/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** * @author Christian * @date 2014 * Solidity AST to EVM bytecode compiler for expressions. */ #include #include #include #include #include #include #include using namespace std; namespace dev { namespace solidity { void ExpressionCompiler::compileExpression(CompilerContext& _context, Expression const& _expression, bool _optimize) { ExpressionCompiler compiler(_context, _optimize); _expression.accept(compiler); } void ExpressionCompiler::appendTypeConversion(CompilerContext& _context, Type const& _typeOnStack, Type const& _targetType) { ExpressionCompiler compiler(_context); compiler.appendTypeConversion(_typeOnStack, _targetType); } bool ExpressionCompiler::visit(Assignment const& _assignment) { _assignment.getRightHandSide().accept(*this); appendTypeConversion(*_assignment.getRightHandSide().getType(), *_assignment.getType()); _assignment.getLeftHandSide().accept(*this); solAssert(m_currentLValue.isValid(), "LValue not retrieved."); Token::Value op = _assignment.getAssignmentOperator(); if (op != Token::ASSIGN) // compound assignment { if (m_currentLValue.storesReferenceOnStack()) m_context << eth::Instruction::SWAP1 << eth::Instruction::DUP2; m_currentLValue.retrieveValue(_assignment, true); appendOrdinaryBinaryOperatorCode(Token::AssignmentToBinaryOp(op), *_assignment.getType()); } m_currentLValue.storeValue(_assignment); m_currentLValue.reset(); return false; } void ExpressionCompiler::endVisit(UnaryOperation const& _unaryOperation) { //@todo type checking and creating code for an operator should be in the same place: // the operator should know how to convert itself and to which types it applies, so // put this code together with "Type::acceptsBinary/UnaryOperator" into a class that // represents the operator switch (_unaryOperation.getOperator()) { case Token::NOT: // ! m_context << eth::Instruction::ISZERO; break; case Token::BIT_NOT: // ~ m_context << eth::Instruction::NOT; break; case Token::DELETE: // delete // @todo semantics change for complex types solAssert(m_currentLValue.isValid(), "LValue not retrieved."); m_context << u256(0); if (m_currentLValue.storesReferenceOnStack()) m_context << eth::Instruction::SWAP1; m_currentLValue.storeValue(_unaryOperation); m_currentLValue.reset(); break; case Token::INC: // ++ (pre- or postfix) case Token::DEC: // -- (pre- or postfix) solAssert(m_currentLValue.isValid(), "LValue not retrieved."); m_currentLValue.retrieveValue(_unaryOperation); if (!_unaryOperation.isPrefixOperation()) { if (m_currentLValue.storesReferenceOnStack()) m_context << eth::Instruction::SWAP1 << eth::Instruction::DUP2; else m_context << eth::Instruction::DUP1; } m_context << u256(1); if (_unaryOperation.getOperator() == Token::INC) m_context << eth::Instruction::ADD; else m_context << eth::Instruction::SWAP1 << eth::Instruction::SUB; // @todo avoid the swap // Stack for prefix: [ref] (*ref)+-1 // Stack for postfix: *ref [ref] (*ref)+-1 if (m_currentLValue.storesReferenceOnStack()) m_context << eth::Instruction::SWAP1; m_currentLValue.storeValue(_unaryOperation, !_unaryOperation.isPrefixOperation()); m_currentLValue.reset(); break; case Token::ADD: // + // unary add, so basically no-op break; case Token::SUB: // - m_context << u256(0) << eth::Instruction::SUB; break; default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Invalid unary operator: " + string(Token::toString(_unaryOperation.getOperator())))); } } bool ExpressionCompiler::visit(BinaryOperation const& _binaryOperation) { Expression const& leftExpression = _binaryOperation.getLeftExpression(); Expression const& rightExpression = _binaryOperation.getRightExpression(); Type const& commonType = _binaryOperation.getCommonType(); Token::Value const op = _binaryOperation.getOperator(); if (op == Token::AND || op == Token::OR) // special case: short-circuiting appendAndOrOperatorCode(_binaryOperation); else { bool cleanupNeeded = false; if (commonType.getCategory() == Type::Category::INTEGER) if (Token::isCompareOp(op) || op == Token::DIV || op == Token::MOD) cleanupNeeded = true; // for commutative operators, push the literal as late as possible to allow improved optimization //@todo this has to be extended for literal expressions bool swap = (m_optimize && Token::isCommutativeOp(op) && dynamic_cast(&rightExpression) && !dynamic_cast(&leftExpression)); if (swap) { leftExpression.accept(*this); appendTypeConversion(*leftExpression.getType(), commonType, cleanupNeeded); rightExpression.accept(*this); appendTypeConversion(*rightExpression.getType(), commonType, cleanupNeeded); } else { rightExpression.accept(*this); appendTypeConversion(*rightExpression.getType(), commonType, cleanupNeeded); leftExpression.accept(*this); appendTypeConversion(*leftExpression.getType(), commonType, cleanupNeeded); } if (Token::isCompareOp(op)) appendCompareOperatorCode(op, commonType); else appendOrdinaryBinaryOperatorCode(op, commonType); } // do not visit the child nodes, we already did that explicitly return false; } bool ExpressionCompiler::visit(FunctionCall const& _functionCall) { using Location = FunctionType::Location; if (_functionCall.isTypeConversion()) { //@todo struct construction solAssert(_functionCall.getArguments().size() == 1, ""); Expression const& firstArgument = *_functionCall.getArguments().front(); firstArgument.accept(*this); if (firstArgument.getType()->getCategory() == Type::Category::CONTRACT && _functionCall.getType()->getCategory() == Type::Category::INTEGER) { // explicit type conversion contract -> address, nothing to do. } else appendTypeConversion(*firstArgument.getType(), *_functionCall.getType()); } else { FunctionType const& function = dynamic_cast(*_functionCall.getExpression().getType()); vector> arguments = _functionCall.getArguments(); solAssert(arguments.size() == function.getParameterTypes().size(), ""); switch (function.getLocation()) { case Location::INTERNAL: { // Calling convention: Caller pushes return address and arguments // Callee removes them and pushes return values eth::AssemblyItem returnLabel = m_context.pushNewTag(); for (unsigned i = 0; i < arguments.size(); ++i) { arguments[i]->accept(*this); appendTypeConversion(*arguments[i]->getType(), *function.getParameterTypes()[i]); } _functionCall.getExpression().accept(*this); m_context.appendJump(); m_context << returnLabel; unsigned returnParametersSize = CompilerUtils::getSizeOnStack(function.getReturnParameterTypes()); // callee adds return parameters, but removes arguments and return label m_context.adjustStackOffset(returnParametersSize - CompilerUtils::getSizeOnStack(arguments) - 1); // @todo for now, the return value of a function is its first return value, so remove // all others for (unsigned i = 1; i < function.getReturnParameterTypes().size(); ++i) CompilerUtils(m_context).popStackElement(*function.getReturnParameterTypes()[i]); break; } case Location::EXTERNAL: case Location::BARE: { FunctionCallOptions options; options.bare = function.getLocation() == Location::BARE; options.obtainAddress = [&]() { _functionCall.getExpression().accept(*this); }; appendExternalFunctionCall(function, arguments, options); break; } case Location::SEND: { FunctionCallOptions options; options.bare = true; options.obtainAddress = [&]() { _functionCall.getExpression().accept(*this); }; options.obtainValue = [&]() { arguments.front()->accept(*this); }; appendExternalFunctionCall(FunctionType({}, {}, Location::EXTERNAL), {}, options); break; } case Location::SUICIDE: arguments.front()->accept(*this); //@todo might not be necessary appendTypeConversion(*arguments.front()->getType(), *function.getParameterTypes().front(), true); m_context << eth::Instruction::SUICIDE; break; case Location::SHA3: arguments.front()->accept(*this); appendTypeConversion(*arguments.front()->getType(), *function.getParameterTypes().front(), true); // @todo move this once we actually use memory CompilerUtils(m_context).storeInMemory(0); m_context << u256(32) << u256(0) << eth::Instruction::SHA3; break; case Location::ECRECOVER: case Location::SHA256: case Location::RIPEMD160: { static const map contractAddresses{{Location::ECRECOVER, 1}, {Location::SHA256, 2}, {Location::RIPEMD160, 3}}; u256 contractAddress = contractAddresses.find(function.getLocation())->second; FunctionCallOptions options; options.bare = true; options.obtainAddress = [&]() { m_context << contractAddress; }; options.packDensely = false; appendExternalFunctionCall(function, arguments, options); break; } default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Invalid function type.")); } } return false; } bool ExpressionCompiler::visit(NewExpression const& _newExpression) { ContractType const* type = dynamic_cast(_newExpression.getType().get()); solAssert(type, ""); TypePointers const& types = type->getConstructorType()->getParameterTypes(); vector> arguments = _newExpression.getArguments(); solAssert(arguments.size() == types.size(), ""); // copy the contracts code into memory bytes const& bytecode = m_context.getCompiledContract(*_newExpression.getContract()); m_context << u256(bytecode.size()); //@todo could be done by actually appending the Assembly, but then we probably need to compile // multiple times. Will revisit once external fuctions are inlined. m_context.appendData(bytecode); //@todo copy to memory position 0, shift as soon as we use memory m_context << u256(0) << eth::Instruction::CODECOPY; unsigned dataOffset = bytecode.size(); for (unsigned i = 0; i < arguments.size(); ++i) { arguments[i]->accept(*this); appendTypeConversion(*arguments[i]->getType(), *types[i]); unsigned const numBytes = types[i]->getCalldataEncodedSize(); if (numBytes > 32) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_sourceLocation(arguments[i]->getLocation()) << errinfo_comment("Type " + types[i]->toString() + " not yet supported.")); bool const leftAligned = types[i]->getCategory() == Type::Category::STRING; CompilerUtils(m_context).storeInMemory(dataOffset, numBytes, leftAligned); dataOffset += numBytes; } // size, offset, endowment m_context << u256(dataOffset) << u256(0) << u256(0) << eth::Instruction::CREATE; return false; } void ExpressionCompiler::endVisit(MemberAccess const& _memberAccess) { ASTString const& member = _memberAccess.getMemberName(); switch (_memberAccess.getExpression().getType()->getCategory()) { case Type::Category::INTEGER: if (member == "balance") { appendTypeConversion(*_memberAccess.getExpression().getType(), IntegerType(0, IntegerType::Modifier::ADDRESS), true); m_context << eth::Instruction::BALANCE; } else if (member == "send" || member.substr(0, min(member.size(), 4)) == "call") appendTypeConversion(*_memberAccess.getExpression().getType(), IntegerType(0, IntegerType::Modifier::ADDRESS), true); else BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Invalid member access to integer.")); break; case Type::Category::CONTRACT: { ContractType const& type = dynamic_cast(*_memberAccess.getExpression().getType()); m_context << type.getFunctionIndex(member); break; } case Type::Category::MAGIC: // we can ignore the kind of magic and only look at the name of the member if (member == "coinbase") m_context << eth::Instruction::COINBASE; else if (member == "timestamp") m_context << eth::Instruction::TIMESTAMP; else if (member == "prevhash") m_context << eth::Instruction::PREVHASH; else if (member == "difficulty") m_context << eth::Instruction::DIFFICULTY; else if (member == "number") m_context << eth::Instruction::NUMBER; else if (member == "gaslimit") m_context << eth::Instruction::GASLIMIT; else if (member == "sender") m_context << eth::Instruction::CALLER; else if (member == "value") m_context << eth::Instruction::CALLVALUE; else if (member == "origin") m_context << eth::Instruction::ORIGIN; else if (member == "gas") m_context << eth::Instruction::GAS; else if (member == "gasprice") m_context << eth::Instruction::GASPRICE; else BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown magic member.")); break; case Type::Category::STRUCT: { StructType const& type = dynamic_cast(*_memberAccess.getExpression().getType()); m_context << type.getStorageOffsetOfMember(member) << eth::Instruction::ADD; m_currentLValue = LValue(m_context, LValue::STORAGE, *_memberAccess.getType()); m_currentLValue.retrieveValueIfLValueNotRequested(_memberAccess); break; } default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Member access to unknown type.")); } } bool ExpressionCompiler::visit(IndexAccess const& _indexAccess) { _indexAccess.getBaseExpression().accept(*this); _indexAccess.getIndexExpression().accept(*this); appendTypeConversion(*_indexAccess.getIndexExpression().getType(), *dynamic_cast(*_indexAccess.getBaseExpression().getType()).getKeyType(), true); // @todo move this once we actually use memory CompilerUtils(m_context).storeInMemory(0); CompilerUtils(m_context).storeInMemory(32); m_context << u256(64) << u256(0) << eth::Instruction::SHA3; m_currentLValue = LValue(m_context, LValue::STORAGE, *_indexAccess.getType()); m_currentLValue.retrieveValueIfLValueNotRequested(_indexAccess); return false; } void ExpressionCompiler::endVisit(Identifier const& _identifier) { Declaration const* declaration = _identifier.getReferencedDeclaration(); if (MagicVariableDeclaration const* magicVar = dynamic_cast(declaration)) { if (magicVar->getType()->getCategory() == Type::Category::CONTRACT) // must be "this" m_context << eth::Instruction::ADDRESS; return; } if (FunctionDefinition const* functionDef = dynamic_cast(declaration)) { m_context << m_context.getFunctionEntryLabel(*functionDef).pushTag(); return; } if (dynamic_cast(declaration)) { m_currentLValue.fromIdentifier(_identifier, *declaration); m_currentLValue.retrieveValueIfLValueNotRequested(_identifier); return; } BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Identifier type not expected in expression context.")); } void ExpressionCompiler::endVisit(Literal const& _literal) { switch (_literal.getType()->getCategory()) { case Type::Category::INTEGER: case Type::Category::BOOL: case Type::Category::STRING: m_context << _literal.getType()->literalValue(_literal); break; default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Only integer, boolean and string literals implemented for now.")); } } void ExpressionCompiler::appendAndOrOperatorCode(BinaryOperation const& _binaryOperation) { Token::Value const op = _binaryOperation.getOperator(); solAssert(op == Token::OR || op == Token::AND, ""); _binaryOperation.getLeftExpression().accept(*this); m_context << eth::Instruction::DUP1; if (op == Token::AND) m_context << eth::Instruction::ISZERO; eth::AssemblyItem endLabel = m_context.appendConditionalJump(); m_context << eth::Instruction::POP; _binaryOperation.getRightExpression().accept(*this); m_context << endLabel; } void ExpressionCompiler::appendCompareOperatorCode(Token::Value _operator, Type const& _type) { if (_operator == Token::EQ || _operator == Token::NE) { m_context << eth::Instruction::EQ; if (_operator == Token::NE) m_context << eth::Instruction::ISZERO; } else { IntegerType const& type = dynamic_cast(_type); bool const isSigned = type.isSigned(); switch (_operator) { case Token::GTE: m_context << (isSigned ? eth::Instruction::SLT : eth::Instruction::LT) << eth::Instruction::ISZERO; break; case Token::LTE: m_context << (isSigned ? eth::Instruction::SGT : eth::Instruction::GT) << eth::Instruction::ISZERO; break; case Token::GT: m_context << (isSigned ? eth::Instruction::SGT : eth::Instruction::GT); break; case Token::LT: m_context << (isSigned ? eth::Instruction::SLT : eth::Instruction::LT); break; default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown comparison operator.")); } } } void ExpressionCompiler::appendOrdinaryBinaryOperatorCode(Token::Value _operator, Type const& _type) { if (Token::isArithmeticOp(_operator)) appendArithmeticOperatorCode(_operator, _type); else if (Token::isBitOp(_operator)) appendBitOperatorCode(_operator); else if (Token::isShiftOp(_operator)) appendShiftOperatorCode(_operator); else BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown binary operator.")); } void ExpressionCompiler::appendArithmeticOperatorCode(Token::Value _operator, Type const& _type) { IntegerType const& type = dynamic_cast(_type); bool const isSigned = type.isSigned(); switch (_operator) { case Token::ADD: m_context << eth::Instruction::ADD; break; case Token::SUB: m_context << eth::Instruction::SUB; break; case Token::MUL: m_context << eth::Instruction::MUL; break; case Token::DIV: m_context << (isSigned ? eth::Instruction::SDIV : eth::Instruction::DIV); break; case Token::MOD: m_context << (isSigned ? eth::Instruction::SMOD : eth::Instruction::MOD); break; default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown arithmetic operator.")); } } void ExpressionCompiler::appendBitOperatorCode(Token::Value _operator) { switch (_operator) { case Token::BIT_OR: m_context << eth::Instruction::OR; break; case Token::BIT_AND: m_context << eth::Instruction::AND; break; case Token::BIT_XOR: m_context << eth::Instruction::XOR; break; default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown bit operator.")); } } void ExpressionCompiler::appendShiftOperatorCode(Token::Value _operator) { BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Shift operators not yet implemented.")); switch (_operator) { case Token::SHL: break; case Token::SAR: break; default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown shift operator.")); } } void ExpressionCompiler::appendTypeConversion(Type const& _typeOnStack, Type const& _targetType, bool _cleanupNeeded) { // For a type extension, we need to remove all higher-order bits that we might have ignored in // previous operations. // @todo: store in the AST whether the operand might have "dirty" higher order bits if (_typeOnStack == _targetType && !_cleanupNeeded) return; if (_typeOnStack.getCategory() == Type::Category::INTEGER) appendHighBitsCleanup(dynamic_cast(_typeOnStack)); else if (_typeOnStack.getCategory() == Type::Category::STRING) { // nothing to do, strings are high-order-bit-aligned //@todo clear lower-order bytes if we allow explicit conversion to shorter strings } else if (_typeOnStack != _targetType) // All other types should not be convertible to non-equal types. BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Invalid type conversion requested.")); } void ExpressionCompiler::appendHighBitsCleanup(IntegerType const& _typeOnStack) { if (_typeOnStack.getNumBits() == 256) return; else if (_typeOnStack.isSigned()) m_context << u256(_typeOnStack.getNumBits() / 8 - 1) << eth::Instruction::SIGNEXTEND; else m_context << ((u256(1) << _typeOnStack.getNumBits()) - 1) << eth::Instruction::AND; } void ExpressionCompiler::appendExternalFunctionCall(FunctionType const& _functionType, vector> const& _arguments, FunctionCallOptions const& _options) { solAssert(_arguments.size() == _functionType.getParameterTypes().size(), ""); unsigned dataOffset = _options.bare ? 0 : 1; // reserve one byte for the function index for (unsigned i = 0; i < _arguments.size(); ++i) { _arguments[i]->accept(*this); Type const& type = *_functionType.getParameterTypes()[i]; appendTypeConversion(*_arguments[i]->getType(), type); unsigned const numBytes = _options.packDensely ? type.getCalldataEncodedSize() : 32; if (numBytes == 0 || numBytes > 32) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_sourceLocation(_arguments[i]->getLocation()) << errinfo_comment("Type " + type.toString() + " not yet supported.")); bool const leftAligned = type.getCategory() == Type::Category::STRING; CompilerUtils(m_context).storeInMemory(dataOffset, numBytes, leftAligned); dataOffset += numBytes; } //@todo only return the first return value for now Type const* firstType = _functionType.getReturnParameterTypes().empty() ? nullptr : _functionType.getReturnParameterTypes().front().get(); unsigned retSize = firstType ? firstType->getCalldataEncodedSize() : 0; if (!_options.packDensely && retSize > 0) retSize = 32; // CALL arguments: outSize, outOff, inSize, inOff, value, addr, gas (stack top) m_context << u256(retSize) << u256(0) << u256(dataOffset) << u256(0); if (_options.obtainValue) _options.obtainValue(); else m_context << u256(0); _options.obtainAddress(); if (!_options.bare) m_context << u256(0) << eth::Instruction::MSTORE8; m_context << u256(25) << eth::Instruction::GAS << eth::Instruction::SUB << eth::Instruction::CALL << eth::Instruction::POP; // @todo do not ignore failure indicator if (retSize > 0) { bool const leftAligned = firstType->getCategory() == Type::Category::STRING; CompilerUtils(m_context).loadFromMemory(0, retSize, leftAligned); } } ExpressionCompiler::LValue::LValue(CompilerContext& _compilerContext, LValueType _type, Type const& _dataType, unsigned _baseStackOffset): m_context(&_compilerContext), m_type(_type), m_baseStackOffset(_baseStackOffset), m_stackSize(_dataType.getSizeOnStack()) { } void ExpressionCompiler::LValue::retrieveValue(Expression const& _expression, bool _remove) const { switch (m_type) { case STACK: { unsigned stackPos = m_context->baseToCurrentStackOffset(unsigned(m_baseStackOffset)); if (stackPos >= 15) //@todo correct this by fetching earlier or moving to memory BOOST_THROW_EXCEPTION(CompilerError() << errinfo_sourceLocation(_expression.getLocation()) << errinfo_comment("Stack too deep.")); for (unsigned i = 0; i < m_stackSize; ++i) *m_context << eth::dupInstruction(stackPos + 1); break; } case STORAGE: if (!_expression.getType()->isValueType()) break; // no distinction between value and reference for non-value types if (!_remove) *m_context << eth::Instruction::DUP1; if (m_stackSize == 1) *m_context << eth::Instruction::SLOAD; else for (unsigned i = 0; i < m_stackSize; ++i) { *m_context << eth::Instruction::DUP1 << eth::Instruction::SLOAD << eth::Instruction::SWAP1; if (i + 1 < m_stackSize) *m_context << u256(1) << eth::Instruction::ADD; else *m_context << eth::Instruction::POP; } break; case MEMORY: if (!_expression.getType()->isValueType()) break; // no distinction between value and reference for non-value types BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_sourceLocation(_expression.getLocation()) << errinfo_comment("Location type not yet implemented.")); break; default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_sourceLocation(_expression.getLocation()) << errinfo_comment("Unsupported location type.")); break; } } void ExpressionCompiler::LValue::storeValue(Expression const& _expression, bool _move) const { switch (m_type) { case STACK: { unsigned stackDiff = m_context->baseToCurrentStackOffset(unsigned(m_baseStackOffset)) - m_stackSize + 1; if (stackDiff > 16) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_sourceLocation(_expression.getLocation()) << errinfo_comment("Stack too deep.")); else if (stackDiff > 0) for (unsigned i = 0; i < m_stackSize; ++i) *m_context << eth::swapInstruction(stackDiff) << eth::Instruction::POP; if (!_move) retrieveValue(_expression); break; } case LValue::STORAGE: if (!_expression.getType()->isValueType()) break; // no distinction between value and reference for non-value types // stack layout: value value ... value ref if (!_move) // copy values { if (m_stackSize + 1 > 16) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_sourceLocation(_expression.getLocation()) << errinfo_comment("Stack too deep.")); for (unsigned i = 0; i < m_stackSize; ++i) *m_context << eth::dupInstruction(m_stackSize + 1) << eth::Instruction::SWAP1; } if (m_stackSize > 0) // store high index value first *m_context << u256(m_stackSize - 1) << eth::Instruction::ADD; for (unsigned i = 0; i < m_stackSize; ++i) { if (i + 1 >= m_stackSize) *m_context << eth::Instruction::SSTORE; else // v v ... v v r+x *m_context << eth::Instruction::SWAP1 << eth::Instruction::DUP2 << eth::Instruction::SSTORE << u256(1) << eth::Instruction::SWAP1 << eth::Instruction::SUB; } break; case LValue::MEMORY: if (!_expression.getType()->isValueType()) break; // no distinction between value and reference for non-value types BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_sourceLocation(_expression.getLocation()) << errinfo_comment("Location type not yet implemented.")); break; default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_sourceLocation(_expression.getLocation()) << errinfo_comment("Unsupported location type.")); break; } } void ExpressionCompiler::LValue::retrieveValueIfLValueNotRequested(Expression const& _expression) { if (!_expression.lvalueRequested()) { retrieveValue(_expression, true); reset(); } } void ExpressionCompiler::LValue::fromIdentifier(Identifier const& _identifier, Declaration const& _declaration) { m_stackSize = _identifier.getType()->getSizeOnStack(); if (m_context->isLocalVariable(&_declaration)) { m_type = STACK; m_baseStackOffset = m_context->getBaseStackOffsetOfVariable(_declaration); } else if (m_context->isStateVariable(&_declaration)) { m_type = STORAGE; *m_context << m_context->getStorageLocationOfVariable(_declaration); } else BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_sourceLocation(_identifier.getLocation()) << errinfo_comment("Identifier type not supported or identifier not found.")); } } }