/*
	This file is part of solidity.
	solidity is free software: you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation, either version 3 of the License, or
	(at your option) any later version.
	solidity is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
	GNU General Public License for more details.
	You should have received a copy of the GNU General Public License
	along with solidity.  If not, see .
*/
/**
 * @author Christian 
 * @author Gav Wood 
 * @date 2014
 * Full-stack compiler that converts a source code string to bytecode.
 */
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;
using namespace dev;
using namespace dev::solidity;
CompilerStack::CompilerStack(ReadFileCallback const& _readFile):
	m_readFile(_readFile), m_parseSuccessful(false) {}
void CompilerStack::setRemappings(vector const& _remappings)
{
	vector remappings;
	for (auto const& remapping: _remappings)
	{
		auto eq = find(remapping.begin(), remapping.end(), '=');
		if (eq == remapping.end())
			continue; // ignore
		auto colon = find(remapping.begin(), eq, ':');
		Remapping r;
		r.context = colon == eq ? string() : string(remapping.begin(), colon);
		r.prefix = colon == eq ? string(remapping.begin(), eq) : string(colon + 1, eq);
		r.target = string(eq + 1, remapping.end());
		remappings.push_back(r);
	}
	swap(m_remappings, remappings);
}
void CompilerStack::reset(bool _keepSources)
{
	m_parseSuccessful = false;
	if (_keepSources)
		for (auto sourcePair: m_sources)
			sourcePair.second.reset();
	else
	{
		m_sources.clear();
	}
	m_optimize = false;
	m_optimizeRuns = 200;
	m_globalContext.reset();
	m_sourceOrder.clear();
	m_contracts.clear();
	m_errors.clear();
}
bool CompilerStack::addSource(string const& _name, string const& _content, bool _isLibrary)
{
	bool existed = m_sources.count(_name) != 0;
	reset(true);
	m_sources[_name].scanner = make_shared(CharStream(_content), _name);
	m_sources[_name].isLibrary = _isLibrary;
	return existed;
}
void CompilerStack::setSource(string const& _sourceCode)
{
	reset();
	addSource("", _sourceCode);
}
bool CompilerStack::parse()
{
	//reset
	m_errors.clear();
	ASTNode::resetID();
	m_parseSuccessful = false;
	if (SemVerVersion{string(VersionString)}.isPrerelease())
	{
		auto err = make_shared(Error::Type::Warning);
		*err << errinfo_comment("This is a pre-release compiler version, please do not use it in production.");
		m_errors.push_back(err);
	}
	vector sourcesToParse;
	for (auto const& s: m_sources)
		sourcesToParse.push_back(s.first);
	map sourceUnitsByName;
	for (size_t i = 0; i < sourcesToParse.size(); ++i)
	{
		string const& path = sourcesToParse[i];
		Source& source = m_sources[path];
		source.scanner->reset();
		source.ast = Parser(m_errors).parse(source.scanner);
		sourceUnitsByName[path] = source.ast.get();
		if (!source.ast)
			solAssert(!Error::containsOnlyWarnings(m_errors), "Parser returned null but did not report error.");
		else
		{
			source.ast->annotation().path = path;
			for (auto const& newSource: loadMissingSources(*source.ast, path))
			{
				string const& newPath = newSource.first;
				string const& newContents = newSource.second;
				m_sources[newPath].scanner = make_shared(CharStream(newContents), newPath);
				sourcesToParse.push_back(newPath);
			}
		}
	}
	if (!Error::containsOnlyWarnings(m_errors))
		// errors while parsing. should stop before type checking
		return false;
	resolveImports();
	bool noErrors = true;
	SyntaxChecker syntaxChecker(m_errors);
	for (Source const* source: m_sourceOrder)
		if (!syntaxChecker.checkSyntax(*source->ast))
			noErrors = false;
	DocStringAnalyser docStringAnalyser(m_errors);
	for (Source const* source: m_sourceOrder)
		if (!docStringAnalyser.analyseDocStrings(*source->ast))
			noErrors = false;
	m_globalContext = make_shared();
	NameAndTypeResolver resolver(m_globalContext->declarations(), m_errors);
	for (Source const* source: m_sourceOrder)
		if (!resolver.registerDeclarations(*source->ast))
			return false;
	for (Source const* source: m_sourceOrder)
		if (!resolver.performImports(*source->ast, sourceUnitsByName))
			return false;
	for (Source const* source: m_sourceOrder)
		for (ASTPointer const& node: source->ast->nodes())
			if (ContractDefinition* contract = dynamic_cast(node.get()))
			{
				m_globalContext->setCurrentContract(*contract);
				if (!resolver.updateDeclaration(*m_globalContext->currentThis())) return false;
				if (!resolver.updateDeclaration(*m_globalContext->currentSuper())) return false;
				if (!resolver.resolveNamesAndTypes(*contract)) return false;
				// Note that we now reference contracts by their fully qualified names, and
				// thus contracts can only conflict if declared in the same source file.  This
				// already causes a double-declaration error elsewhere, so we do not report
				// an error here and instead silently drop any additional contracts we find.
				if (m_contracts.find(contract->fullyQualifiedName()) == m_contracts.end())
					m_contracts[contract->fullyQualifiedName()].contract = contract;
			}
	for (Source const* source: m_sourceOrder)
		for (ASTPointer const& node: source->ast->nodes())
			if (ContractDefinition* contract = dynamic_cast(node.get()))
			{
				m_globalContext->setCurrentContract(*contract);
				resolver.updateDeclaration(*m_globalContext->currentThis());
				TypeChecker typeChecker(m_errors);
				if (typeChecker.checkTypeRequirements(*contract))
				{
					contract->setDevDocumentation(InterfaceHandler::devDocumentation(*contract));
					contract->setUserDocumentation(InterfaceHandler::userDocumentation(*contract));
				}
				else
					noErrors = false;
				// Note that we now reference contracts by their fully qualified names, and
				// thus contracts can only conflict if declared in the same source file.  This
				// already causes a double-declaration error elsewhere, so we do not report
				// an error here and instead silently drop any additional contracts we find.
				if (m_contracts.find(contract->fullyQualifiedName()) == m_contracts.end())
					m_contracts[contract->fullyQualifiedName()].contract = contract;
			}
	if (noErrors)
	{
		StaticAnalyzer staticAnalyzer(m_errors);
		for (Source const* source: m_sourceOrder)
			if (!staticAnalyzer.analyze(*source->ast))
				noErrors = false;
	}
	m_parseSuccessful = noErrors;
	return m_parseSuccessful;
}
bool CompilerStack::parse(string const& _sourceCode)
{
	setSource(_sourceCode);
	return parse();
}
vector CompilerStack::contractNames() const
{
	if (!m_parseSuccessful)
		BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Parsing was not successful."));
	vector contractNames;
	for (auto const& contract: m_contracts)
		contractNames.push_back(contract.first);
	return contractNames;
}
bool CompilerStack::compile(bool _optimize, unsigned _runs, map const& _libraries)
{
	if (!m_parseSuccessful)
		if (!parse())
			return false;
	m_optimize = _optimize;
	m_optimizeRuns = _runs;
	m_libraries = _libraries;
	map compiledContracts;
	for (Source const* source: m_sourceOrder)
		for (ASTPointer const& node: source->ast->nodes())
			if (auto contract = dynamic_cast(node.get()))
				compileContract(*contract, compiledContracts);
	this->link();
	return true;
}
bool CompilerStack::compile(string const& _sourceCode, bool _optimize, unsigned _runs)
{
	return parse(_sourceCode) && compile(_optimize, _runs);
}
void CompilerStack::link()
{
	for (auto& contract: m_contracts)
	{
		contract.second.object.link(m_libraries);
		contract.second.runtimeObject.link(m_libraries);
		contract.second.cloneObject.link(m_libraries);
	}
}
bool CompilerStack::prepareFormalAnalysis(ErrorList* _errors)
{
	if (!_errors)
		_errors = &m_errors;
	Why3Translator translator(*_errors);
	for (Source const* source: m_sourceOrder)
		if (!translator.process(*source->ast))
			return false;
	m_formalTranslation = translator.translation();
	return true;
}
eth::AssemblyItems const* CompilerStack::assemblyItems(string const& _contractName) const
{
	Contract const& currentContract = contract(_contractName);
	return currentContract.compiler ? &contract(_contractName).compiler->assemblyItems() : nullptr;
}
eth::AssemblyItems const* CompilerStack::runtimeAssemblyItems(string const& _contractName) const
{
	Contract const& currentContract = contract(_contractName);
	return currentContract.compiler ? &contract(_contractName).compiler->runtimeAssemblyItems() : nullptr;
}
string const* CompilerStack::sourceMapping(string const& _contractName) const
{
	Contract const& c = contract(_contractName);
	if (!c.sourceMapping)
	{
		if (auto items = assemblyItems(_contractName))
			c.sourceMapping.reset(new string(computeSourceMapping(*items)));
	}
	return c.sourceMapping.get();
}
string const* CompilerStack::runtimeSourceMapping(string const& _contractName) const
{
	Contract const& c = contract(_contractName);
	if (!c.runtimeSourceMapping)
	{
		if (auto items = runtimeAssemblyItems(_contractName))
			c.runtimeSourceMapping.reset(new string(computeSourceMapping(*items)));
	}
	return c.runtimeSourceMapping.get();
}
std::string const CompilerStack::filesystemFriendlyName(string const& _contractName) const
{
	// Look up the contract (by its fully-qualified name)
	Contract const& matchContract = m_contracts.at(_contractName);
	// Check to see if it could collide on name
	for (auto const& contract: m_contracts)
	{
		if (contract.second.contract->name() == matchContract.contract->name() &&
				contract.second.contract != matchContract.contract)
		{
			// If it does, then return its fully-qualified name, made fs-friendly
			std::string friendlyName = boost::algorithm::replace_all_copy(_contractName, "/", "_");
			boost::algorithm::replace_all(friendlyName, ":", "_");
			boost::algorithm::replace_all(friendlyName, ".", "_");
			return friendlyName;
		}
	}
	// If no collision, return the contract's name
	return matchContract.contract->name();
}
eth::LinkerObject const& CompilerStack::object(string const& _contractName) const
{
	return contract(_contractName).object;
}
eth::LinkerObject const& CompilerStack::runtimeObject(string const& _contractName) const
{
	return contract(_contractName).runtimeObject;
}
eth::LinkerObject const& CompilerStack::cloneObject(string const& _contractName) const
{
	return contract(_contractName).cloneObject;
}
dev::h256 CompilerStack::contractCodeHash(string const& _contractName) const
{
	auto const& obj = runtimeObject(_contractName);
	if (obj.bytecode.empty() || !obj.linkReferences.empty())
		return dev::h256();
	else
		return dev::keccak256(obj.bytecode);
}
Json::Value CompilerStack::streamAssembly(ostream& _outStream, string const& _contractName, StringMap _sourceCodes, bool _inJsonFormat) const
{
	Contract const& currentContract = contract(_contractName);
	if (currentContract.compiler)
		return currentContract.compiler->streamAssembly(_outStream, _sourceCodes, _inJsonFormat);
	else
	{
		_outStream << "Contract not fully implemented" << endl;
		return Json::Value();
	}
}
vector CompilerStack::sourceNames() const
{
	vector names;
	for (auto const& s: m_sources)
		names.push_back(s.first);
	return names;
}
map CompilerStack::sourceIndices() const
{
	map indices;
	for (auto const& s: m_sources)
		indices[s.first] = indices.size();
	return indices;
}
Json::Value const& CompilerStack::interface(string const& _contractName) const
{
	return metadata(_contractName, DocumentationType::ABIInterface);
}
Json::Value const& CompilerStack::metadata(string const& _contractName, DocumentationType _type) const
{
	if (!m_parseSuccessful)
		BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Parsing was not successful."));
	return metadata(contract(_contractName), _type);
}
Json::Value const& CompilerStack::metadata(Contract const& _contract, DocumentationType _type) const
{
	if (!m_parseSuccessful)
		BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Parsing was not successful."));
	solAssert(_contract.contract, "");
	std::unique_ptr* doc;
	// checks wheather we already have the documentation
	switch (_type)
	{
	case DocumentationType::NatspecUser:
		doc = &_contract.userDocumentation;
		break;
	case DocumentationType::NatspecDev:
		doc = &_contract.devDocumentation;
		break;
	case DocumentationType::ABIInterface:
		doc = &_contract.interface;
		break;
	default:
		BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Illegal documentation type."));
	}
	// caches the result
	if (!*doc)
		doc->reset(new Json::Value(InterfaceHandler::documentation(*_contract.contract, _type)));
	return *(*doc);
}
string const& CompilerStack::onChainMetadata(string const& _contractName) const
{
	if (!m_parseSuccessful)
		BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Parsing was not successful."));
	return contract(_contractName).onChainMetadata;
}
Scanner const& CompilerStack::scanner(string const& _sourceName) const
{
	return *source(_sourceName).scanner;
}
SourceUnit const& CompilerStack::ast(string const& _sourceName) const
{
	return *source(_sourceName).ast;
}
ContractDefinition const& CompilerStack::contractDefinition(string const& _contractName) const
{
	return *contract(_contractName).contract;
}
size_t CompilerStack::functionEntryPoint(
	std::string const& _contractName,
	FunctionDefinition const& _function
) const
{
	shared_ptr const& compiler = contract(_contractName).compiler;
	if (!compiler)
		return 0;
	eth::AssemblyItem tag = compiler->functionEntryLabel(_function);
	if (tag.type() == eth::UndefinedItem)
		return 0;
	eth::AssemblyItems const& items = compiler->runtimeAssemblyItems();
	for (size_t i = 0; i < items.size(); ++i)
		if (items.at(i).type() == eth::Tag && items.at(i).data() == tag.data())
			return i;
	return 0;
}
tuple CompilerStack::positionFromSourceLocation(SourceLocation const& _sourceLocation) const
{
	int startLine;
	int startColumn;
	int endLine;
	int endColumn;
	tie(startLine, startColumn) = scanner(*_sourceLocation.sourceName).translatePositionToLineColumn(_sourceLocation.start);
	tie(endLine, endColumn) = scanner(*_sourceLocation.sourceName).translatePositionToLineColumn(_sourceLocation.end);
	return make_tuple(++startLine, ++startColumn, ++endLine, ++endColumn);
}
StringMap CompilerStack::loadMissingSources(SourceUnit const& _ast, std::string const& _sourcePath)
{
	StringMap newSources;
	for (auto const& node: _ast.nodes())
		if (ImportDirective const* import = dynamic_cast(node.get()))
		{
			string importPath = absolutePath(import->path(), _sourcePath);
			// The current value of `path` is the absolute path as seen from this source file.
			// We first have to apply remappings before we can store the actual absolute path
			// as seen globally.
			importPath = applyRemapping(importPath, _sourcePath);
			import->annotation().absolutePath = importPath;
			if (m_sources.count(importPath) || newSources.count(importPath))
				continue;
			ReadFileResult result{false, string("File not supplied initially.")};
			if (m_readFile)
				result = m_readFile(importPath);
			if (result.success)
				newSources[importPath] = result.contentsOrErrorMesage;
			else
			{
				auto err = make_shared(Error::Type::ParserError);
				*err <<
					errinfo_sourceLocation(import->location()) <<
					errinfo_comment("Source \"" + importPath + "\" not found: " + result.contentsOrErrorMesage);
				m_errors.push_back(std::move(err));
				continue;
			}
		}
	return newSources;
}
string CompilerStack::applyRemapping(string const& _path, string const& _context)
{
	// Try to find the longest prefix match in all remappings that are active in the current context.
	auto isPrefixOf = [](string const& _a, string const& _b)
	{
		if (_a.length() > _b.length())
			return false;
		return std::equal(_a.begin(), _a.end(), _b.begin());
	};
	size_t longestPrefix = 0;
	size_t longestContext = 0;
	string bestMatchTarget;
	for (auto const& redir: m_remappings)
	{
		string context = sanitizePath(redir.context);
		string prefix = sanitizePath(redir.prefix);
		// Skip if current context is closer
		if (context.length() < longestContext)
			continue;
		// Skip if redir.context is not a prefix of _context
		if (!isPrefixOf(context, _context))
			continue;
		// Skip if we already have a closer prefix match.
		if (prefix.length() < longestPrefix && context.length() == longestContext)
			continue;
		// Skip if the prefix does not match.
		if (!isPrefixOf(prefix, _path))
			continue;
		longestContext = context.length();
		longestPrefix = prefix.length();
		bestMatchTarget = sanitizePath(redir.target);
	}
	string path = bestMatchTarget;
	path.append(_path.begin() + longestPrefix, _path.end());
	return path;
}
void CompilerStack::resolveImports()
{
	// topological sorting (depth first search) of the import graph, cutting potential cycles
	vector sourceOrder;
	set sourcesSeen;
	function toposort = [&](Source const* _source)
	{
		if (sourcesSeen.count(_source))
			return;
		sourcesSeen.insert(_source);
		for (ASTPointer const& node: _source->ast->nodes())
			if (ImportDirective const* import = dynamic_cast(node.get()))
			{
				string const& path = import->annotation().absolutePath;
				solAssert(!path.empty(), "");
				solAssert(m_sources.count(path), "");
				import->annotation().sourceUnit = m_sources[path].ast.get();
				toposort(&m_sources[path]);
			}
		sourceOrder.push_back(_source);
	};
	for (auto const& sourcePair: m_sources)
		if (!sourcePair.second.isLibrary)
			toposort(&sourcePair.second);
	swap(m_sourceOrder, sourceOrder);
}
string CompilerStack::absolutePath(string const& _path, string const& _reference) const
{
	using path = boost::filesystem::path;
	path p(_path);
	// Anything that does not start with `.` is an absolute path.
	if (p.begin() == p.end() || (*p.begin() != "." && *p.begin() != ".."))
		return _path;
	path result(_reference);
	result.remove_filename();
	for (path::iterator it = p.begin(); it != p.end(); ++it)
		if (*it == "..")
			result = result.parent_path();
		else if (*it != ".")
			result /= *it;
	return result.generic_string();
}
void CompilerStack::compileContract(
	ContractDefinition const& _contract,
	map& _compiledContracts
)
{
	if (
		_compiledContracts.count(&_contract) ||
		!_contract.annotation().isFullyImplemented ||
		!_contract.annotation().hasPublicConstructor
	)
		return;
	for (auto const* dependency: _contract.annotation().contractDependencies)
		compileContract(*dependency, _compiledContracts);
	shared_ptr compiler = make_shared(m_optimize, m_optimizeRuns);
	Contract& compiledContract = m_contracts.at(_contract.fullyQualifiedName());
	string onChainMetadata = createOnChainMetadata(compiledContract);
	bytes cborEncodedMetadata =
		// CBOR-encoding of {"bzzr0": dev::swarmHash(onChainMetadata)}
		bytes{0xa1, 0x65, 'b', 'z', 'z', 'r', '0', 0x58, 0x20} +
		dev::swarmHash(onChainMetadata).asBytes();
	solAssert(cborEncodedMetadata.size() <= 0xffff, "Metadata too large");
	// 16-bit big endian length
	cborEncodedMetadata += toCompactBigEndian(cborEncodedMetadata.size(), 2);
	compiler->compileContract(_contract, _compiledContracts, cborEncodedMetadata);
	compiledContract.compiler = compiler;
	compiledContract.object = compiler->assembledObject();
	compiledContract.runtimeObject = compiler->runtimeObject();
	compiledContract.onChainMetadata = onChainMetadata;
	_compiledContracts[compiledContract.contract] = &compiler->assembly();
	try
	{
		Compiler cloneCompiler(m_optimize, m_optimizeRuns);
		cloneCompiler.compileClone(_contract, _compiledContracts);
		compiledContract.cloneObject = cloneCompiler.assembledObject();
	}
	catch (eth::AssemblyException const&)
	{
		// In some cases (if the constructor requests a runtime function), it is not
		// possible to compile the clone.
		// TODO: Report error / warning
	}
}
std::string CompilerStack::defaultContractName() const
{
	return contract("").contract->name();
}
CompilerStack::Contract const& CompilerStack::contract(string const& _contractName) const
{
	if (m_contracts.empty())
		BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("No compiled contracts found."));
	string contractName = _contractName;
	if (_contractName.empty())
		// try to find some user-supplied contract
		for (auto const& it: m_sources)
			for (ASTPointer const& node: it.second.ast->nodes())
				if (auto contract = dynamic_cast(node.get()))
					contractName = contract->fullyQualifiedName();
	auto it = m_contracts.find(contractName);
	// To provide a measure of backward-compatibility, if a contract is not located by its
	// fully-qualified name, a lookup will be attempted purely on the contract's name to see
	// if anything will satisfy.
	if (it == m_contracts.end() && contractName.find(":") == string::npos)
	{
		for (auto const& contractEntry: m_contracts)
		{
			stringstream ss;
			ss.str(contractEntry.first);
			// All entries are :
			string source;
			string foundName;
			getline(ss, source, ':');
			getline(ss, foundName, ':');
			if (foundName == contractName) return contractEntry.second;
		}
		// If we get here, both lookup methods failed.
		BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Contract " + _contractName + " not found."));
	}
	return it->second;
}
CompilerStack::Source const& CompilerStack::source(string const& _sourceName) const
{
	auto it = m_sources.find(_sourceName);
	if (it == m_sources.end())
		BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Given source file not found."));
	return it->second;
}
string CompilerStack::createOnChainMetadata(Contract const& _contract) const
{
	Json::Value meta;
	meta["version"] = 1;
	meta["language"] = "Solidity";
	meta["compiler"]["version"] = VersionStringStrict;
	meta["sources"] = Json::objectValue;
	for (auto const& s: m_sources)
	{
		solAssert(s.second.scanner, "Scanner not available");
		meta["sources"][s.first]["keccak256"] =
			"0x" + toHex(dev::keccak256(s.second.scanner->source()).asBytes());
		if (m_metadataLiteralSources)
			meta["sources"][s.first]["content"] = s.second.scanner->source();
		else
		{
			meta["sources"][s.first]["urls"] = Json::arrayValue;
			meta["sources"][s.first]["urls"].append(
				"bzzr://" + toHex(dev::swarmHash(s.second.scanner->source()).asBytes())
			);
		}
	}
	meta["settings"]["optimizer"]["enabled"] = m_optimize;
	meta["settings"]["optimizer"]["runs"] = m_optimizeRuns;
	meta["settings"]["compilationTarget"][_contract.contract->sourceUnitName()] =
		_contract.contract->annotation().canonicalName;
	meta["settings"]["remappings"] = Json::arrayValue;
	set remappings;
	for (auto const& r: m_remappings)
		remappings.insert(r.context + ":" + r.prefix + "=" + r.target);
	for (auto const& r: remappings)
		meta["settings"]["remappings"].append(r);
	meta["settings"]["libraries"] = Json::objectValue;
	for (auto const& library: m_libraries)
		meta["settings"]["libraries"][library.first] = "0x" + toHex(library.second.asBytes());
	meta["output"]["abi"] = metadata(_contract, DocumentationType::ABIInterface);
	meta["output"]["userdoc"] = metadata(_contract, DocumentationType::NatspecUser);
	meta["output"]["devdoc"] = metadata(_contract, DocumentationType::NatspecDev);
	return jsonCompactPrint(meta);
}
string CompilerStack::computeSourceMapping(eth::AssemblyItems const& _items) const
{
	string ret;
	map sourceIndicesMap = sourceIndices();
	int prevStart = -1;
	int prevLength = -1;
	int prevSourceIndex = -1;
	char prevJump = 0;
	for (auto const& item: _items)
	{
		if (!ret.empty())
			ret += ";";
		SourceLocation const& location = item.location();
		int length = location.start != -1 && location.end != -1 ? location.end - location.start : -1;
		int sourceIndex =
			location.sourceName && sourceIndicesMap.count(*location.sourceName) ?
			sourceIndicesMap.at(*location.sourceName) :
			-1;
		char jump = '-';
		if (item.getJumpType() == eth::AssemblyItem::JumpType::IntoFunction)
			jump = 'i';
		else if (item.getJumpType() == eth::AssemblyItem::JumpType::OutOfFunction)
			jump = 'o';
		unsigned components = 4;
		if (jump == prevJump)
		{
			components--;
			if (sourceIndex == prevSourceIndex)
			{
				components--;
				if (length == prevLength)
				{
					components--;
					if (location.start == prevStart)
						components--;
				}
			}
		}
		if (components-- > 0)
		{
			if (location.start != prevStart)
				ret += std::to_string(location.start);
			if (components-- > 0)
			{
				ret += ':';
				if (length != prevLength)
					ret += std::to_string(length);
				if (components-- > 0)
				{
					ret += ':';
					if (sourceIndex != prevSourceIndex)
						ret += std::to_string(sourceIndex);
					if (components-- > 0)
					{
						ret += ':';
						if (jump != prevJump)
							ret += jump;
					}
				}
			}
		}
		prevStart = location.start;
		prevLength = length;
		prevSourceIndex = sourceIndex;
		prevJump = jump;
	}
	return ret;
}