/* This file is part of solidity. solidity is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. solidity is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with solidity. If not, see . */ #include #include #include #include #include #include #include #include using namespace std; using namespace solidity; using namespace solidity::langutil; using namespace solidity::util; using namespace solidity::phaser; namespace solidity::phaser { ostream& operator<<(ostream& _stream, Individual const& _individual); ostream& operator<<(ostream& _stream, Population const& _population); } ostream& phaser::operator<<(ostream& _stream, Individual const& _individual) { _stream << _individual.fitness << " " << _individual.chromosome; return _stream; } bool phaser::isFitter(Individual const& a, Individual const& b) { return ( (a.fitness < b.fitness) || (a.fitness == b.fitness && a.chromosome.length() < b.chromosome.length()) || (a.fitness == b.fitness && a.chromosome.length() == b.chromosome.length() && toString(a.chromosome) < toString(b.chromosome)) ); } Population Population::makeRandom( shared_ptr _fitnessMetric, size_t _size, function _chromosomeLengthGenerator ) { vector chromosomes; for (size_t i = 0; i < _size; ++i) chromosomes.push_back(Chromosome::makeRandom(_chromosomeLengthGenerator())); return Population(move(_fitnessMetric), move(chromosomes)); } Population Population::makeRandom( shared_ptr _fitnessMetric, size_t _size, size_t _minChromosomeLength, size_t _maxChromosomeLength ) { return makeRandom( move(_fitnessMetric), _size, std::bind(uniformChromosomeLength, _minChromosomeLength, _maxChromosomeLength) ); } Population Population::select(Selection const& _selection) const { vector selectedIndividuals; for (size_t i: _selection.materialise(m_individuals.size())) selectedIndividuals.emplace_back(m_individuals[i]); return Population(m_fitnessMetric, selectedIndividuals); } Population Population::mutate(Selection const& _selection, function _mutation) const { vector mutatedIndividuals; for (size_t i: _selection.materialise(m_individuals.size())) mutatedIndividuals.emplace_back(_mutation(m_individuals[i].chromosome), *m_fitnessMetric); return Population(m_fitnessMetric, mutatedIndividuals); } Population Population::crossover(PairSelection const& _selection, function _crossover) const { vector crossedIndividuals; for (auto const& [i, j]: _selection.materialise(m_individuals.size())) { auto childChromosome = _crossover( m_individuals[i].chromosome, m_individuals[j].chromosome ); crossedIndividuals.emplace_back(move(childChromosome), *m_fitnessMetric); } return Population(m_fitnessMetric, crossedIndividuals); } tuple Population::symmetricCrossoverWithRemainder( PairSelection const& _selection, function _symmetricCrossover ) const { vector indexSelected(m_individuals.size(), false); vector crossedIndividuals; for (auto const& [i, j]: _selection.materialise(m_individuals.size())) { auto children = _symmetricCrossover( m_individuals[i].chromosome, m_individuals[j].chromosome ); crossedIndividuals.emplace_back(move(get<0>(children)), *m_fitnessMetric); crossedIndividuals.emplace_back(move(get<1>(children)), *m_fitnessMetric); indexSelected[i] = true; indexSelected[j] = true; } vector remainder; for (size_t i = 0; i < indexSelected.size(); ++i) if (!indexSelected[i]) remainder.emplace_back(m_individuals[i]); return { Population(m_fitnessMetric, crossedIndividuals), Population(m_fitnessMetric, remainder), }; } namespace solidity::phaser { Population operator+(Population _a, Population _b) { // This operator is meant to be used only with populations sharing the same metric (and, to make // things simple, "the same" here means the same exact object in memory). assert(_a.m_fitnessMetric == _b.m_fitnessMetric); using ::operator+; // Import the std::vector concat operator from CommonData.h return Population(_a.m_fitnessMetric, move(_a.m_individuals) + move(_b.m_individuals)); } } Population Population::combine(std::tuple _populationPair) { return get<0>(_populationPair) + get<1>(_populationPair); } bool Population::operator==(Population const& _other) const { // We consider populations identical only if they share the same exact instance of the metric. // It might be possible to define some notion of equality for metric objects but it would // be an overkill since mixing populations using different metrics is not a common use case. return m_individuals == _other.m_individuals && m_fitnessMetric == _other.m_fitnessMetric; } ostream& phaser::operator<<(ostream& _stream, Population const& _population) { auto individual = _population.m_individuals.begin(); for (; individual != _population.m_individuals.end(); ++individual) _stream << *individual << endl; return _stream; } vector Population::chromosomesToIndividuals( FitnessMetric& _fitnessMetric, vector _chromosomes ) { vector individuals; for (auto& chromosome: _chromosomes) individuals.emplace_back(move(chromosome), _fitnessMetric); return individuals; } vector Population::sortedIndividuals(vector _individuals) { sort(_individuals.begin(), _individuals.end(), isFitter); return _individuals; }