=", { Instruction::SLT, true } }, { "=", { Instruction::EQ, false } }, { "!=", { Instruction::EQ, true } } }; std::map const c_unary = { { "!", Instruction::ISZERO }, { "~", Instruction::NOT } }; vector code; CompilerState ns = _s; ns.vars.clear(); ns.usedAlloc = false; int c = _t.tag() ? 1 : 0; for (auto const& i: _t) if (c++) { if (us == "LLL" && c == 1) code.push_back(CodeFragment(i, ns)); else code.push_back(CodeFragment(i, _s)); } auto requireSize = [&](unsigned s) { if (code.size() != s) error(us); }; auto requireMinSize = [&](unsigned s) { if (code.size() < s) error(us); }; auto requireMaxSize = [&](unsigned s) { if (code.size() > s) error(us); }; auto requireDeposit = [&](unsigned i, int s) { if (code[i].m_asm.deposit() != s) error(us); }; if (_s.macros.count(make_pair(s, code.size()))) { Macro const& m = _s.macros.at(make_pair(s, code.size())); CompilerState cs = _s; for (auto const& i: m.env) cs.outers[i.first] = i.second; for (auto const& i: cs.defs) cs.outers[i.first] = i.second; cs.defs.clear(); for (unsigned i = 0; i < m.args.size(); ++i) { //requireDeposit(i, 1); cs.args[m.args[i]] = code[i]; } m_asm.append(CodeFragment(m.code, cs).m_asm); for (auto const& i: cs.defs) _s.defs[i.first] = i.second; for (auto const& i: cs.macros) _s.macros.insert(i); } else if (c_instructions.count(us) && validFunctionalInstruction(us)) { auto it = c_instructions.find(us); requireSize(instructionInfo(it->second).args); for (unsigned i = code.size(); i; --i) m_asm.append(code[i - 1].m_asm, 1); m_asm.append(it->second); } else if (c_arith.count(us)) { auto it = c_arith.find(us); requireMinSize(1); for (unsigned i = code.size(); i; --i) { requireDeposit(i - 1, 1); m_asm.append(code[i - 1].m_asm, 1); } for (unsigned i = 1; i < code.size(); ++i) m_asm.append(it->second); } else if (c_binary.count(us)) { auto it = c_binary.find(us); requireSize(2); requireDeposit(0, 1); requireDeposit(1, 1); m_asm.append(code[1].m_asm, 1); m_asm.append(code[0].m_asm, 1); m_asm.append(it->second.first); if (it->second.second) m_asm.append(Instruction::ISZERO); } else if (c_unary.count(us)) { auto it = c_unary.find(us); requireSize(1); requireDeposit(0, 1); m_asm.append(code[0].m_asm, 1); m_asm.append(it->second); } else if (us == "IF") { requireSize(3); requireDeposit(0, 1); int minDep = min(code[1].m_asm.deposit(), code[2].m_asm.deposit()); m_asm.append(code[0].m_asm); auto mainBranch = m_asm.appendJumpI(); /// The else branch. int startDeposit = m_asm.deposit(); m_asm.append(code[2].m_asm, minDep); auto end = m_asm.appendJump(); int deposit = m_asm.deposit(); m_asm.setDeposit(startDeposit); /// The main branch. m_asm << mainBranch.tag(); m_asm.append(code[1].m_asm, minDep); m_asm << end.tag(); if (m_asm.deposit() != deposit) error(us); } else if (us == "WHEN" || us == "UNLESS") { requireSize(2); requireDeposit(0, 1); m_asm.append(code[0].m_asm); if (us == "WHEN") m_asm.append(Instruction::ISZERO); auto end = m_asm.appendJumpI(); m_asm.append(code[1].m_asm, 0); m_asm << end.tag(); } else if (us == "WHILE" || us == "UNTIL") { requireSize(2); requireDeposit(0, 1); auto begin = m_asm.append(m_asm.newTag()); m_asm.append(code[0].m_asm); if (us == "WHILE") m_asm.append(Instruction::ISZERO); auto end = m_asm.appendJumpI(); m_asm.append(code[1].m_asm, 0); m_asm.appendJump(begin); m_asm << end.tag(); } else if (us == "FOR") { requireSize(4); requireDeposit(1, 1); m_asm.append(code[0].m_asm, 0); auto begin = m_asm.append(m_asm.newTag()); m_asm.append(code[1].m_asm); m_asm.append(Instruction::ISZERO); auto end = m_asm.appendJumpI(); m_asm.append(code[3].m_asm, 0); m_asm.append(code[2].m_asm, 0); m_asm.appendJump(begin); m_asm << end.tag(); } else if (us == "SWITCH") { requireMinSize(1); bool hasDefault = (code.size() % 2 == 1); int startDeposit = m_asm.deposit(); int targetDeposit = hasDefault ? code[code.size() - 1].m_asm.deposit() : 0; // The conditions AssemblyItems jumpTags; for (unsigned i = 0; i < code.size() - 1; i += 2) { requireDeposit(i, 1); m_asm.append(code[i].m_asm); jumpTags.push_back(m_asm.appendJumpI()); } // The default, if present if (hasDefault) m_asm.append(code[code.size() - 1].m_asm); // The targets - appending in reverse makes the top case the most efficient. if (code.size() > 1) { auto end = m_asm.appendJump(); for (int i = 2 * (code.size() / 2 - 1); i >= 0; i -= 2) { m_asm << jumpTags[i / 2].tag(); requireDeposit(i + 1, targetDeposit); m_asm.append(code[i + 1].m_asm); if (i != 0) m_asm.appendJump(end); } m_asm << end.tag(); } m_asm.setDeposit(startDeposit + targetDeposit); } else if (us == "ALLOC") { requireSize(1); requireDeposit(0, 1); // (alloc N): // - Evaluates to (msize) before the allocation - the start of the allocated memory // - Does not allocate memory when N is zero // - Size of memory allocated is N bytes rounded up to a multiple of 32 // - Uses MLOAD to expand MSIZE to avoid modifying memory. auto end = m_asm.newTag(); m_asm.append(Instruction::MSIZE); // Result will be original top of memory m_asm.append(code[0].m_asm, 1); // The alloc argument N m_asm.append(Instruction::DUP1); m_asm.append(Instruction::ISZERO);// (alloc 0) does not change MSIZE m_asm.appendJumpI(end); m_asm.append(u256(1)); m_asm.append(Instruction::DUP2); // Copy N m_asm.append(Instruction::SUB); // N-1 m_asm.append(u256(0x1f)); // Bit mask m_asm.append(Instruction::NOT); // Invert m_asm.append(Instruction::AND); // Align N-1 on 32 byte boundary m_asm.append(Instruction::MSIZE); // MSIZE is cheap m_asm.append(Instruction::ADD); m_asm.append(Instruction::MLOAD); // Updates MSIZE m_asm.append(Instruction::POP); // Discard the result of the MLOAD m_asm.append(end); m_asm.append(Instruction::POP); // Discard duplicate N _s.usedAlloc = true; } else if (us == "LLL") { requireMinSize(2); requireMaxSize(3); requireDeposit(1, 1); auto subPush = m_asm.appendSubroutine(make_shared(code[0].assembly(ns))); m_asm.append(Instruction::DUP1); if (code.size() == 3) { requireDeposit(2, 1); m_asm.append(code[2].m_asm, 1); m_asm.append(Instruction::LT); m_asm.append(Instruction::ISZERO); m_asm.append(Instruction::MUL); m_asm.append(Instruction::DUP1); } m_asm.append(subPush); m_asm.append(code[1].m_asm, 1); m_asm.append(Instruction::CODECOPY); } else if (us == "&&" || us == "||") { requireMinSize(1); for (unsigned i = 0; i < code.size(); ++i) requireDeposit(i, 1); auto end = m_asm.newTag(); if (code.size() > 1) { m_asm.append((u256)(us == "||" ? 1 : 0)); for (unsigned i = 1; i < code.size(); ++i) { // Check if true - predicate m_asm.append(code[i - 1].m_asm, 1); if (us == "&&") m_asm.append(Instruction::ISZERO); m_asm.appendJumpI(end); } m_asm.append(Instruction::POP); } // Check if true - predicate m_asm.append(code.back().m_asm, 1); // At end now. m_asm.append(end); } else if (us == "SEQ") { unsigned ii = 0; for (auto const& i: code) if (++ii < code.size()) m_asm.append(i.m_asm, 0); else m_asm.append(i.m_asm); } else if (us == "RAW") { for (auto const& i: code) m_asm.append(i.m_asm); // Leave only the last item on stack. while (m_asm.deposit() > 1) m_asm.append(Instruction::POP); } else if (us == "BYTECODESIZE") { m_asm.appendProgramSize(); } else if (us.find_first_of("1234567890") != 0 && us.find_first_not_of("QWERTYUIOPASDFGHJKLZXCVBNM1234567890_-") == string::npos) m_asm.append((u256)varAddress(s)); else error("Unsupported keyword: '" + us + "'"); } } CodeFragment CodeFragment::compile(string const& _src, CompilerState& _s) { CodeFragment ret; sp::utree o; parseTreeLLL(_src, o); if (!o.empty()) ret = CodeFragment(o, _s); _s.treesToKill.push_back(o); return ret; }